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Goal: Road Layout Map
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Figure 1: Our goal is to infer the layout of complex driving
scenes from a single camera. Given a perspective image (top
left) that captures a 3D scene, we predict a rich and inter-

pretable scene description (bottom right), which represents
the scene in an occlusion-reasoned semantic top-view.
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Road layout maps

® A prediction of the layout of the main scene in front
® distinguish between
® transients (cars, pedestrians, etc)
® and persistent (road, walkways, bicycle lanes, buildings)
® including
® intersections
® lane boundaries

® Potential cues
® streetview
® openmaps
® Jayout is stylized
® persistent categories have coherent (but variable) appearance
® scene flow/photometric consistency



Cues

Incidental data
® strectview+openmaps

layout is stylized
persistent categories have coherent appearance

scene flow/photometric consistency



Layout 1s stylized
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Figure 2: Our scene model consists of several parameters that capture a variety of complex driving scenes. (Left) We illustrate
the model and highlight important parameters (A-I), which are grouped into three categories (middle): Lanes, to describe the
layout of a single road; Topology, to model various road topologies; Walkable, describing scene elements for pedestrians. Our
model is defined as a directed acyclic graph enabling efficient sampling and is represented in the top-view, making rendering
easy. These properties turn our model into a simulator of semantic top-views. (Right) We show rendered examples for each of
the above groups. A complete list of scene parameters and the corresponding graphical model is given in the supplementary.



Q: How do we impose structure?

® We want to the network to produce layout maps that are

“like real maps”
® How?



Side topic - Adversarial losses

® [ssue:
® we are making pictures that should have a strong structure
® albedo piecewise constant, etc.
® but we don’t know how to write a loss that imposes that structure

® Strategy:
® build a classifier that tries to tell the difference between
® true examples
® cxamples we made
® use that classifier as a loss
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@ Let D denote the discriminator’s predicted probability of being data

e Discriminator’s cost function: cross-entropy loss for task of classifying
real vs. fake images

JIp = Exp[—log D(x)] + E;[— log(1 — D(G(2)))]

Notice: we want the discriminator to make a 1 for real data, O for fake data
@ One possible cost function for the generator: the opposite of the

discriminator's

Je =—Jb
= const + K, [log(1 — D(G(z)))]

@ This is called the minimax formulation, since the generator and

discriminator are playing a zero-sum game against each other:
Solution (if exists, which is uncertain; and if mg X ml;n Jo
can be found, ditto) is known as a saddle point.
It has strong properties, but not much worth

talking about, as we don’t know if it is there or
whether we have found it. Grosse slides



Quote from the original paper on GANs:

"The generative model can be thought of as analogous to a
team of counterfeiters, trying to produce fake currency and
use it without detection, while the discriminative model is
analogous to the police, trying to detect the counterfeit
currency. Competition in this game drives both teams to
improve their methods until the counterfeits are
indistinguishable from the genuine articles."

-Goodfellow et. al., "Generative Adversarial Networks" (2014)

Thakar slides



Important, general 1ssue

If either generator or discriminator “wins” -> problem

Discriminator “wins”’

® it may not be able to tell the generator how to fix examples
® discriminators classify, rather than supply gradient

Generator “wins”
® likely the discriminator is too stupid to be useful

Very little theory to guide on this point



Updating the discriminator:

D(x)
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Grosse slides



Updating the generator:

D(x)
backprop the derivatives,
but don't modify the
f discriminator weights
flip the sign
of the derivatives

update the generator
f weights using backprop

Grosse slides



One must be careful about losses...

@ We introduced the minimax cost function for the generator:
Je = Ez[log(1 — D(G(z)))]

@ One problem with this is saturation.

@ Recall from our lecture on classification: when the prediction is really
wrong,

o “Logistic 4+ squared error’ gets a weak gradient signal
o “Logistic + cross-entropy” gets a strong gradient signal

@ Here, if the generated sample is really bad, the discriminator’'s
prediction is close to 0, and the generator's cost is flat.

