Visual odometry

D.A. Forsyth UIUC

Epipoles (resp. epipolar lines)

- Informative

Epipole and epipolar lines in camera 1 - where is camera 2?

Odometry from two camera geometry

- Idea:
- use calibrated camera
- move; track some points
- in reading slides
- compute essential matrix (calibrated fundamental matrix) to get
- rotation
- translation up to scale
- Options:
- fix scale later
- use (say) wheel measurements + Kalman filter to fix
- use stereo

RECALL: The Fundamental Matrix

- Can be fit a pair of images using feature correspondences
- 8 point algorithm
- robustness is an important issue
- we'll do this

$$
\mathcal{F}=k \mathcal{C}_{L}^{-T} \mathcal{R S C}_{R}^{-1}
$$

If we know these

Camera translation
$\mathbf{V}_{R}=\mathcal{R}\left(\mathbf{V}_{L}-\stackrel{\downarrow}{\mathbf{T}}\right)$
\uparrow
Camera rotation

$$
\mathcal{S}=\left(\begin{array}{ccc}
0 & -T_{z} & T_{y} \\
T_{z} & 0 & -T_{x} \\
-T_{y} & T_{x} & 0
\end{array}\right)
$$

$\mathbf{T}^{T} \mathcal{S}=\mathbf{0}$

The Essential matrix

- Assume camera calibration is known
- Cameras are normalized so that $\mathrm{C}=\mathrm{Id}$

$$
\mathbf{p}_{\mathbf{1}}{ }^{T} \mathcal{F} \mathbf{p}_{\mathbf{2}}=0 \quad \text { becomes } \quad \mathbf{p}_{1}^{T} \mathcal{E} \mathbf{p}_{2}=0
$$

$\mathcal{F}=k \mathcal{C}_{L}^{-T} \mathcal{R} \mathcal{S C}_{R}^{-1} \quad$ becomes

$$
\mathcal{E}=k \mathcal{R S}
$$

The essential matrix

From fundamental matrix

Getting R, S from E

- Recall SVD:
- Notice that, for R a rotation,
- M and RM have the same singular values

- So singularvalues(E)=singularvalues(S)
- check:

$$
\Sigma(\mathcal{S})=\left(\begin{array}{lll}
s & 0 & 0 \\
0 & s & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Recovering R, S - I

- Write

U Sigma $\mathrm{V}^{\wedge} \mathrm{T}=\operatorname{SVD}(\mathrm{E})$

$$
\mathcal{W}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

$$
\begin{aligned}
\mathcal{R} & =\mathcal{U} \mathcal{W}^{-1} \mathcal{V}^{T} \\
\mathcal{S} & =\mathcal{V} \mathcal{W} \Sigma \mathcal{V}^{T}
\end{aligned}
$$

- Check that
- RS=E
- R is orthonormal
- S is antisymmetric

BUT

- There are ambiguities
- check that for any Q of the form
- square root of identity

$$
\mathcal{Q}=\operatorname{diag}(\pm 1, \pm 1, \pm 1)
$$

- R^{\prime}, S^{\prime} as given also work
- R^{\prime} is orthonormal
- S^{\prime} is antisymmetric
- Four of these don't matter
- cause $\operatorname{det}\left(\mathrm{R}^{\prime}\right)=-1$

$$
\mathcal{S}^{\prime}=\mathcal{Q} \mathcal{S}
$$

- implies camera was reflected as well as rotated
- and that doesn't happen

The other four.....

Only one gives a solution
where point is in front of both cameras.

(a)
S. Weiss' notes on visual odometry from CVPR 14 tutorial

But the unknown constant is unknown...

Different values of k will lead to different scales of S - equivalently, different scales of translation between cameras - you need extra information to sort this out.

What we have

- Can determine
- the rotation between two cameras
- the translation *up to scale*
- From this, we can recover 3D points
- up to scale

What we have

- 3D points: $\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$ And $\left(\begin{array}{c}x_{1}^{t} \\ x_{2}^{t} \\ x_{3}^{t}\end{array}\right)=\mathcal{R}\left[\left(\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)-\mathbf{t}\right]$

Original point in camera two's coordinate system

- normalized image points:

$$
\binom{y_{1}}{y_{2}}=\binom{x_{1} / x_{3}}{x_{2} / x_{3}} \quad\binom{y_{1}^{t}}{y_{2}^{t}}=\binom{x_{1}^{t} / x_{3}^{t}}{x_{2}^{t} / x_{3}^{t}}
$$

Recovering the point in 3D

- Write

$$
\begin{aligned}
\mathcal{R} & =\left(\begin{array}{c}
\mathbf{r}_{1}^{T} \\
\mathbf{r}_{2}^{T} \\
\mathbf{r}_{3}^{T}
\end{array}\right) \\
\mathbf{y} & =\left(\begin{array}{c}
y_{1} \\
y_{2} \\
1
\end{array}\right)
\end{aligned}
$$

- Then

$$
x_{3}=\frac{\left(\mathbf{r}_{1}-y_{1}^{t} \mathbf{r}_{3}\right)^{T} \mathbf{t}}{\left(\mathbf{r}_{1}-y_{2}^{t} \mathbf{r}_{3}\right)^{T} \mathbf{y}}
$$

And we have everything in 3D!

The effect of scale

$$
x_{3}=\frac{\left(\mathbf{r}_{1}-y_{1}^{t} \mathbf{r}_{3}\right)^{T} \mathbf{t}}{\left(\mathbf{r}_{1}-y_{2}^{t} \mathbf{r}_{3}\right)^{T} \mathbf{y}}
$$

- Notice that if k changes, t gets bigger or smaller
- point coordinates scale
- $\mathrm{x} _1=\mathrm{y} _1 \mathrm{x} _3, \mathrm{x} _2=\mathrm{y} _2 \mathrm{x}$ _ 3
- So if we can match points across more than two cameras
- there is only one scale ambiguity in the whole sequence
- This could be quite easy to sort out
- eg you know the size of high bay
- eg you know some reference scale
- etc

Alternatives

- Filter the scale using estimates from wheels
- etc
- Stereo odometry
- If I have two cameras then there is no issue with scale

Pragmatics

- Need
- good fast feature computation and tracking
- fast features and good robust methods seem to beat good features
- reliable camera calibration
- and robust FM/EM estimation
- Ransac remains reliable
- OR good stereo
- See slides+notes

