Polaris GEM e2 Vehicle

The Center for Autonomy at University of Illinois at Urbana-Champaign

User Manual

Version 1.0 Create: 07/01/2021 Last Update: 08/31/2022

Contact: Hang Cui **Email**: hangcui3@illinois.edu

Table of Contents

1. Polaris GEM e2 - Hardware					
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 1.11 1.12 1.13	Polaris GEM e2 VehicleHardware OverviewMaster Power SwitchAutomated Research Development PlatformAStuff Spectra 2 ComputerPower Devices of AStuff Spectra 2 ComputerPACMod Hardware InterfaceJoystick Controller InterfaceZED2 Stereo CameraVelodyne VLP-16Delphi ESR 2.5 RadarProPak 6 & SPAN-IGM-S1Cradlepoint IBR1700 Mobile Router	3 4 5 5 6 7 8 9 0 1 3 4 7			
2. Pola	ris GEM e2 - Software 1	8			
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9	Software Setup1Frame Setup1Rviz Setup2ROS Driver of PACMod2ROS Driver of Joystick Controller2ROS Topics of Polaris GEM e22Demo of Pure Pursuit Tracker on GNSS Waypoints3Demo of Stanley Tracker on GNSS-RTK Waypoints3Coming more3	8 9 20 22 6 28 16 7 38			
3. Pola	3. Polaris GEM e2 - Simulator				
3.1 3.2 3.3 3.4	Introduction	9 0 3 5			
4. Polaris GEM e2 - Operation					
4.1 4.2 4.2	Power of Computer & Vehicle	6 9 51			

1. Polaris GEM e2 - Hardware

1.1 Polaris GEM e2 Vehicle

Software interfaces to the controls: steering, braking, acceleration Software access: left and right blinkers, reverse and drive gear selection, speed feedback Convenience features: Dash mounted display screen, Power distribution terminals

1.2 Hardware Overview

LEGE	END	 	
Serial	Fiber		
USB 3.0	CAN		_
Ethernet	GMSL-		
Coax	HDMI-		
Velodyne	Wireless	•	_

1.3 Master Power Switch

Switch will allow operator to cut power to power distribution system

ON will supply power to power distribution system from vehicle battery

OFF will remove power to the power distribution system

Location: under the driver's seat

ON

1.4 Automated Research Development Platform

All front and rear racks are made with 3 inch x 1.5 inch 15 series 80/20

1.5 AStuff Spectra 2 Computer

The AutonomouStuff Spectra 2 is the world's first dual GPU edge ai platform with industrial-grade design and in-vehicle features. Designed specifically to support two high-end 250W NVIDIA® graphics cards, it offers tremendous GPU power up to 28 TFLOPS in FP32 for emerging GPU-accelerated edge computing, such as autonomous driving, vision inspection and surveillance/security.

Datasheet link: https://autonomoustuff.com/-

/media/Images/Hexagon/Hexagon%20Core/autonomousstuff/pdf/as-spectra-2datasheet.ashx?la=en&hash=3FBD8D8C48469BBC65773BA4752AACAD

1.6 Power Devices of AStuff Spectra 2 Computer

The Astuff Spectra 2 computer is powered a 12V lead-acid battery. To charge the battery, put the battery on the concrete floor, clip both terminals correspondingly, wait until the green LED on the charger lights. To use the battery, put the battery on the passenger side on the vehicle's floor, connect the battery to the power switch, then switch on the battery.

1.7 PACMod Hardware Interface

Application software

PACMod Override

Steering

Brake / Throttle

1.8 Joystick Controller Interface

Launching the Joystick Demo

\$ roslaunch basic_launch gem_dbw_joystick.launch

<launch>

```
<include file="$(find pacmod_game_control)/launch/pacmod_game_control.launch">
<arg name="launch_pacmod" value="false" />
<arg name="is_pacmod_3" value="false" />
<arg name="pacmod_vehicle_type" value="POLARIS_GEM" />
</include>
```

<include file="\$(find platform_launch)/launch/\$(env platform_name)/platform.launch"> <arg name="use_dbw" value="true" /> </include>

</launch>

1.9 ZED2 Stereo Camera

Neural Depth Sensing

ZED 2 is the first stereo camera that uses neural networks to reproduce human vision, bringing stereo perception to a new level.

Built-in IMU, Barometer & Magnetometer

Multi-sensor capture made easy. Gather real-time synchronized inertial, elevation and magnetic field data along image and depth.

Spatial Object Detection

Detect objects with spatial context. Combine AI with 3D localization to create next-generation spatial awareness.

