Markov Decision Problems

D.A. Forsyth, UIUC

Topics

- Vocabulary
- Simplest imitation learning and DAGGER
 - to set up possible projects, and answer Q1, Q2
- Simple reinforcement learning ideas
- More imitation learning; inverse reinforcement learning
 - and its variants and problems

Assumption: agent gets to observe the state

[Drawing from Sutton and Barto, Reinforcement Learning: An Introduction, 1998]

Abbeel slides

Model

• At time 0, environment samples initial state

- agent is in that state
- Then for t=0 till done
 - agent chooses action
 - environment samples new state conditioned on action, old state
 - environment samples reward conditioned on action, old state, new state
 - agent gets that reward and moves into new state

• Policy

- what action to take in each state
 - this could be stochastic
- Maximise total discounted reward

Examples

- Cleaning robot
- Walking robot
- Pole balancing
- Games: tetris, backgammon
- Server management
- Shortest path problems
- Model for animals, people

- A: set of actions
- T: S x A x S x {0,1,...,H} \rightarrow [0,1], T_t(s,a,s') = P(s_{t+1} = s' | s_t = s, a_t = a)
- R: S x A x S x {0, 1, ..., H} \rightarrow \Re R_t(s,a,s') = reward for (S_{t+1} = s', S_t = s, a_t = a)
- H: horizon over which the agent will act

Goal:

Find π : S x {0, 1, ..., H} \rightarrow A that maximizes expected sum of rewards, i.e.,

$$\pi^* = \arg\max_{\pi} \operatorname{E}\left[\sum_{t=0}^{H} R_t(S_t, A_t, S_{t+1}) | \pi\right]$$

This is usually discounted by gamma

Abbeel slides

Canonical Example: Grid World

- The agent lives in a grid
- Walls block the agent's path
- The agent's actions do not always go as planned:
- And this is true for the other three; 80% of the time you go where you intended, 10% at right angles one way 10% the other
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
 - Big rewards come at the end

- In an MDP, we want an optimal policy π^* : S x 0:H \rightarrow A
 - A policy π gives an action for each state for each time

- An optimal policy maximizes expected sum of rewards
- Contrast: In deterministic, want an optimal plan, or sequence of actions, from start to a goal

Outline

=

- Optimal Control
 - given an MDP (S, A, T, R, γ , H) find the optimal policy π^*
- Exact Methods:
 - Value Iteration
 - Policy Iteration

Value iteration

- Idea:
 - value of a state=expected reward of proceeding optimally from that state
 - if we knew the value of each state, choosing an action is easy
 - take the one with the best expected yield
 - cf HMM inference reasoning
- Idea:
 - we could estimate the value of a state
 - set the value of every state to something
 - now for a given state, compute the expected value of best action
 - replace value with that and continue

Value Iteration

- Algorithm:
 - Start with $V_0^*(s) = 0$ for all s.
 - For i=1, ..., H

Given V_i^* , calculate for all states $s \in S$:

$$V_{i+1}^*(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + V_i^*(s') \right]$$

- This is called a value update or Bellman update/back-up
- $V_i^*(s)$ = the expected sum of rewards accumulated when starting from state s and acting optimally for a horizon of i steps

noise = 0.2, γ =0.9, two terminal states with R = +1 and -1

0.00 >	0.00 >	0.00)	1.00
0.00 >		∢ 0.00	-1.00
0.00 >	0.00 →	0.00)	0.00

VALUES AFTER 1 ITERATIONS

noise = 0.2, γ =0.9, two terminal states with R = +1 and -1

0.00 >	0.00 >	0.72 ▶	1.00
0.00)		• 0.00	-1.00
0.00 >	0.00 →	0.00 >	0.00

VALUES AFTER 2 ITERATIONS

noise = 0.2, γ =0.9, two terminal states with R = +1 and -1

0.00 >	0.52 →	0.78 ▸	1.00	
		-		
0.00 >		0.43	-1.00	
		^		
0.00 →	0.00 →	0.00	0.00	
			-	
VALUES AFTER 3 ITERATIONS				

noise = 0.2, γ =0.9, two terminal states with R = +1 and -1

0.37 ♪	0.66)	0.83)	1.00
^		^	
0.00		0.51	-1.00
		•	
0.00 >	0.00 →	0.31	• 0.00

VALUES AFTER 4 ITERATIONS

noise = 0.2, γ =0.9, two terminal states with R = +1 and -1

0.51 →	0.72 →	0.84 →	1.00	
^		^		
0.27		0.55	-1.00	
^		^		
0.00	0.22)	0.37	∢ 0.13	
VALUES AFTER 5 ITERATIONS				

noise = 0.2, γ =0.9, two terminal states with R = +1 and -1

0.64)	0.74)	0.85)	1.00
^		^	
0.57		0.57	-1.00
^		^	
0.49	∢ 0.43	0.48	∢ 0.28

VALUES AFTER 100 ITERATIONS

noise = 0.2, γ =0.9, two terminal states with R = +1 and -1

0.64)	0.74)	0.85)	1.00
^		^	
0.57		0.57	-1.00
0.49	∢ 0.43	0.48	∢ 0.28

VALUES AFTER 1000 ITERATIONS

Exercise 1: Effect of discount, noise

- (a) Prefer the close exit (+1), risking the cliff (-10)
- (b) Prefer the close exit (+1), but avoiding the cliff (-10)
- (c) Prefer the distant exit (+10), risking the cliff (-10)
- (d) Prefer the distant exit (+10), avoiding the cliff (-10)

