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Epipoles (resp. epipolar lines)

• Informative

Epipole and epipolar lines in camera 1 - where is camera 2?



Odometry from two camera geometry

• Idea:
• use calibrated camera
• move; track some points

• in reading slides
• compute essential matrix (calibrated fundamental matrix) to get

• rotation
• translation up to scale

• Options:
• fix scale later
• use (say) wheel measurements + Kalman filter to fix
• use stereo



RECALL: The Fundamental Matrix 

• Can be fit a pair of images using feature correspondences
• 8 point algorithm 
• robustness is an important issue
• we’ll do this
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The Essential matrix

• Assume camera calibration is known
• Cameras are normalized so that C=Id
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From fundamental matrix

E = kRS

Orthonormal

Unknown constant

Antisymmetric



Getting R, S from E

• Recall SVD:

• Notice that, for R a rotation,  
• M and RM have the same singular values

• So singularvalues(E)=singularvalues(S)
• check:  
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Recovering R, S  - I

• Write

• Check that 
• RS=E
• R is orthonormal
• S is antisymmetric
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S = VW⌃VT
R = UW�1VT

U Sigma V^T = SVD(E)



BUT

• There are ambiguities
• check that for any Q of the form

• square root of identity

• R’, S’ as given also work
• R’ is orthonormal
• S’ is antisymmetric

• Four of these don’t matter
• cause det(R’)=-1
• implies camera was reflected as well as rotated

• and that doesn’t happen

Q = diag(±1,±1,±1)

R0 = RQ
S 0 = QS



The other four…..

S. Weiss’ notes on visual odometry from CVPR 14 tutorial

Only one gives a solution
where point is in front of both 

cameras.



But the unknown constant is unknown…

E = kRS

Orthonormal

Unknown constant

Antisymmetric

Different values of k will lead to different scales
of S  - equivalently, different scales of translation 
between cameras - you need extra information to

sort this out.



What we have

• Can determine
• the rotation between two cameras 
• the translation *up to scale*

• From this, we can recover 3D points
• up to scale



What we have

• 3D points:

• normalized image points:
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Recovering the point in 3D

• Write

• Then
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And we have everything in 3D!



The effect of scale

• Notice that if k changes, t gets bigger or smaller
• point coordinates scale

• x_1=y_1 x_3, x_2=y_2 x_3

• So if we can match points across more than two cameras
• there is only one scale ambiguity in the whole sequence
• This could be quite easy to sort out

• eg you know the size of high bay
• eg you know some reference scale
• etc
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Alternatives

• Filter the scale using estimates from wheels
• etc

• Stereo odometry
• If I have two cameras then there is no issue with scale



Pragmatics

• Need
• good fast feature computation and tracking

• fast features and good robust methods seem to beat good features

• reliable camera calibration
• and robust FM/EM estimation 
• Ransac remains reliable

• OR good stereo

• See slides+notes


