
Visual odometry
D.A. Forsyth UIUC

Epipoles (resp. epipolar lines)

• Informative

Epipole and epipolar lines in camera 1 - where is camera 2?

Odometry from two camera geometry

• Idea:
• use calibrated camera
• move; track some points

• in reading slides
• compute essential matrix (calibrated fundamental matrix) to get

• rotation
• translation up to scale

• Options:
• fix scale later
• use (say) wheel measurements + Kalman filter to fix
• use stereo

RECALL: The Fundamental Matrix

• Can be fit a pair of images using feature correspondences
• 8 point algorithm
• robustness is an important issue
• we’ll do this

p1
TFp2 = 0

F = kC�T
L RSC�1

R

If we know these

we can recover info about R, T from F

Camera 1
Camera 2

VV RL

TOrigin

VR = R(VL �T)

Camera rotation

Camera translation

S =

0

@
0 �Tz Ty

Tz 0 �Tx

�Ty Tx 0

1

A TTS = 0

The Essential matrix

• Assume camera calibration is known
• Cameras are normalized so that C=Id

pT
1 Ep2 = 0

E = kRS

p1
TFp2 = 0

F = kC�T
L RSC�1

R

becomes

becomes

The essential matrix

From fundamental matrix

E = kRS

Orthonormal

Unknown constant

Antisymmetric

Getting R, S from E

• Recall SVD:

• Notice that, for R a rotation,
• M and RM have the same singular values

• So singularvalues(E)=singularvalues(S)
• check:

M = U⌃VT

Orthonormal

Diagonal

⌃(S) =

0

@
s 0 0
0 s 0
0 0 0

1

A

Recovering R, S - I

• Write

• Check that
• RS=E
• R is orthonormal
• S is antisymmetric

W =

0

@
0 �1 0
1 0 0
0 0 1

1

A

S = VW⌃VT
R = UW�1VT

U Sigma V^T = SVD(E)

BUT

• There are ambiguities
• check that for any Q of the form

• square root of identity

• R’, S’ as given also work
• R’ is orthonormal
• S’ is antisymmetric

• Four of these don’t matter
• cause det(R’)=-1
• implies camera was reflected as well as rotated

• and that doesn’t happen

Q = diag(±1,±1,±1)

R0 = RQ
S 0 = QS

The other four…..

S. Weiss’ notes on visual odometry from CVPR 14 tutorial

Only one gives a solution
where point is in front of both

cameras.

But the unknown constant is unknown…

E = kRS

Orthonormal

Unknown constant

Antisymmetric

Different values of k will lead to different scales
of S - equivalently, different scales of translation
between cameras - you need extra information to

sort this out.

What we have

• Can determine
• the rotation between two cameras
• the translation *up to scale*

• From this, we can recover 3D points
• up to scale

What we have

• 3D points:

• normalized image points:

0

@
x1

x2

x3

1

A

✓
y1
y2

◆
=

✓
x1/x3

x2/x3

◆ ✓
yt1
yt2

◆
=

✓
xt
1/x

t
3

xt
2/x

t
3

◆

And

Original point in camera two’s coordinate system

0

@
xt
1

xt
2

xt
3

1

A = R

2

4

0

@
x1

x2

x3

1

A� t

3

5

Recovering the point in 3D

• Write

• Then

R =

0

@
rT1
rT2
rT3

1

A

y =

0

@
y1
y2
1

1

A

x3 =
(r1 � yt1r3)

T t

(r1 � yt2r3)
Ty

And we have everything in 3D!

The effect of scale

• Notice that if k changes, t gets bigger or smaller
• point coordinates scale

• x_1=y_1 x_3, x_2=y_2 x_3

• So if we can match points across more than two cameras
• there is only one scale ambiguity in the whole sequence
• This could be quite easy to sort out

• eg you know the size of high bay
• eg you know some reference scale
• etc

x3 =
(r1 � yt1r3)

T t

(r1 � yt2r3)
Ty

Alternatives

• Filter the scale using estimates from wheels
• etc

• Stereo odometry
• If I have two cameras then there is no issue with scale

Pragmatics

• Need
• good fast feature computation and tracking

• fast features and good robust methods seem to beat good features

• reliable camera calibration
• and robust FM/EM estimation
• Ransac remains reliable

• OR good stereo

• See slides+notes

