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C H A P T E R 11

Camera Matrices

11.1 SIMPLE PROJECTIVE GEOMETRY

Draw a pattern on a plane, then view that pattern with a perspective camera. The
distortions you observe are more interesting than are predicted by simple rotation,
translation and scaling. For example, if you drew parallel lines, you might see lines
that intersect at a vanishing point – this doesn’t happen under rotation, translation
and scaling. Projective geometry can be used to describe the set of transformations
produced by a perspective camera.

11.1.1 Homogeneous Coordinates and Projective Spaces

The coordinates that every reader will be most familiar with are known as affine
coordinates. In affine coordinates, a point on the plane is represented by 2 numbers,
a point in 3D is represented with 3 numbers, and a point in k dimensions is rep-
resented with k numbers. Now adopt the convention that a point in k dimensions
is represented by k+ 1 numbers not all of which are zero. Two representations X1

and X2 represent the same point (write X1 ≡ X2) if there is some λ ̸= 0 so that

X1 = λX2.

These coordinates are known as homogeneous coordinates, and will offer a particu-
larly convenient representation of perspective projection.

Remember this: In homogeneous coordinates, a point in a k dimen-
sional space is represented by k + 1 coordinates (X1, . . . , Xk+1), together
with the convention that

(X1, . . . , Xk+1) ≡ λ(X1, . . . , Xk+1) for λ ̸= 0.

The space represented by k+1 homogeneous coordinates is different from the
space represented by k affine coordinates in important but subtle ways. We start
with a 1D space. In homogenous coordinates, we represent a point on a 1D space
with two coordinates, so (X1, X2) (by convention, homogeneous coordinates are
written with capital letters). Two sets of homogeneous coordinates (U1, U2) and
(V1, V2) represent different points if there is no λ ̸= 0 such that λ(U1, U2) = (V1, V2).
Now consider the set of all the distinct points, which is known as the projective line.
Any point on an ordinary line (the affine line) has a corresponding point on the
projective line. In affine coordinates, a point on the affine line is given by a single
coordinate x. This point can be identified with the point on the projective line
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Section 11.1 Simple Projective Geometry 131

given by (X1, X2) = λ(x, 1) (for λ ̸= 0) in homogeneous coordinates. Notice that
the projective line has an “extra point” – (X1, 0) are the homogeneous coordinates
of a single point (check this), but this point would be “at infinity” on the affine
line.

Example: 11.1 Seeing the point at infinity

You can actually see the point at infinity. Recall that lines that are
parallel in the world can intersect in the image at a vanishing point.
This vanishing point turns out to be the image of the point “at infinity”
on the parallel lines. For example, on the plane y = −1 in the camera
coordinate system, draw two lines (1,−1, t) and (−1,−1, t) (these lines
are in Figure 32.2). Now these lines project to (f1/t, f(−1/t), f) and
(f(−1/t), f(−1/t), f) on the image plane, and their vanishing point is
(0, 0, f). This vanishing point occurs when the parameter t reaches
infinity. The exercises work this example in homogeneous coordinates.

There isn’t anything special about the point on the projective line given by
(X1, 0). You can see this by identifying x on the affine line with (X1, X2) = λ(1, x)
(for λ ̸= 0). Now (X1, 0) is a point like any other, and (0, X2) is “at infinity”. A
little work establishes that there is a 1-1 mapping between the projective line and
a circle (exercises).

Higher dimensional spaces follow the same pattern. In affine coordinates, a
point in a k dimensional affine space (eg an affine plane; affine 3D space; etc)
is given by k coordinates (x1, x2, . . . , xk). The space described by k + 1 homo-
geneous coordinates is a projective space (a projective plane; projective 3D space;
etc). A point (x1, x2, . . . , xk) in a k dimensional affine space can be identified with
(X1, X2, . . . , Xk+1) = λ(x1, x2, . . . , xk, 1) (for λ ̸= 0) in the k dimensional projec-
tive space. The points in the projective space given by (X1, X2, . . . , 0) have no
corresponding points in the affine space. Notice that this set of points is a k − 1
dimensional space in homogeneous coordinates. When k = 2, this set is a projective
line, and is referred to as the line at infinity, and the whole space is known as the
projective plane. As the exercises show, you can see the line at infinity: the horizon
of a plane in the image is actually the image of the line at infinity in that plane.