Improved Positional Tracking

Benefit from a wide angle FOV, advanced sensor stack and thermal calibration for a greatly improved positional tracking accuracy.

120° Wide-Angle Field of View

With its 16:9 native sensors and ultra sharp 8-element all glass lenses, capture video and depth with up to 120° field of view.

Cloud Connected

Monitor and control your camera remotely. Using a dedicated cloud platform, capture and analyze 3D data anywhere in the world.

Video Mode	Frames per second	Output Resolution (side by side)
2.2K	15	4416x1242
1080p	30 / 15	3840x1080
720p	60 / 30 / 15	2560x720
WVGA	100 / 60 / 30 / 15	1344x376

The default image size of ZED2 stereo camera with ROS driver is **1280 x 720** at 30Hz for both left and right cameras.

1.10 Velodyne VLP-16 LiDAR

Roof Rack

Dimensions

Sensor

- 16 Channels
- Measurement Range: 100 m 120 m
- Range Accuracy: Up to ±3 cm (Typical)1
- Field of View (Vertical): +15.0° to -15.0° (30°)
- Angular Resolution (Vertical): 2.0°
- Field of View (Horizontal): 360°
- Angular Resolution (Horizontal/Azimuth): 0.1° 0.4°
- Rotation Rate: 5 Hz 20 Hz
- Integrated Web Server for Easy Monitoring and Configuration

Mechanical / Electrical / Operational

- Power Consumption: 8 W (Typical)2
- Operating Voltage: 9 V 18 V (with Interface Box and Regulated Power Supply)
- Weight: ~590 g (without Cabling and Interface Box)
- Dimensions: See diagram on previous page
- Environmental Protection: IP67
- Operating Temperature: -10°C to +60°C3
- Storage Temperature: -40°C to +105°C

Outputs

- 3D LiDAR Data Points Generated:
 - Single Return Mode: ~300,000 points per second
 - Dual Return Mode: ~600,000 points per second
- 100 Mbps Ethernet Connection
- UDP Packets Contain:
 - Time of Flight Distance Measurement
 - Calibrated Reflectivity Measurement
 - **Rotation Angles**
 - Synchronized Time Stamps (µs resolution)
- GPS: \$GPRMC and \$GPGGA NMEA Sentences from GPS Receiver (GPS not included)

1.11 Delphi ESR 2.5 Radar

CAN / USB Connection Wiring

Pin #	Signal	Color
1	Battery (+24V)	Red
2	USB D+ (green wire)	Green (USB)
3	USB D- (white wire)	White (USB)
4	Ground	Black
5	USB Ground (black wire)	Black (USB)
6	PRVCANL	Green
7	Ignition (+24V)	White
8	USB +5V (red wire)	Red (USB)
9	VEHCANL	Blue
10	VEHCANH	Brown
11	VEHCAN Shield	
12	PRVCANH	Orange

USB-to-CAN (Kvaser Hybrid 2xCAN/LIN)

1.12 ProPak 6 & SPAN-IGM-S1

ProPak-6D1

Dual Antenna Support Cellular L1/L2 GPS+GLONASS L-Band TerraStar-C PPP Corrections -3 Grade IMUs 20 Hz Positions and Measurements 4GB Internal Memory

Connector Type	Connector Label	Description
GNSS Antenna	ANT 1 ANT 2 or ANT1 OSC	GNSS GPS1 and GPS2 antennas (TNC) (model dependant) or GNSS GPS1 antenna (TNC) and external oscillator (BNC) (model dependant)
Power	PWR	4-pin LEMO power connector
Expansion	EXP.	9-pin LEMO expansion port for CAN1 and CAN2
OCO USB		USB Device (Type micro B) connector (high speed only) 480 Mbps
Ethernet		Ethernet RJ45 connector
Q	I/O	4 Event Input/3 Event Output (DB9 female connector)
Ш © 1/О		I/O port is configurable
Q	COM1	COM1, COM2, COM3/IMU DB9 male communications port
	COM2 COM3/IMU	RS-232 (RS-422 selectable via software)
Serial Communication Ports		

SPAN-IGM-S1

200Hz/125 Hz Inertial Measurements Direct Wheel Sensor Support Commercially Exportable Small and lightweight design

G5Ant-3AMT4

Matte black finish without branding Various mounting options and connectors Size: 89 mm dia. x 25 mm hgt Weight: 368 g

1.13 Cradlepoint IBR1700 Mobile Router

By using a SIM card with data plan, the Cradlepoint IBR1700 mobile router and network switch provide Internet access for AStuff Spectra 2 computer when the Polaris GEM e2 vehicle runs outside the building. The master power switch in 1.3 is in charge of powering these devices.