Grosse slides



One must be careful about losses...

e Original minimax cost: modified
cost
Jc = E,[log(1 — D(G(2)))]

e Modified generator cost:

minimax
J6 = Ez[—log D(G(2))] cost
@ This fixes the saturation problem. 4o 02 o4 06 08 10
s
DI(G(z))
(how well it fooled
the discriminator)

Grosse slides



Alternative losses

e Hinge:
® Discriminator makes D(im)
® want
® real images -> -1
® fake ->1

® Discriminator loss: Z max((), 1 — yzD(Iz))

fakes and real

® where y_i=-1 for real, y_i=1 for fake

> D(IL)

fakes

® (Generator loss:
°
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Theory

Proposition 2. If G and D have enough capacity, and at each step of Algorithm 1, the discriminator
is allowed to reach its optimum given G, and pg is updated so as to improve the criterion

Ez~piaa108 D (2)] + Eznp, [log(1 — D ()]
then pgy converges t0 Pdata

Goodfellow et al 14



“Theory”

Proposition 2. If G and D lhave enough capacity, and at each step of Algorithm 1, the discriminator
is allowed to reach its optimum given G, and

Erpue 102 DG(@)] + Banp, log(1 — D& ()]

thet py CONVEIges 10 paaa

® What if they don’t have enough capacity?
® What if p_g doesn’t make “enough progress”?

® In what sense converges?

® p_datais a set of samples

® we DON’T WANT usual convergences

® we WANT convergence to some smoothed p_data
® how smoothed? how controlled?

Goodfellow et al 14



Questions

How do we hobble an adversary in a useful way?
® dunno

When 1s an adversarial smoother helptul?
® dunno



Layout 1s stylized

) Number of lanes
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Figure 2: Our scene model consists of several parameters that capture a variety of complex driving scenes. (Left) We illustrate
the model and highlight important parameters (A-I), which are grouped into three categories (middle): Lanes, to describe the
layout of a single road; Topology, to model various road topologies; Walkable, describing scene elements for pedestrians. Our
model is defined as a directed acyclic graph enabling efficient sampling and is represented in the top-view, making rendering
easy. These properties turn our model into a simulator of semantic top-views. (Right) We show rendered examples for each of
the above groups. A complete list of scene parameters and the corresponding graphical model is given in the supplementary.

Wang et al 18
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Figure 3: Overview of our proposed framework: At train-time, our framework makes use of both manual annotation for
real data (blue) and automated annotation for simulated data (red), see Sec. 3.2. The feature extractors g convert semantic
top views from either domain into a common representation which is input to A. An adversarial loss (orange) encourages
a domain-agnostic output of g. At test-time, an RGB image in the perspective view is first transformed into a semantic
top-view [23], which is then used by our proposed neural network (see Sec. 3.3), h o g, to infer our scene model (see Sec. 3.1).
The graphical model defined in Sec. 3.4 ensures a coherent final output.

Wang et al 19



Issue - cars and pedestrians

® Moving objects obscure ground map
® can be fixed

Schulter et al 18



Detector to mask Inpaint semantics and depth Fix the ground map

Map to ground §
- Warp into Adversarial
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QO view o
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masking e— Reconstruction OpenStreetMap
loss (if GPS available)
Input: Single RGB image Hallucinating semantics and depth of occluded areas Inducing learned priors from simulation
with foreground objects enables an initial occlusion-reasoned BEV map of the (and map-data if available) refines the initial
masked-out scene estimate to give our final semantic top-view

Fig. 1: Given a single RGB image of a typical street scene (left), our approach
creates an occlusion-reasoned semantic map of the scene layout in the
bird’s eye view. We present a CNN that can hallucinate depth and semantics in
areas occluded by foreground objects (marked in red and obtained via standard
semantic segmentation), which gives an initial but noisy and incomplete estimate
of the scene layout (middle). To fill in unobserved areas in the top-view, we further
propose a refinement-CNN that induces learning strong priors from simulated
and OpenStreetMap data (right), which comes at no additional annotation costs.

Schulter et al 18



Inpainting

| Semantics |

Masked RGB i

Mask . | Deoth I
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(a) (b)
Fig. 2: (a) The inpainting CNN first encodes a masked image and the mask itself.
The extracted features are concatenated and two decoders predict semantics and
depth for visible and occluded pixels. (b) To train the inpainting CNN we ignore
foreground objects as no ground truth is available (red) but we artificially add
masks (green) over background regions where full annotation is already available.