When k = 3, this set is itself a projective plane, and is known as the plane
at infinity; the whole space is sometimes known as projective 3-space. Notice this
means that 3D projective space is obtained by “sewing” a projective plane to the
3D affine space we are accustomed to. The piece of the projective space “at infinity”
isn’t special, using the same argument as above. The particular line (resp. plane)
that is “at infinity” is chosen by the homogeneous coordinate you divide by. There
is an established convention in computer vision of dividing by the last homogeneous
coordinate and talking about the line at infinity and the plane at infinity.
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Remember this: The k dimensional space represented by k + 1 ho-
mogeneous coordinates is a projective space. You can represent a point
(x1, . . . , xk in affine k space in this projective space as (x1, . . . , xk, 1). Not
every point in the projective space can be obtained like this – the points
(X1, . . . , Xk, 0) are “extra”. These points form a projective k − 1 space
which is thought of as being “at infinity”. Important cases are k = 1 (the
projective line with a point at infinity); k = 2 (the projective plane with a
line at infinity).

11.1.2 Lines and Planes in Projective Space

Lines on the affine plane form one important example of homogeneous coordinates.
A line is the set of points (x, y) where ax+ by+ c = 0 . We can use the coordinates
(a, b, c) to represent a line. If (d, e, f) = λ(a, b, c) for λ ̸= 0 (which is the same as
(d, e, f) ≡ (a, b, c)), then (d, e, f) and (a, b, c) represent the same line. This means
the coordinates we are using for lines are homogeneous coordinates, and the family
of lines in the affine plane is a projective plane. Notice that encoding lines using
affine coordinates must leave out some lines. For example, if we insist on using
(u, v, 1) = (a/c, b/c, 1) to represent lines, the corresponding equation of the line
would be ux + vy + 1 = 0. But no such line can pass through the origin – our
representation has left out every line through the origin.

Lines on the projective plane work rather like lines on the affine plane. Write
the points on our line using homogeneous coordinates to get

(x, y, 1) = (X1/X3, X2/X3, 1)

or equivalently (X1, X2, X3) where X1 = xX3, X2 = yX3. Substitute to find the
equation of the corresponding line on the projective plane, aX1 + bX2 + cX3 = 0,
or aTX = 0. There is an interesting point here. A set of three homogenous
coordinates can be used to describe either a point on the projective plane or a line
on the projective plane.

Remember this: A line on the projective plane is the set of points X
such that

aTX = 0.

Here a is a vector of homogeneous coordinates specifying the particular
line.
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Remember this: Write P1 and P2 for two points on the projective
plane that are represented in homogeneous coordinates and are different.
From the exercises, the line through these two points is given by

a = P1 ×P2.

From the exercises, a parametrization of this line is given by

UP1 + VP2.

Planes in projective 3-space work rather like lines on the projective plane.
The locus of points (x, y, z) where ax+ by+ cz + d = 0 is a plane in affine 3-space.
Because (a, b, c, d) and λ(a, b, c, d) give the same plane, we have that (a, b, c, d) are
homogeneous coordinates for a plane in 3D. We can write the points on the plane
using homogeneous coordinates to get

(x, y, z, 1) = (X1/X4, X2/X4, X3/X4, 1)

or equivalently

(X1, X2, X3, X4) where X1 = xX4, X2 = yX4, X3 = zX4.

Substitute to find the equation of the corresponding plane in projective 3-space
aX1 + bX2 + cX3 + dX4 = 0 or aTX = 0. A set of four homogenous coordinates
can be used to describe either a point in projective 3-space or a plane in projective
3-space.

Remember this: A plane in projective 3D is the set of points X such
that

aTX = 0.

Here a is a vector of homogeneous coordinates specifying the particular
plane.
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Remember this: Write P1, P2 and P3 for three points in projective
3D that are represented in homogeneous coordinates, are different points,
and are not collinear. From the exercises, the plane through these points is
given by

a = NullSpace

 PT
1

PT
2

PT
3

 .

From the exercises, a parametrization of this plane is given by

UP1 + VP2 +WP3.

11.1.3 Homographies

Write X = (X1, X2, X3) for the coordinates of a point on the projective plane. Now
consider V = MX, where M is a 3× 3 matrix with non-zero determinant. We can
interpret V as a point on the projective plane, and in fact M is a mapping from
the projective plane to itself. There is something to check here. Write M(X) for
the point that X maps to, etc. Because X ≡ λX (for λ ̸= 0), we must have that
M(X) ≡ M(λX) otherwise one point would map to several points. But

M(X) = MX ≡ λMX = M(λX)

so M is a mapping. Such mappings are known as homographies. You should check
thatM(−1) is the inverse ofM, and is a homography. You should check thatM and
λM represent the same homography. Homographies are interesting to us because
any view of a plane by a perspective (or orthographic) camera is a homography,
and a variety of useful tricks rest on understanding homographies.