2. Polaris GEM e2 - Software

2.1 Software Setup

ROS Noetic Installtion

http://wiki.ros.org/noetic/Installation

AutonomouStuff Driver Installation

\$ sudo apt update && sudo apt install apt-transport-https

\$ sudo sh -c 'echo "deb [trusted=yes] https://s3.amazonaws.com/autonomoustuff-repo/ \$(lsb_release -sc) main" > /etc/apt/sources.list.d/autonomoustuff-public.list'

Install Kvaser linuxcan SDK:

https://autonomoustuff.atlassian.net/wiki/spaces/RW/pages/17475947/Driver+Pack+Installation+or +Upgrade+Instructions

https://www.kvaser.com/download/

\$ sudo apt install ros-\$ROS_DISTRO-kvaser-interface ros-\$ROS_DISTRO-delphi-esr

Software Installation

\$ sudo apt install solaar
\$ sudo apt install preload
\$ sudo apt install meld
\$ sudo apt-get install indicator-multiload

Summary

Ubuntu 20.04 with ROS Noetic (Python3) NVIDIA Driver Version: 450 (valid for RTX2080 Ti) CUDA 11.0.3 OpenCV 4.6.0 pytorch 1.7.1

2.2 Frame Setup

platform_launch/launch/white_e2/platform.launch platform_launch/launch/core/all_supported_drivers.launch

veh_frame (default=base_link)
front_radar_frame (default=front_radar)
lidar1_frame (default=lidar1)
novatel_frame (default=novatel)
novatel_imu_frame (default=imu)

Usage: static_transform_publisher x y z yaw pitch roll frame_id child_frame_id period (ms)

2.3 Rviz Setup

\$ source devel/setup.bash

\$ roslaunch basic_launch gem_sensor_init.launch

2.4 ROS Driver of PACMod

ROS wiki: http://wiki.ros.org/pacmod

Source: https://github.com/astuff/pacmod.git (branch: release)

Supported Hardware

- Polaris GEM Series (e2/e4/e6/eLXD)
- Polaris Ranger X900
- International Prostar+ 122
- Lexus RX-450h

can_msgs/Frame.msg

Header header uint32 id bool is_rtr bool is_extended bool is_error uint8 dlc uint8[8] data

CAN Device List

```
dev@dev-gem:/usr/src/linuxcan/canlib/examples$ ./listChannels
CANlib version 5.28
Found 2 channel(s).
ch 0: Kvaser USBcan Light 2xHS 73-30130-00714-7, s/n 11783, v4.1.844 (leaf v8.28.846)
ch 1: Kvaser USBcan Light 2xHS 73-30130-00714-7, s/n 11783, v4.1.844 (leaf v8.28.846)
dev@dev-gem:/usr/src/linuxcan/canlib/examples$
```

Published Topics

Торіс	Message Type	Description	
can_rx	can_msgs/Frame	All data published on this topic is intended to be sent to the PACMod system via a CAN interface.	
parsed_tx/global_rpt	pacmod_msgs/GlobalRpt	High-level data about the entire PACMod system.	
parsed_tx/accel_rpt	pacmod_msgs/SystemRptFloat	Status and parsed values [pct] of the throttle subsystem.	
parsed_tx/brake_rpt	pacmod_msgs/SystemRptFloat	Status and parsed values [pct] of the steering susbsystem.	
parsed_tx/steer_rpt	pacmod_msgs/SystemRptFloat	Status and parsed values [rad] of the steering susbsystem.	
parsed_tx/turn_rpt	pacmod_msgs/SystemRptInt	Status and parsed values [enum] of the turn signal subsystem.	
parsed_tx/shift_rpt	pacmod_msgs/SystemRptInt	Status and parsed values [enum] of the gear/transmission subsystem.	
parsed_tx/vehicle_speed_rpt	pacmod_msgs/VehicleSpeedRpt	The vehicle's current speed, the validity of the speed message [bool], and the raw CAN message from the vehicle CAN.	
parsed_tx/vin_rpt	pacmod_msgs/VinRpt	The configured vehicle's VIN, make, model, manufacturer, and model year.	
as_tx/vehicle_speed	std_msgs/Float64	The vehicle's current speed [m/s].	
as_tx/enable	std_msgs/Bool	The current status of the PACMod's control of the vehicle. If the PACMod is enabled, this value will be true. If it is disabled or overridden, this value will be false.	