- (1) γ = 0.1, noise = 0.5
- (2) γ = 0.99, noise = 0
- (3) γ = 0.99, noise = 0.5
- (4) γ = 0.1, noise = 0

Exercise 1 Solution

0.00+	0.00 +	0.01	0.01 >	0.10	
		_		• •	
0.00		0.10	0.10	1.00	
_					
0.00		1.00		10.00	
0100					
0.00.	0.01.	0 10	0 10	1 00	
0.00 /	0.01	0.10	0.107	1.00	
10.00	10.00	10.00	10.00	10.00	
-10.00	-10.00	-10.00	-10.00	-10.00	

(a) Prefer close exit (+1), risking the cliff (-10) --- γ = 0.1, noise = 0

Exercise 1 Solution

(b)

	0.00)	0.00)	0.00	0.00	0.03	
			•	-	•	
	0.00		0.05	0.03 >	0.51	
	0.00		1.00		10.00	
		^	^	^	^	
	0.00	0.00	0.05	0.01	0.51	
	-10.00	-10.00	-10.00	-10.00	-10.00	
Prefer c	lose evit	$(+1)_{2VC}$	hiding the	a cliff (-10	$)) - \gamma = 0$	$\int \int noise = 0.5$
		(· ·), avc			·) / - ·	\mathbf{v} . \mathbf{v}

(c) Prefer distant exit (+1), risking the cliff (-10) -- γ = 0.99, noise = 0

Exercise 1 Solution

8.67)	8.93)	9.11)	9.30)	9.42
• 8.49		• 9.09	9.42 >	9.68
8. 33		1.00		10.00
^	^	^	^	^
7.13	5.04	3.15	5.68	8.45
-10.00	-10.00	-10.00	-10.00	-10.00

(d) Prefer distant exit (+1), avoid the cliff (-10) -- γ = 0.99, noise = 0.5

Value Iteration Convergence

Theorem. Value iteration converges. At convergence, we have found the optimal value function V* for the discounted infinite horizon problem, which satisfies the Bellman equations

 $\forall S \in S: V^*(s) = \max_{A} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$

- Now we know how to act for infinite horizon with discounted rewards!
 - Run value iteration till convergence.
 - This produces V*, which in turn tells us how to act, namely following:

$$\pi^*(s) = \arg\max_{a \in A} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

 Note: the infinite horizon optimal policy is stationary, i.e., the optimal action at a state s is the same action at all times. (Efficient to store!)

But it's not really all over...

• What if:

- there are lots of states?
- we don't know T?
- we don't know R?

Policy iteration

• Idea:

- evaluate some policy
- then make it better

Policy Evaluation

Recall value iteration iterates:

$$V_{i+1}^*(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V_i^*(s')]$$

Policy evaluation:

 $V_{i+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_i^{\pi}(s')]$

At convergence:

$$\forall s \ V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

Exercise 2

Consider a stochastic policy $\mu(a|s)$, where $\mu(a|s)$ is the probability of taking action a when in state s. Which of the following is the correct value iteration update to perform policy evaluation for this stochastic policy?

1.
$$V_{i+1}^{\mu}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s')(R(s, a, s') + \gamma V_{i}^{\mu}(s'))$$

2. $V_{i+1}^{\mu}(s) \leftarrow \sum_{s'} \sum_{a} \mu(a|s)T(s, a, s')(R(s, a, s') + \gamma V_{i}^{\mu}(s'))$
3. $V_{i+1}^{\mu}(s) \leftarrow \sum_{a} \mu(a|s) \max_{s'} T(s, a, s')(R(s, a, s') + \gamma V_{i}^{\mu}(s'))$

Policy Iteration

- Alternative approach:
 - Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence
 - Step 2: Policy improvement: update policy using onestep look-ahead with resulting converged (but not optimal!) utilities as future values
 - Repeat steps until policy converges
- This is policy iteration
 - It's still optimal!
 - Can converge faster under some conditions

Policy Evaluation Revisited

Idea 1: modify Bellman updates

 $V_0^{\pi}(s) = 0$

 $V_{i+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_i^{\pi}(s')]$

 Idea 2: it's just a linear system, solve with Matlab (or whatever), variables: V^π(s), constants: T, R

$$\forall s \ V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

Policy Iteration Guarantees

Policy Iteration iterates over:

- Policy evaluation: with fixed current policy π, find values with simplified Bellman updates:
 - · Iterate until values converge

$$V_{i+1}^{\pi_k}(s) \leftarrow \sum_{s'} T(s, \pi_k(s), s') \left[R(s, \pi_k(s), s') + \gamma V_i^{\pi_k}(s') \right]$$

 Policy improvement: with fixed utilities, find the best action according to one-step look-ahead

$$\pi_{k+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_k}(s') \right]$$

Theorem. Policy iteration is guaranteed to converge and at convergence, the current policy and its value function are the optimal policy and the optimal value function!

Proof sketch:

- (1) Guarantee to converge: In every step the policy improves. This means that a given policy can be encountered at most once. This means that after we have iterated as many times as there are different policies, i.e., (number actions)^(number states), we must be done and hence have converged.
- (2) Optimal at convergence: by definition of convergence, at convergence $\pi_{k+1}(s) = \pi_k(s)$ for all states s. This means $\forall s \ V^{\pi_k}(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i^{\pi_k}(s') \right]$ Hence V^{π_k} satisfies the Bellman equation, which means V^{π_k} is equal to the optimal value function V*.