Any homography will map every line to a line. Write a for the line in the
projective plane whose points satisfy aTX = 0. Now apply the homography M to
those points to get V = MX. Notice that

aTM(−1)V = aTX = 0,

so that the line a transforms to the line M(−T )a. Homographies are easily inverted.

Remember this: A homography is a mapping from the projective plane
to the projective plane. Assume M is a 3×3 matrix with non-zero determi-
nant; then the homography represented by M maps the point with homoge-
neous coordinates X to the point with homogeneous coordinates MX. The
two matrices M and λM represent the same homography, and the inverse
of this homography is represented by M−1. The homography represented by
M will map the line represented by a to the line represented by M−Ta.
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11.2 CAMERA MATRICES AND TRANSFORMATIONS

11.2.1 Perspective and Orthographic Camera Matrices

In affine coordinates we wrote perspective projection as (X,Y, Z) → (X/Z, Y/Z)
(remember, we will account for f later). Now write the 3D point in homogeneous
coordinates, so

X = (X1, X2, X3, X4) where X1 = XX4, etc.

Write the point in the image plane in homogeneous coordinates as well, to obtain

I = (I1, I2, I3) where I1 = (X/Z)I3 and I2 = (Y/Z)I3.

So we could use

I = (X,Y, Z) ≡ (X/Z, Y/Z, 1) ≡ (X1/X4, X2/X4, X3/X4) ≡ (X1, X2, X3).

Notice that (X,Y, Z) is a natural choice of homogeneous coordinates for the point
in the image plane. This means that, in homogeneous coordinates, we can represent
perspective projection as

(X1, X2, X3, X4) → (X1, X2, X3) ≡ (X1, X2, X3).

or  I1
I2
I3

 =

 1 0 0 0
0 1 0 0
0 0 1 0



X1

X2

X3

X4


where the matrix is known as the perspective camera matrix (write Cp). Notice
that this representation preserves the property that the focal point of the camera
cannot be imaged, and is the only such point. The focal point can be represented
in homogeneous coordinates by (0, 0, 0, T ), for T ̸= 0. This maps to (0, 0, 0), which
is meaningless in homogeneous coordinates. You should check no other point maps
to (0, 0, 0).

Remember this: The perspective camera matrix is

Cp =

 1 0 0 0
0 1 0 0
0 0 1 0

 .

In affine coordinates, in the right coordinate system and assuming that the
scale is chosen to be one, scaled orthographic perspective can be written as (X,Y, Z) →
(X,Y ). Following the argument above, we obtain in homogeneous coordinates I1

I2
I3

 =

 1 0 0 0
0 1 0 0
0 0 0 1



X1

X2

X3

X4
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where the matrix is known as the orthographic camera matrix (write Co).

Remember this: The orthographic camera matrix is

Co =

 1 0 0 0
0 1 0 0
0 0 0 1



11.2.2 Cameras in World Coordinates

The camera matrix describes a perspective (resp. orthographic) projection for a
camera in a specific coordinate system – the focal point is at the origin, the camera
is looking down the z-axis, and so on. In the more general case, the camera is placed
somewhere in world coordinates looking in some direction, and we need to account
for this. Furthermore, the camera matrix assumes that points in the camera are
reported in a specific coordinate system. The pixel locations reported by a practical
camera might not be in that coordinate system. For example, many cameras place
the origin at the top left hand corner. We need to account for this effect, too.

A general perspective camera transformation can be written as:

 I1
I2
I3

 =


Transformation
mapping image
plane coords to
pixel coords

 Cp


Transformation
mapping world
coords to camera

coords



X1

X2

X3

X4



= TiCpTe


X1

X2

X3

X4


The parameters of Ti are known as camera intrinsic parameters or camera intrin-
sics, because they are part of the camera, and typically cannot be changed. The
parameters of Te are known as camera extrinsic parameters or camera extrinsics,
because they can be changed.