Subscribed Topics

Торіс	Message Type	Description		
can_tx	can_msgs/Frame	All data published to this topic will be parsed by the PACMod driver. This should be connected to a CAN interface.		
as_rx/accel_cmd	pacmod_msgs/PacmodCmd	Commands the throttle subsystem to seek a specific pedal position [pct - 0.0 to 1.0].		
as_rx/brake_cmd	pacmod_msgs/PacmodCmd	Commands the brake subsystem to seek a specific pedal position [pct - 0.0 to 1.0].		
as_rx/shift_cmd	pacmod_msgs/PacmodCmd	Commands the gear/transmission subsystem to shift to a different gear [enum].		
as_rx/turn_cmd	pacmod_msgs/PacmodCmd	Commands the turn signal subsystem to transition to a given state [enum].		
as_rx/steer_cmd pacmod_msgs/PositionWIthSpeed		Commands the steering subsystem to seek a specific steering wheel angle [rad] at a given rotation velocity [rad/s].		
as_rx/enable	std_msgs/Bool	Enables [true] or disables [false] PACMod's control of the vehicle.		

Parameters

~vehicle_type: a string value indicating the type of vehicle to which the PACMod is connected.

Valid values are:

- POLARIS_GEM
- POLARIS_RANGER
- INTERNATIONAL_PROSTAR_122
- LEXUS_RX_450H

PACMod Graph

/pacmod/as_rx/accel_cmd
/pacmod/as_rx/brake_cmd
/pacmod/as_rx/enable
/pacmod/as_rx/shift_cmd
/pacmod/as_rx/steer_cmd
/pacmod/as_rx/turn_cmd

2.5 ROS Driver of Joystick Controller

ROS wiki: http://wiki.ros.org/pacmod_game_control

Source: <u>https://github.com/astuff/pacmod_game_control.git</u> (branch: release)

Parameters

~steering_stick: sets whether the steering command should be controlled by the left or right joystick on a two-stick controller. Valid values are LEFT or RIGHT.

~pacmod_vehicle_type: sets the type of vehicle which is being controlled. This manages vehiclespecific values like the available features and maximum steering angle. Valid values are:

- POLARIS_GEM
- POLARIS_RANGER
- LEXUS_RX_450H
- INTERNATIONAL_PROSTAR_122
- VEHICLE_4
- VEHICLE_5
- VEHICLE_6

~controller_type: sets type of controller being used and associated button mappings. Valid values are:

- LOGITECH_F310
- HRI_SAFE_REMOTE
- LOGITECH_G29
- NINTENDO_SWITCH_WIRED_PLUS
- XBOX_ONE

~steering_max_speed: the maximum rotational speed for the steering wheel in rad/s.

~max_veh_speed: the vehicle speed is used to scale the rotation rate of the steering wheel. This value is the speed, in m/s, at which the most restriction is placed on rotation rate. This helps controllability as speed increases.

~accel_scale_val: a scaling value (0.0 - 1.0) for the accelerator. 1.0 = full throttle range. 0.0 = no throttle control.

~brake_scale_val: a scaling value (0.0 - 1.0) for the brake. 1.0 = full braking range. 0.0 = no brake control.

\$ source devel/setup.bash

\$ roslaunch basic_launch gem_dbw_joystick.launch

2.6 ROS Topics of Polaris GEM e2

Joystick:

/game_control/joy /game_control/joy/set_feedback

Front RADAR:

/front radar/front radar/can rx /front radar/front radar/can tx /front radar/front radar/can viz markers /front_radar/front_radar/esr_eth_tx /front radar/front radar/esr status 1 /front_radar/front_radar/esr_status_2 /front radar/front radar/esr status 3 /front_radar/front_radar/esr_status_4 /front radar/front radar/esr status 5 /front radar/front radar/esr status 6 /front radar/front radar/esr status 7 /front radar/front radar/esr status 8 /front_radar/front_radar/esr_status_9 /front radar/front radar/esr track /front radar/front radar/esr track motion power group /front_radar/front_radar/esr_valid_1 /front radar/front radar/esr valid 2 /front_radar/front_radar/esr_vehicle_1 /front radar/front radar/esr vehicle 2 /front radar/front radar/esr vehicle 3 /front radar/front radar/esr vehicle 4 /front_radar/front_radar/esr_vehicle_5 /front radar/front radar/eth viz markers /front radar/front radar/objects /front radar/front radar/radar tracks /front_radar/front_radar/vehicle_motion

LiDAR:

