Markov Decision
Problems

D.A. Forsyth, UIUC

Topics

Vocabulary
Simplest imitation learning and DAGGER

® to set up possible projects, and answer Q1, Q2
Simple reinforcement learning ideas

More imitation learning; inverse reinforcement learning
® and its variants and problems

Markov Decision Process

action
a,

Assumption: agent gets to observe the state

[Drawing from Sutton and Barto, Reinforcement Learning: An Introduction, 1998]

Abbeel slides

Model

At time O, environment samples initial state
® agent is in that state

Then for t=0 till done

agent chooses action

environment samples new state conditioned on action, old state
environment samples reward conditioned on action, old state, new state
agent gets that reward and moves into new state

Policy
® what action to take in each state
® this could be stochastic

Maximise total discounted reward

Examples

a Cleaning robot

o Walking robot

a Pole balancing
a Games: tetris, backgammon

a Server management

a Shortest path problems

a Model for animals, people

Abbeel slides

Markov Decision Process (S, A, T, R, H)

ﬁ
D

Agent

state r,_eward action
s.. i (),

Given

' 5. | Environment]“—

= S: set of states

= A: set of actions

= T:SxAxSx{0,l,..,H 2 [0l1], T(sas)=P(S., =s|s, =s, a,=a)

= R SxAxSx{0,1,....,H} >R R(sas’) =reward for (S,, =5, S,=s, a, =a)
= H: horizon over which the agent will act

Goal:

= Find7 :Sx{0, I, ..., H} > A that maximizes expected sum of rewards, i.e.,

H
7" = arg max E[Z Ri(Si, Ay, Sit)|m]
w
t=0

This is usually discounted by gamma T Abbeel slides

Canonical Example: Grid World

The agent lives in a grid

Walls block the agent’s path 3 .
The agent’s actions do not
always go as planned: 2 =1
And this 1s y g P
true for 80% of the time, the action North
the other takes the agent North]
three; 80% (if there is no wall there)
of the time
you €0 |0% of the time, North takes the]) i 4
where you agent West; 10% East
intended, 10%
. If there is a wall in the direction
at right angles 0.8
one way the agent would have been taken,
10% the other the agent stays put 0.1 0.1

Big rewards come at the end

Solving MDPs

= In an MDP, we want an optimal policy 7*: S x O:H — A

= A policy m gives an action for each state for each time

t=5=H

l I - L] - 1 : I - L] t=4
T T T T 1 t=
I L] 1 I L] lt

3

t=1
3 — —_— — t=0

2 | =
1 1 - —-— o —
1 2 3 4

= An optimal policy maximizes expected sum of rewards

= Contrast: In deterministic, want an optimal plan, or sequence of actions,
from start to a goal

Outline

= Optimal Control

givenan MDP (S, A, T, R, 7, H)

find the optimal policy 7

s Exact Methods:

= Value Iteration

= Policy Iteration

Value iteration

® Idea:
® value of a state=expected reward of proceeding optimally from that state
® if we knew the value of each state, choosing an action is easy
® take the one with the best expected yield
® cf HMM inference reasoning

® Idea:

® we could estimate the value of a state
® set the value of every state to something
® now for a given state, compute the expected value of best action
® replace value with that and continue

Value Iteration

= Algorithm:
= Start with V"(s) =0 foralls.
= Fori=I, ..., H

Given V* calculate for all states s € S:

Vi1 (s) « maaxZ;T(S,a,S') R(s,a,8") + V(")

S

s This is called a value update or Bellman update/back-up

*
s V, (S) = the expected sum of rewards accumulated when
starting from state s and acting optimally for a horizon of i steps

Value Iteration in Gridworld

noise = 0.2, v =0.9, two terminal states with R = +1 and -1

VALUES AFTER 1 ITERATIONS

Value Iteration in Gridworld

noise = 0.2, v =0.9, two terminal states with R = +1 and -1

VALUES AFTER 2 ITERATIONS

Value Iteration in Gridworld

noise = 0.2, v =0.9, two terminal states with R = +1 and -1

VALUES AFTER 3 ITERATIONS

Value Iteration in Gridworld

noise = 0.2, v =0.9, two terminal states with R = +1 and -1

e

VALUES AFTER 4 ITERATIONS

Value Iteration in Gridworld

noise = 0.2, v =0.9, two terminal states with R = +1 and -1

‘IIIIIII|IIIHHI||IHIHHI|IIIIIII|

VALUES AFTER 5 ITERATIONS

Value Iteration in Gridworld

noise = 0.2, v =0.9, two terminal states with R = +1 and -1

VALUES AFTER 100 ITERATIONS

Value Iteration in Gridworld

noise = 0.2, v =0.9, two terminal states with R = +1 and -1

VALUES AFTER 1000 ITERATIONS

Exercise 1: Effect of discount, noise

-10.00(|(-10.00(|(-10.00|||-10.00|||-10.00

(a) Prefer the close exit (+1), risking the cliff (-10) (1) v=0.I,noise = 0.5
(b) Prefer the close exit (+1), but avoiding the cliff (-10) (2) v=0.99,noise = 0
(c) Prefer the distant exit (+10), risking the cliff (-10) (3) v=0.99, noise = 0.5

(d) Prefer the distant exit (+10), avoiding the cliff (-10) (4) v=0.1,noise =0

Exercise 1 Solution

m .