11.2.3 Camera Extrinsic Parameters

The transformation Te represents a rigid motion (equivalently, a Euclidean transfor-
mation, which consists of a 3D rotation and a 3D translation). In affine coordinates,
any Euclidean transformation maps the vector x to

Rx+ t

where R is an appropriately chosen 3D rotation matrix (check the endnotes if
you can’t recall) and t is the translation. Any map of this form is a Euclidean
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FIGURE 11.1: A perspective camera (in its own coordinate system, given by X, Y
and Z axes) views a point in world coordinates (given by (u, v, w) in the UVW
coordinate system) and reports the position of points in ST coordinates. We must
model the mapping from (u, v, w) to (s, t), which consists of a transformation from
the UVW coordinate system to the XY Z coordinate system followed by a perspective
projection followed by a transformation to the ST coordinate system.

transformation. You should confirm the transformation that maps the vector X
representing a point in 3D in homogeneous coordinates to

λ

[
R t
0T 1

]
X

represents a Euclidean transformation, but in homogeneous coordinates. It follows
that any map of this form is a Euclidean transformation. Because Te represents
a Euclidean transformation, it must have this form. The exercises explore some
properties of Te.

11.2.4 Camera Intrinsic Parameters

Camera intrinsic parameters must model a possible coordinate transformation in
the image plane from projected world coordinates (write (x, y)) to pixel coordinates
(write (u, v)), together with a possible change of focal length. This change is caused
by the image plane being further away from, or closer to, the focal point. The
coordinate transformation is not arbitrary (Figure 11.2). Typically, the origin of
the pixel coordinates is usually not at the camera center. Write ∆x for the step in
the image plane from pixel (i, j) to (i+1, j) and ∆y for the step to (i, j+1). These
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are vectors parallel to the camera coordinate axes. The vector ∆x may not be
perpendicular to the vector ∆y, causing skew. For many cameras, ||∆x || is different
from ||∆y || – such cameras have non-square pixels, and ||∆x ||/||∆y || is known as
the aspect ratio of the pixel. Furthermore, ||∆x || is not usually one unit in world
coordinates.

There is one tricky point here. Rotating the world about the Z axis has
an effect equivalent to rotating the camera coordinate system (Figure ??). This
means we cannot tell whether this rotation is the result of a change in the extrinsics
(the world rotated) or the intrinsics (the camera coordinate system rotated). By
convention, there is no rotation in the intrinsics, so a pure rotation of the image is
always the result of the world rotating.

There are two possible parametrizations of camera intrinsics. Recall f is the
focal length of the camera. Write (c′x, c

′
y) for the location of the camera center in

pixel coordinates; a for the aspect ratio of the pixels ; and k′ for the skew. Then
Ti is parametrized as ||∆x || k′ c′x

0 ||∆y || c′y
0 0 1/f

 ≡

 af ||∆y || fk′ fc′x
0 f ||∆y || fc′y
0 0 1


Notice in this case we are distinguishing between scaling resulting from ||∆y || and
scaling resulting from the focal length. This is unusual, but can occur. More usual
is to conflate these effects and parametrize the intrinsics as as k cx

0 s cy
0 0 1


where s = f ||∆y ||, a = ||∆x ||∆y, k = fk′, cx = fc′x, cy = fc′y.

Remember this: A general perspective camera can be written in
homogeneous coordinates as:

 I1
I2
I3

 = Ti

 1 0 0 0
0 1 0 0
0 0 0 1

 Te


X1

X2

X3

X4



=

 as k cx
0 s cy
0 0 1

 1 0 0 0
0 1 0 0
0 0 −1 0

[ R t
0T 1

]
X1

X2

X3

X4


where R is a rotation matrix.
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FIGURE 11.2: The camera reports pixel values in pixel coordinates, which are not
the same as world coordinates. The camera intrinsics represent the transformation
between world coordinates and pixel coordinates. On the left, a camera (as in
Figure 2.1), with the camera coordinate system shown in heavy lines. On the right,
a more detailed view of the image plane. The camera coordinate axes are marked
(u, v) and the image coordinate axes (x, y). It is hard to determine f from the
figure, and we will conflate scaling due to f with scaling resulting from the change
to camera coordinates. The camera coordinate system’s origin is not at the camera
center, so (cx, cy) are not zero. I have marked unit steps in the coordinate system
with ticks. Notice that the v-axis is not perpendicular to the u-axis (so k - the skew
- is not zero). Ticks in the u, v axes are not the same distance apart as ticks on the
x, y axes, meaning that s is not one. Furthermore, u ticks are further apart than v
ticks, so that a is not one.