/lidar1/lidar1_nodelet_manager/bond /lidar1/lidar1_nodelet_manager_cloud/parameter_descriptions /lidar1/lidar1_nodelet_manager_cloud/parameter_updates /lidar1/lidar1_nodelet_manager_driver/parameter_updates /lidar1/lidar1_nodelet_manager_laserscan/parameter_descriptions /lidar1/lidar1_nodelet_manager_laserscan/parameter_updates /lidar1/lidar1_nodelet_manager_laserscan/parameter_updates /lidar1/lidar1_nodelet_manager_laserscan/parameter_updates /lidar1/lidar1_nodelet_manager_laserscan/parameter_updates /lidar1/lidar1_nodelet_manager_laserscan/parameter_updates /lidar1/velodyne_packets /lidar1/velodyne_points

PACMod:

/pacmod/as_rx/accel_cmd /pacmod/as rx/brake cmd /pacmod/as rx/enable /pacmod/as_rx/headlight_cmd /pacmod/as rx/horn cmd /pacmod/as_rx/shift_cmd /pacmod/as rx/steer cmd /pacmod/as_rx/turn_cmd /pacmod/as_rx/wiper_cmd /pacmod/as tx/enable /pacmod/as tx/vehicle speed /pacmod/can rx /pacmod/can tx /pacmod/parsed_tx/accel_rpt /pacmod/parsed tx/brake rpt /pacmod/parsed_tx/brake_rpt_detail_1 /pacmod/parsed tx/brake rpt detail 2 /pacmod/parsed_tx/brake_rpt_detail_3 /pacmod/parsed tx/global rpt /pacmod/parsed tx/shift rpt /pacmod/parsed_tx/steer_rpt /pacmod/parsed_tx/steer_rpt_detail_1 /pacmod/parsed tx/steer rpt detail 2 /pacmod/parsed_tx/steer_rpt_detail_3 /pacmod/parsed tx/turn rpt /pacmod/parsed_tx/vehicle_speed_rpt /pacmod/parsed tx/vin rpt

GNSS & INS:

/novatel/bestpos /novatel/bestxyz /novatel/corrimudata /novatel/fix /novatel/gpgga /novatel/gprmc /novatel/gps_sync /novatel/imu /novatel/imu /novatel/inspva /novatel/inspvax /novatel/inspvax /novatel/inspvax

ZED2 Stereo Camera:

/zed2/joint_states /zed2/zed node/atm press /zed2/zed_node/confidence/confidence_map /zed2/zed_node/depth/camera_info /zed2/zed node/depth/depth registered /zed2/zed_node/depth/depth_registered/compressed /zed2/zed node/depth/depth registered/compressed/parameter descriptions /zed2/zed_node/depth/depth_registered/compressed/parameter updates /zed2/zed_node/depth/depth_registered/compressedDepth /zed2/zed node/depth/depth registered/compressedDepth/parameter descriptions /zed2/zed node/depth/depth registered/compressedDepth/parameter updates /zed2/zed_node/depth/depth_registered/theora /zed2/zed node/depth/depth registered/theora/parameter descriptions /zed2/zed_node/depth/depth_registered/theora/parameter_updates /zed2/zed node/disparity/disparity image /zed2/zed node/imu/data /zed2/zed node/imu/data raw /zed2/zed node/imu/mag /zed2/zed node/left/camera info /zed2/zed node/left/image rect color /zed2/zed_node/left/image_rect_color/compressed /zed2/zed_node/left/image_rect_color/compressed/parameter_descriptions /zed2/zed node/left/image rect color/compressed/parameter updates /zed2/zed_node/left/image_rect_color/compressedDepth /zed2/zed node/left/image rect color/compressedDepth/parameter descriptions /zed2/zed_node/left/image_rect_color/compressedDepth/parameter_updates /zed2/zed node/left/image rect color/theora /zed2/zed_node/left/image_rect_color/theora/parameter_descriptions /zed2/zed_node/left/image_rect_color/theora/parameter_updates /zed2/zed_node/left/image_rect_gray /zed2/zed_node/left/image_rect_gray/compressed /zed2/zed_node/left/image_rect_gray/compressed/parameter_descriptions /zed2/zed_node/left/image_rect_gray/compressed/parameter_updates /zed2/zed_node/left/image_rect_gray/compressedDepth /zed2/zed_node/left/image_rect_gray/compressedDepth/parameter_descriptions /zed2/zed_node/left/image_rect_gray/compressedDepth/parameter_updates /zed2/zed_node/left/image_rect_gray/theora /zed2/zed_node/left/image_rect_gray/theora/parameter_descriptions /zed2/zed_node/left/image_rect_gray/theora/parameter_updates /zed2/zed_node/left_cam_imu_transform /zed2/zed node/left raw/camera info /zed2/zed_node/left_raw/image_raw_color /zed2/zed_node/left_raw/image_raw_color/compressed /zed2/zed_node/left_raw/image_raw_color/compressed/parameter descriptions /zed2/zed node/left raw/image raw color/compressed/parameter updates

