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Epipoles (resp. epipolar lines)

• Informative

Epipole and epipolar lines in camera 1 - where is camera 2?



Odometry from two camera geometry

• Idea:

• use calibrated camera

• move; track some points


• in reading slides

• compute essential matrix (calibrated fundamental matrix) to get


• rotation

• translation up to scale


• Options:

• fix scale later

• use (say) wheel measurements + Kalman filter to fix

• use stereo



RECALL: The Fundamental Matrix 

• Can be fit a pair of images using feature correspondences

• 8 point algorithm 

• robustness is an important issue

• we’ll do this
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The Essential matrix

• Assume camera calibration is known

• Cameras are normalized so that C=Id

pT
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From fundamental matrix

E = kRS

Orthonormal

Unknown constant

Antisymmetric



Getting R, S from E

• Recall SVD:


• Notice that, for R a rotation,  

• M and RM have the same singular values


• So singularvalues(E)=singularvalues(S)

• check:  
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Recovering R, S  - I

• Write


• Check that 

• RS=E

• R is orthonormal

• S is antisymmetric
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S = VW⌃VT
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U Sigma V^T = SVD(E)



BUT

• There are ambiguities

• check that for any Q of the form


• square root of identity


• R’, S’ as given also work

• R’ is orthonormal

• S’ is antisymmetric


• Four of these don’t matter

• cause det(R’)=-1

• implies camera was reflected as well as rotated


• and that doesn’t happen

Q = diag(±1,±1,±1)

R0 = RQ
S 0 = QS



The other four…..

S. Weiss’ notes on visual odometry from CVPR 14 tutorial

Only one gives a solution

where point is in front of both 


cameras.



But the unknown constant is unknown…

E = kRS

Orthonormal

Unknown constant

Antisymmetric

Different values of k will lead to different scales

of S  - equivalently, different scales of translation 

between cameras - you need extra information to


sort this out.



What we have

• Can determine

• the rotation between two cameras 

• the translation *up to scale*


• From this, we can recover 3D points

• up to scale



What we have

• 3D points:


• normalized image points:
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Recovering the point in 3D

• Write


• Then
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And we have everything in 3D!



The effect of scale

• Notice that if k changes, t gets bigger or smaller

• point coordinates scale


• x_1=y_1 x_3, x_2=y_2 x_3


• So if we can match points across more than two cameras

• there is only one scale ambiguity in the whole sequence

• This could be quite easy to sort out


• eg you know the size of high bay

• eg you know some reference scale

• etc
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Alternatives

• Filter the scale using estimates from wheels

• etc


• Stereo odometry

• If I have two cameras then there is no issue with scale



Pragmatics

• Need

• good fast feature computation and tracking


• fast features and good robust methods seem to beat good features


• reliable camera calibration

• and robust FM/EM estimation 

• Ransac remains reliable


• OR good stereo


• See slides+notes