Notice: we inpaint labels and depth, NOT the image

Notice: depth is inferred from the image
Schulter et al 18



Fig.6: Qualitative example of our halluci-
nation CNN: Semantics and depth without
(left?8 and with (right) hallucination.

Schulter et al



Birds eye view from depth + labels

Schulter et al 18

Fig. 3: The process of mapping the se-
mantic segmentation with correspond-
ing depth first into a 3D point cloud
and then into the bird’s eye view. The
red and blue circles illustrate corre-
sponding locations in all views.



Refining birds eye predictions

Simulator:
Adversarial Loss
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Fig.4: (a) Simulated road shapes in the top-view. (b) The refinement-
CNN i1s an encoder-decoder network receiving three supervisory signals: self:
reconstruction with the input, adversarial loss from simulated data, and recon-
struction loss with aligned OpenStreetMap (OSM) data. (c) The alignment
CNN takes as input the initial BEV map and a crop of OSM data (via noisy
GPS and yaw estimate given). The CNN predicts a warp for the OSM map and
1s trained to minimize the reconstruction loss with the initial BEV map.

Schulter et al 18




Warping OSM to map layout
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Fig.5: (a) We use a composition of similarity transtorm (left, “box”) and a non-
parametric warp (right, “flow”) to align noisy OSM with image evidence. (b, top)
Input image and the corresponding B™?*, (b, bottom) Resulting warping grid
overlaid on the OSM map and the warping result for 4 different warping functions,
respectively: “box”, “flow”, “box+flow”, “box+flow (with regularization)”. Note
the importance of composing the transformations and the induced regularization.

Schulter et al 18



The impact of the
hallucination - CNN

The impact of induced
priors from the learned
refinement CNN

I

Fig.8: Examples of our BEV representation. Each one shows the masked
RGB input, the hallucinated semantics and depth, as well as three BEV maps,
which are (from left to right), The BEV map without hallucination, with halluci-
nation, and after refinement. The last example depicts a failure case.

Schulter et al 18
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Good + bad

Birds eye view 1s a good 1dea

® right place to compare labels with models

Label inpainting is good 1dea

® but why in image?

® the warping, registration seem to help A LOT with this

It’s clear that warping, registration, adversary are helpful
® adversary isn’t that helpful - why?

If you’re going to warp OSM, why not use result of warp?

Depth inference is a dubious idea

® Why not use ground plane estimate?
® and homography?
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Figure 3: Overview of our proposed framework: At train-time, our framework makes use of both manual annotation for
real data (blue) and automated annotation for simulated data (red), see Sec. 3.2. The feature extractors g convert semantic
top views from either domain into a common representation which is input to A. An adversarial loss (orange) encourages
a domain-agnostic output of g. At test-time, an RGB image in the perspective view is first transformed into a semantic
top-view [23], which is then used by our proposed neural network (see Sec. 3.3), h o g, to infer our scene model (see Sec. 3.1).
The graphical model defined in Sec. 3.4 ensures a coherent final output.

Wang 19
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Figure 4: Unpaired examples of simulated semantic top-

views (top) and real ones from [23] (bottom).

Wang 19



CRF

® (: what does this apply to
® [ *think* predicted labels on “ground plane”
® but what is discretization?



What 1s a CRF?

® At each pixel location 1, j place a discrete label L; j

® (Construct a cost function
® with unary (single label) terms ¢z j (l 79 Dat a)

® and binary (label pairs) terms % 7, uv (l@ 79 luva Data)

® Choose labels to minimize this cost
® rich algorithmic tradition

Quick and dirty review of a topic that could occupy a course!



Example application of CRF: Grab Cut

® Originally for matting

® extracting an object from an image

® Process
® user places box
® grabcut segments intended object
® user perhaps iterates with strokes, etc.