/zed2/zed_node/left_raw/image_raw_color/compressedDepth /zed2/zed_node/left_raw/image_raw_color/compressedDepth/parameter_descriptions /zed2/zed node/left raw/image raw color/compressedDepth/parameter updates /zed2/zed_node/left_raw/image_raw_color/theora /zed2/zed_node/left_raw/image_raw_color/theora/parameter_descriptions /zed2/zed_node/left_raw/image_raw_color/theora/parameter_updates /zed2/zed_node/left_raw/image_raw_gray /zed2/zed_node/left_raw/image_raw_gray/compressed /zed2/zed_node/left_raw/image_raw_gray/compressed/parameter_descriptions /zed2/zed_node/left_raw/image_raw_gray/compressed/parameter_updates /zed2/zed_node/left_raw/image_raw_gray/compressedDepth /zed2/zed_node/left_raw/image_raw_gray/compressedDepth/parameter_descriptions /zed2/zed_node/left_raw/image_raw_gray/compressedDepth/parameter_updates /zed2/zed_node/left_raw/image_raw_gray/theora /zed2/zed_node/left_raw/image_raw_gray/theora/parameter_descriptions /zed2/zed node/left raw/image raw gray/theora/parameter updates /zed2/zed node/odom /zed2/zed node/parameter descriptions /zed2/zed_node/parameter_updates /zed2/zed_node/path_map /zed2/zed node/path odom /zed2/zed node/point cloud/cloud registered /zed2/zed node/pose /zed2/zed_node/pose_with_covariance /zed2/zed_node/rgb/camera_info /zed2/zed node/rgb/image rect color /zed2/zed_node/rgb/image_rect_color/compressed /zed2/zed node/rgb/image rect color/compressed/parameter descriptions /zed2/zed_node/rgb/image_rect_color/compressed/parameter_updates /zed2/zed_node/rgb/image_rect_color/compressedDepth /zed2/zed_node/rgb/image_rect_color/compressedDepth/parameter_descriptions /zed2/zed_node/rgb/image_rect_color/compressedDepth/parameter_updates /zed2/zed_node/rgb/image_rect_color/theora /zed2/zed node/rgb/image rect color/theora/parameter descriptions /zed2/zed_node/rgb/image_rect_color/theora/parameter_updates /zed2/zed node/rgb/image rect gray /zed2/zed_node/rgb/image_rect_gray/compressed /zed2/zed_node/rgb/image_rect_gray/compressed/parameter_descriptions /zed2/zed_node/rgb/image_rect_gray/compressed/parameter_updates /zed2/zed_node/rgb/image_rect_gray/compressedDepth /zed2/zed_node/rgb/image_rect_gray/compressedDepth/parameter_descriptions /zed2/zed_node/rgb/image_rect_gray/compressedDepth/parameter updates /zed2/zed_node/rgb/image_rect_gray/theora /zed2/zed_node/rgb/image_rect_gray/theora/parameter_descriptions /zed2/zed_node/rgb/image_rect_gray/theora/parameter_updates /zed2/zed_node/rgb_raw/camera_info