(a) Prefer close exit (+1), risking the cliff (-10) --- v = 0.1, noise =0

Exercise 1 Solution

(b) Prefer cIose exit (+I), avoiding the cliff (-IO) -- v = 0.1, noise = 0.5

Exercise 1 Solution

H

nn

(c) Prefer distant exit (+1), risking the cliff (-10) -- v = 0.99, noise =0

Exercise 1 Solution

EEEEmn
EeREmn
o E
RIBIEARIED
EEEEE

(d) Prefer distant exit (+1), avoid the cliff (-10) -- v = 0.99, noise = 0.5

Value lteration Convergence

Theorem. Value iteration converges. At convergence, we have found
the optimal value function V* for the discounted infinite horizon
problem, which satisfies the Bellman equations

VS eS: Vi(s)= m?XZ’I’(s,a,s’) {I—i(s,a,s’) + ~ *(s')}

Now we know how to act for infinite horizon with discounted rewards!
* Run value iteration till convergence.
* This produces V*, which in turn tells us how to act, namely following:

7*(s) = argmaxaea » .. T(s,a,s")|[R(s,a,s") +yV*(s')]

Note: the infinite horizon optimal policy is stationary, i.e., the optimal action at
a state s is the same action at all times. (Efficient to store!)

25

But it’s not really all over...

® What if:

® there are lots of states?
® we don’t know T?
® we don’t know R?

Policy iteration

® Idea:

® cvaluate some policy
® then make it better

Policy Evaluation

s Recall value iteration iterates:

Vi1 (s) = max 3 T(s, .)[R(s.) + V7 (")
S

= Policy evaluation:
\/77_T|_1(5) — ZT(S, 7(s),) [R(s, w(s),s) + ﬁ,"V,;ﬂ(s/)]

= At convergence:

Vs VT‘-(S) — Z T(S, 71'(5), 5’) [H.(s, 71'(5), S/) -1- ’)”VW(S/)]

Exercise 2

Consider a stochastic policy u(als), where p(als) is the probability of taking
action a when in state s. Which of the following is the correct value iteration
update to perform policy evaluation for this stochastic policy?

1. erl(s) —max, ., T(s,a,s)(R(s,a,s") +~+V/(s))

2. Vii(s) <= 220 20 mlals)T (s, a, 8) (R(s, a, 8") + V("))
3. V?il() A Z :u'(a|)111&)(3 (93 a, 3’)([{(3,(1, S’) + ’Yviu(sl))

Policy lteration

= Alternative approach:

= Step 1: Policy evaluation: calculate utilities for some
fixed policy (not optimal utilities!) until convergence

= Step 2: Policy improvement: update policy using one-
step look-ahead with resulting converged (but not
optimal!) utilities as future values

= Repeat steps until policy converges

= [his is policy iteration
= [t's still optimal!

= Can converge faster under some conditions

Policy Evaluation Revisited

= /dea 1: modify Bellman updates

Vo (s) =0
Vi 1(s) — Y T(s,m(s),s)R(s,m(5), ") + Vi (s)]

= |dea 2: it s just a linear system, solve with
Matlab (or whatever),
variables: V7(s),
constants: T, R

Vs VT(s) =Y T(s,n(s),s)[R(s,7(s),8) +~vV™(s)]

Policy Iteration Guarantees

Policy Iteration iterates over:

= Policy evaluation: with fixed currenl policy , find values
with simplified Bellman updates:
* [terate until values converge

VIE (8) «— Y T(s,m(8),) [R(s, 7 (5),8") 4+~ V" (s")

* Policy improvement: with fixed utilities, find the best
action according to one-step lock-ahead

mr41(s) = argmax) T(s,a,s") (R(s,a,s") + vV (s")
a r L 4

Theorem. Policy iteration is guaranteed to converge and at convergence, the current policy
and its value function are the optimal policy and the optimal value function!

Proof sketch:
(1) Guarantee to converge: In every step the policy improves. This means that a given policy can be

encountered at most once. This means that after we have iterated as many times as there are different
policies, i.e., (number actions)number states) e must be done and hence have converged.
(2) Optimal at convergence: by definition of convergence, at convergence ,,,(s) = m,(s) for all states s.

This means vs V7(s) = max, Yo T(s, a. ") [R(.‘i.n,s') + A 1;.'“(.5')]
Hence "+ satisfies the Bellman equation, which means 1+ is equal to the optimal value function V*.

