Inverse Optimal
Control and Inverse
Reinforcement Learning

D.A. Forsyth, UIUC

Idea: Benefit from Expert

® We’ve done:
® behavior cloning - take expert traces, use to train prediction of action
® DAGGER - obtain further expert labels to avoid problems with correlation
® Now:
® Rather than learn policy, learn reward function
® Why:
® reward function could be “smaller” than policy
® Use:
® apply greedy strategy to reward function

Optimal control

® Choose control to ensure that trajectory gets best reward

T
min D (x(t).u(t))dt «——— Cost function
()T /o (x(2), u(t))

State Control input

/
s. t. X = f(t,x(t),u(t))
x(0) =x0., x(T)=x,

\

Initial state Final state

Optimal control

® Choose control to ensure that trajectory gets best reward

® Well understood problem
® Many cases, many solution processes
® Fasy
® (discrete time, f - linear, Phi - quadratic = dynamic programming
® Works for continuous time, too, but...
® Many very much harder cases

Optimal control as DP

® Dynamics: Xt+1 = Aixy + Biuy

Cost = Z C(Xt, Uy, t)
t
C(Xt7 Uy,) — Xy MtXt =+ Vt X 1+ Uy 7DltU—t + qt Uy

Py =0

qn =0

Optimal control as DP

® Assume we are at: XN-1

® (ost 1s:
XZ']C]MNXN + V%XN—F

T T T T
XN_1MN—1XN—1 + VN_1XN_-1 T uN_le—luN—l T qn_1UN-1

® BUT we’d choose the best control
® AND X N is a function of U_N-1

Optimal control as DP

® Assume we are at: XN-1

® (ost 1s:
XZ']C]MNXN + V%XN—F

T T T T
XN_1MN—1XN—1 + VN_1XN_-1 T uN_le—luN—l T qn_1UN-1

® BUT we’d choose the best control
® AND X N is a function of U_N-1

® Substitute

xy = Av_1Xny_1+By_1un_1

Optimal control as DP

® Substituting, taking gradient, etc. gives

(2PNn_1 + 2BAMpyBy)un_1 +qn + 2By (MyAN_1XN_1 +By_VN_1 =0
Check this!

® Which we can solve for U_N-1 as a function of X N-1
® which is linear

® Now we have a quadratic cost function for X_N-1
® choose best U_N-1 and substitute

® and we can use induction!

Inverse Optimal Control

® Given a trajectory (x5,], Tay ., Tp)
® at known time intervals

® Find the Phi that caused that trajectory

® assuming that f is known and that there is no noise

® (Crucial step:
® assume a representation of Phi Known

Unknown

Inverse Optimal Control

e Obtain « and u(t) by solving:

m

min ZH o) —zm(t))||°

where 7" (7; o) is the solution of

mi /O ' {Z a,-¢,-(x(r).u(r))] i

i=1

s.t. X = f(t,x(t),u(t))

NASTY!

Cost(alpha)

Optimal control
for fixed alpha

But do-able - see:

Mombauer, Laumond, Truong

Example case: learning to search a map

® Recall gridworld ->

VALUES AFTER 1 ITERATIONS

VALUES AFTER 1 ITERATIONS VALUES AFTER 1 ITERATIONS

VALUES AFTER 1 ITERATIONS

VALUES AFTER 1 ITERATIONS

Learning to search

Figure 2: This figure demonstrates the flavor of the training data considered here in the context of imitation learning.
In this case, a human expert specified by hand examples of the path (red) that a mobile robot should take between
pairs of end points (green) through overhead satellite images. These example paths demonstrate the form of training
data used for the outdoor navigational planning experiment discussed in section 6.

Example

(1)

(2)

path
Learned
path
Example
path
Learned

Inverse Reinforcement Learning

® We now observe an agent acting in an environment
® gsee trace or traces

(S(),CL(), S1,A1, ..)

® (Q: Why does it do that? = What is the reward function?

® Model

feature functions, known or chosen

Reward for state unknown weights

Assume

We observe an agent acting optimally
® we’ll fix this

The true reward function can be represented by model
® we’ll fix this, too

We have

Total reward for acting Expected value of all rewards collected
using \pi by applying \pi

o
G(m) = E thR(st) |

— szE thgbi(st) |

We could measure these;
act using \pi, and see
what states we see

Formulate

G (7'(' *) > G (7'(') V7T «—— The expert’s policy yields a better reward than any other

WT ,u7T Z WT Iuﬁ \V/ﬂ' — which constrains the coefficients

Not good enough...

G(m™) > G(m) Vr

The expert’s policy yields a better reward than any other

T, 6 n~ T x
W U > W 3 VT —— which constrains the coefficients

® Notice:
® w=0 i1s a solution (eew!)
® Resolve this:

® require that expert’s policy is better than any other
® by some amount that depends on the difference!

This yields

such that
WTILLT('* Z WTMW + d(ﬂ-*,ﬂ-)

For example, number of states in which \pi* was observed and also \p1 and \pi* disagree

® Notice

® cach policy yields a vector \mu and so a linear constraint on w
® but the feasible set created by the inequalities might be empty!

® Solution - slack variables

Final problem - NASTY (ish)

min
wiw +C E &
W
)
such that
T = T : *

W ,LL7T > W /Lm’ —|—d(’7T ,7T7;) —5@
£ >0

Nasty, because there are a lot of constraints Slack variables

(one per policy)

BUT quite good algorithms exist

j Constraint generation

Initialize 1719 = {3} for all 7 and then iterate

= Solve
min ||w||3 + C’Zf(i)

w

st w! p(@D*) > w u(7®) + m(rO* 7)) — @ i vrld e IO

= For current value of w, find the most violated constraint
for all 7 by solving:

m(a)wa w(7D) + m(x®*, 20
T 2

= find the optimal policy for the current estimate of the
reward function (+ loss augmentation m)

= For all : add = to 1710
From Abbeel slides

= If no constraint violations were found, we are done.

Visualize...

® Each policy gives a vector
® pretend these are 2D vectors

Vector for expert Solution weights

e +— Other vectors
from other policies

Y

What could go wrong?

N
>

® This could happen because

® the expert wasn’t optimal

® the representation of rewards isn’t good enough
® (Options

® find several policies and mix

® use better feature functions

Alternative: feature matching

T, 6 n* T
W U > W 3 VT —— which constrains the coefficients

® Notice that if we can get
1e a policy vector very

H :u7T _ :uﬂ- H 1< € close to experts

® then for any w such that ie reasonably sized weight

” W H 0O < 1 vector

® we have

>k
< € reward is close to experts

Tluw

W T —wh T

Apprenticeship learning [abbeel & Ng, 20041

= Assume Ruw(s) = w'¢(s) forafeaturemapo¢ : S — R

= Initialize: pick some controller .

= lteratefori=1, 2, ...:

= Guess” the reward function:

Find a reward function such that the teacher maximally outperforms
all previously found controllers.

Mmax Y
vw:||wl[2<1

st. w! p(m*) >w' w(m)+y Vr € {mo, w1, w1}

= Find optimal control policy = for the current guess of the reward

function R,
_ _ From Abbeel slides
« Ify < e/2 exit the algorithm.