/zed2/zed_node/rgb_raw/image_raw_color /zed2/zed_node/rgb_raw/image_raw_color/compressed /zed2/zed node/rgb raw/image raw color/compressed/parameter descriptions /zed2/zed_node/rgb_raw/image_raw_color/compressed/parameter_updates /zed2/zed_node/rgb_raw/image_raw_color/compressedDepth /zed2/zed_node/rgb_raw/image_raw_color/compressedDepth/parameter_descriptions /zed2/zed_node/rgb_raw/image_raw_color/compressedDepth/parameter updates /zed2/zed_node/rgb_raw/image_raw_color/theora /zed2/zed_node/rgb_raw/image_raw_color/theora/parameter_descriptions /zed2/zed_node/rgb_raw/image_raw_color/theora/parameter_updates /zed2/zed_node/rgb_raw/image_raw_gray /zed2/zed_node/rgb_raw/image_raw_gray/compressed /zed2/zed_node/rgb_raw/image_raw_gray/compressed/parameter_descriptions /zed2/zed_node/rgb_raw/image_raw_gray/compressed/parameter_updates /zed2/zed_node/rgb_raw/image_raw_gray/compressedDepth /zed2/zed node/rgb raw/image raw gray/compressedDepth/parameter descriptions /zed2/zed_node/rgb_raw/image_raw_gray/compressedDepth/parameter updates /zed2/zed node/rgb raw/image raw gray/theora /zed2/zed_node/rgb_raw/image_raw_gray/theora/parameter_descriptions /zed2/zed_node/rgb_raw/image_raw_gray/theora/parameter_updates /zed2/zed node/right/camera info /zed2/zed node/right/image rect color /zed2/zed_node/right/image_rect_color/compressed /zed2/zed_node/right/image_rect_color/compressed/parameter_descriptions /zed2/zed_node/right/image_rect_color/compressed/parameter_updates /zed2/zed node/right/image rect color/compressedDepth /zed2/zed_node/right/image_rect_color/compressedDepth/parameter_descriptions /zed2/zed node/right/image rect color/compressedDepth/parameter updates /zed2/zed_node/right/image_rect_color/theora /zed2/zed_node/right/image_rect_color/theora/parameter_descriptions /zed2/zed_node/right/image_rect_color/theora/parameter_updates /zed2/zed_node/right/image_rect_gray /zed2/zed_node/right/image_rect_gray/compressed /zed2/zed_node/right/image_rect_gray/compressed/parameter_descriptions /zed2/zed_node/right/image_rect_gray/compressed/parameter_updates /zed2/zed node/right/image rect gray/compressedDepth /zed2/zed_node/right/image_rect_gray/compressedDepth/parameter_descriptions /zed2/zed_node/right/image_rect_gray/compressedDepth/parameter_updates /zed2/zed_node/right/image_rect_gray/theora /zed2/zed_node/right/image_rect_gray/theora/parameter_descriptions /zed2/zed_node/right/image_rect_gray/theora/parameter_updates /zed2/zed_node/right_raw/camera_info /zed2/zed node/right raw/image raw color /zed2/zed_node/right_raw/image_raw_color/compressed /zed2/zed_node/right_raw/image_raw_color/compressed/parameter_descriptions /zed2/zed_node/right_raw/image_raw_color/compressed/parameter_updates

/zed2/zed_node/right_raw/image_raw_color/compressedDepth /zed2/zed_node/right_raw/image_raw_color/compressedDepth/parameter_descriptions /zed2/zed node/right raw/image raw color/compressedDepth/parameter updates /zed2/zed_node/right_raw/image_raw_color/theora /zed2/zed_node/right_raw/image_raw_color/theora/parameter_descriptions /zed2/zed_node/right_raw/image_raw_color/theora/parameter_updates /zed2/zed_node/right_raw/image_raw_gray /zed2/zed_node/right_raw/image_raw_gray/compressed /zed2/zed_node/right_raw/image_raw_gray/compressed/parameter_descriptions /zed2/zed_node/right_raw/image_raw_gray/compressed/parameter_updates /zed2/zed_node/right_raw/image_raw_gray/compressedDepth /zed2/zed_node/right_raw/image_raw_gray/compressedDepth/parameter_descriptions /zed2/zed_node/right_raw/image_raw_gray/compressedDepth/parameter_updates /zed2/zed_node/right_raw/image_raw_gray/theora /zed2/zed_node/right_raw/image_raw_gray/theora/parameter_descriptions /zed2/zed node/right raw/image raw gray/theora/parameter updates /zed2/zed_node/stereo/image_rect_color /zed2/zed node/stereo/image rect color/compressed /zed2/zed_node/stereo/image_rect_color/compressed/parameter_descriptions /zed2/zed_node/stereo/image_rect_color/compressed/parameter_updates /zed2/zed node/stereo/image rect color/compressedDepth /zed2/zed_node/stereo/image_rect_color/compressedDepth/parameter_descriptions /zed2/zed_node/stereo/image_rect_color/compressedDepth/parameter_updates /zed2/zed_node/stereo/image_rect_color/theora /zed2/zed_node/stereo/image_rect_color/theora/parameter_descriptions /zed2/zed node/stereo/image rect color/theora/parameter updates /zed2/zed_node/stereo_raw/image_raw_color /zed2/zed node/stereo raw/image raw color/compressed /zed2/zed_node/stereo_raw/image_raw_color/compressed/parameter_descriptions /zed2/zed_node/stereo_raw/image_raw_color/compressed/parameter_updates /zed2/zed_node/stereo_raw/image_raw_color/compressedDepth /zed2/zed_node/stereo_raw/image_raw_color/compressedDepth/parameter_descriptions /zed2/zed_node/stereo_raw/image_raw_color/compressedDepth/parameter_updates /zed2/zed node/stereo raw/image raw color/theora /zed2/zed_node/stereo_raw/image_raw_color/theora/parameter_descriptions /zed2/zed node/stereo raw/image raw color/theora/parameter updates /zed2/zed_node/temperature/imu /zed2/zed node/temperature/left /zed2/zed_node/temperature/right