® Forus:
® segments using graph cuts

® clever iterative model of interior/exterior £
® ecxtremely simple shape prior on object




GrabCut mapping

® [abels are either O (background) or 1 (foreground)

® Write
® S for some function measuring similarity (smaller is better!)
® p_ij for ij’th pixel value

¢ij(lij, Data) = 1;;5(pij, fg) + (1 — 13;)S(pij, bg)

® We want the label of a pixel to agree with 1its neighbor

lzj(l o luv)"‘ . . )
Vijuo(lijs luw, Data) = o [ Lo (1 — 1) ] if uv is neighbor o

0 otherwise



GrabCut solving

® This is a discrete optimization problem
® choose 0, 1 at labels
® Dbest case is when labels agree with foreground/background appearance
® and with neighbors
® For this case, with k>0, solution 1s polynomial
® well studied, graph cut

® Procedure

® use pixels near center of box to build model of foreground
use pixels outside box to build model of background
choose k; solve for I_ij

you now have segmentation.



Stereo as a CRF
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® Original:
® f{ind q, q’ that match, and infer depth

® Now:
® choose value of depth at q; then quality of match at q’ is cost
® optimize this



Stereo as a CRF

® Typically:

® quantize depth to a fixed number of levels
® Jlabel at pixel can be one of d depths

® unary cost is color match
® (photometric consistency constraint)
® it can be helpful to match intensity gradients, too

® pairwise cost from smoothness constraint on recovered depths
® cg depth gradient not too big, etc.

® massive discrete quadratic program



Semantic Segmentation as a CRF

® But now we have it for segmentation as well
® one label per segment
® cCosts:
® per pixel:
® how well does this label/pixel value go together
® asin grabcut above
® per pair:
® how well does this label/pixel pair work together
® ysually, a form of smoothness
® agree with your neighbors



Why go to all this trouble?

® (Can impose some kinds of spatial prior
® Jabels mostly agree with their labels
® Jong scale agreement between labels

(a) Image (b) Unary classifiers (c) Robust P™ CRF (d) Fully connected CREF, (e) Fully connected CRF,
MCMC inference, 36 hrs our approach, 0.2 seconds

Figure 1: Pixel-level classification with a fully connected CRE (a) Input image from the MSRC-21 dataset. (b)
The response of unary classifiers used by our models. (c) Classification produced by the Robust P™ CRF [9].
(d) Classification produced by MCMC inference [17] in a fully connected pixel-level CRF model; the algorithm
was run for 36 hours and only partially converged for the bottom image. (e) Classification produced by our
inference algorithm in the fully connected model in 0.2 seconds.



Why go to all this trouble?

(a) Image (b) DeepLab (c) DenseCRF (d) BS (Ours)

Fig.5: Using the DeepLab CNN-based semantic segmentation algorithm [6] (5b)
as input our bilateral solver can produce comparable edge-aware output (5d) to
the DenseCRF [22] used in [6] (5¢c), while being 8% faster.



Solving CRF’s

Solving 1s well understood for many cases
Minimize:

o x"TAXx+DbAMXx

® subject to: x is a vector of discrete values

Immense, very active literature
® settled down a bit over the last 10 years, but...

Special case

® FEvery pixel is connected to every other pixel
® with weights

® Yields a fast variational algorithm
® based in non-local means
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Figure 6: Qualitative results of H-BEV+DA+GM on individual frames from KITTI. Each example shows perspective RGB,
ground truth and predicted semantic top-view, respectively. Our representation is rich enough to cover various road layouts
and handles complex scenarios, e.g., rotation, existence of crosswalks, sidewalks, side-roads and curved roads.

Wang 19
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Figure 7: Qualitative results comparing H-BEV+DA and H-BEV+DA+GM in consecutive frames of two example sequences
of the KITTI validation set. In each column, we have visualized the perspective RGB image, prediction from H-BEV+DA and
that of H-BEV+DA+GM from left to right. Each row shows a sequence of three frames. We can observe more consistent
predictions, e.g., width of side-road and delimiter width, with the help of the temporal CRF.

Wang 19



Good + bad

It’s clear that label fields are highly structured

® but BEV construction is weird

This structure is very important and valuable
® (: can we exploit without OSM, Streetview, etc.?