ROS rqt_graph

2.7 Demo of Pure Pursuit Tracker on GNSS Waypoints

GitHub link: <u>https://github.com/hangcui1201/POLARIS_GEM_e2_Real</u> Demo link: <u>https://youtu.be/8l52buLR1zU</u>

\$ source devel/setup.bash

\$ rosrun gem_gnss_control gem_gnss_tracker_pp.py

2.8 Demo of Stanley Tracker on GNSS-RTK Waypoints

GitHub link: <u>https://github.com/hangcui1201/POLARIS_GEM_e2_Real</u> Demo link: <u>https://youtu.be/DItwU_8GVHI</u>

\$ source devel/setup.bash

\$ roslaunch basic_launch gem_pacmod_control.launch

\$ source devel/setup.bash

\$ rosrun gem_gnss_control gem_gnss_tracker_stanley_rtk.py

2.9 Coming more ...

3. Polaris GEM e2 ROS - Simulator

3.1 Introduction

GitHub link: https://github.com/hangcui1201/POLARIS_GEM_e2_Simulator

GEM vehicle with top 3D LiDAR

- \$ source devel/setup.bash
- \$ roslaunch gem_launch gem_init.launch

3.2 Launch the Simulator

Track1 Environment

- \$ cd ~/demo_ws
- \$ source devel/setup.bash
- \$ roslaunch gem_init.launch world_name:="track1.world"
- \$ source devel/setup.bash

\$ roslaunch gem_launch gem_sensor_info.launch

Track2 Environment

\$ source devel/setup.bash

\$ roslaunch gem_launch gem_init.launch world_name:="track2.world" y:=-98.5

Highbay Environment

\$ source devel/setup.bash

\$ roslaunch gem_launch gem_init.launch world_name:="highbay_track.world" x:=-1.5 y:=-21

3.3 Demo of Pure Pursuit & Stanley Controllers

Demo of Pure Pursuit Controller in Track1 Environment

\$ source devel/setup.bash

\$ rosrun gem_pure_pursuit_sim pure_pursuit_sim.py

Demo of Stanley Controller in Track1 Environment

- \$ source devel/setup.bash
 \$ rosrun gem_stanley_sim stanley_sim.py

3.4 Coming more

4. Polaris GEM e2 - Operation

4.1 Power of Computer & Vehicle

(1) Unplug the power cord of Polaris GEM e2

(2) Connect battery of computer on the passenger's side and switch on

(3) Switch on the battery of sensors under the driver's seat

(4) Turn on vehicle by using the key, the computer should also be turned on automatically

(5) Remove the chokes and drive the vehicle outside

- (6) When finishing using the Polaris GEM e2, do reverse steps from (5) to (1)
- (7) The battery of the computer can be charged as below

4.2 Launch of ROS Programs

\$ cd ~/demo_ws/ \$ catkin_make

\$ source devel/setup.bash
\$ roslaunch basic_launch gem_sensor_init.launch

\$ source devel/setup.bash

\$ roslaunch basic_launch gem_dbw_joystick.launch

						white_e2_te	xt.rviz* - RViz	- ē 😣
<u>File Panels H</u> elp								
습기interact 영어 Move Camera	Select & Focu	us Camera 🔲 Measu	ire 🛛 🗡 2D Pose Estimate	🗡 2D Nav Goal	💡 Publish Point	• -	•	
□ crickit General • ✓ • Crickit General • ZED Camera • ZED Camera Depth							RTK - Disabled Lut - 4.993265 (ww = 88.76588 Speed [m/s] = 0.0 Steer (deg) = -0.1	
Global Options Add Displays GNSS ZED Camera	a ZED Camera De	plicate						
 Time 								
ROS Time: 1661467506.46	ROS Elapsed: 327.93	Wall Tin	ne: 1661467506.50 W	all Elapsed: 327.8	7			Experimental
Reset								31 fps

Section 2.7: Demo of Pure Pursuit Tracker on GNSS Waypoints

Section 2.8: Demo of Stanley Track on GNSS-RTK Waypoints

4.3 Coming more ...