By the arguments above, a general orthographic camera transformation can
be written as:  I1

I2
I3

 = Ti

 1 0 0 0
0 1 0 0
0 0 0 1

 Te


X1

X2

X3

X4


PROBLEMS

11.1. We construct the vanishing point of a pair of parallel lines in homogeneous
coordinates.
(a) Show that the set of points in homogeneous coordinates in 3D given by

(s,−s, t, s) (for s, t parameters) form a line in 3D.
(b) Now image the line (s,−s, t, s) in 3D in a standard perspective camera

with focal length 1. Show the result is the line (s,−s, t) in the image
plane.

(c) Now image the line (−s,−s, t, s) in 3D in a standard perspective camera
with focal length 1. Show the result is the line (−s,−s, t) in the image
plane.

(d) Show that the lines (s,−s, t) and (−s,−s, t) intersect in the point (0, 0, t).
11.2. We construct the horizon of a plane for a standard perspective camera with
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focal length 1. Write a = [a1, a2, a3, a4]
T for the coefficients of the plane, so

that for every point X on the plane we have aTX = 0.
(a) Show that the plane given by u = [a1, a2, a3, 0] is parallel to the plane

given by a, and passes through (0, 0, 0, 1).
(b) Write the points on the image plane (u, v, 1) ≡ (U, V,W ) in homogeneous

coordinates. Show that the horizon of the plane is the set of points u in
the image plane given by lTu = 0, where l = [a1, a2, a3]

T .
11.3. A pinhole camera with focal point at the origin and image plane at z = f

views two parallel lines u+ tw and v + tw. Write w = [w1, w2, w3]
T , etc.

(a) Show that the vanishing point of these lines, on the image plane, is given
by (f w1

w3
, f w2

w3
).

(b) Now we model a family of pairs of parallel lines, by writing w(r, s) =
ra + sb, for any (r, s). In this model, u + tw(r, s) and v + tw(r, s) are
the pair of lines, and (r, s) chooses the direction. First, show that this
family of vectors lies in a plane. Now show that the vanishing point for
the (r, s)’th pair is (f ra1+sb1

ra3+sb3
, f ra2+sb2

ra3+sb3
).

(c) Show that the family of vanishing points (f ra1+sb1
ra3+sb3

, f ra2+sb2
ra3+sb3

) lies on a

straight line in the image. Do this by constructing c such that cT a =
cTb = 0. Now write (x(r, s), y(r, s)) = (−f ra1+sb1

ra3+sb3
,−f ra2+sb2

ra3+sb3
) and

show that c1x(r, s) + c2y(r, s) + c3 = 0.
11.4. All points on the projective plane with homogeneous coordinates (U, V, 0) lie

“at infinity” (divide by zero). As we have seen, these points form a projective
line.
(a) Show this line is represented by the vector of coefficients (0, 0, C).

(b) A homography M =
[
mT

1 ;m
T
2 ;m

T
3

]
is applied to the projective plane.

Show that the line whose coefficients are v3 maps to the line at infinity.
(c) Now write the homography as M =

[
m′

1,m
′
2,m

′
3

]
(so m′ are columns).

Show that the homography maps the points at infinity to a line given in
parametric form as sm′

1 + tm′
2.

(d) Now write n for a non-zero vector such that nTm′
1 = nTm′

2 = 0. Show
that, for any point x on the line given in parametric form as sm′

1 + tm′
2,

we have nTx = 0. Is n unique?
(e) Use the results of the previous subexercises to show that for any given line,

there are some homographies that map that line to the line at infinity.
(f) Use the results of the previous subexercises to show that for any given

line, there are some homographies that map the line at infinity to that
line.

11.5. We will show that there is no significant difference between choosing a right-
handed camera coordinate system and a left-handed camera coordinate system.
Notice that, in a right handed camera coordinate system (where the camera
looks down the negative z-axis rather than the positive z-axis) the image plane
is at z = −f .
(a) Show that, in a right-handed coordinate system, a pinhole camera maps

(X,Y, Z) → (−fX/Z,−fY/Z).

(b) Show that the argument in the text yields a camera matrix of the form

C′p =

 1 0 0 0
0 1 0 0
0 0 −1/f 0

 .
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(c) Show that, if one allows the scale in Ti to be negative, one could still use

Cp =

 1 0 0 0
0 1 0 0
0 0 1/f 0


as a camera matrix.
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Interest Points

One strategy for registering an image to another is to find interest points and
register those. Interest points have the following important properties:

� It must be possible to find them reasonably reliably, even when image bright-
ness changes.

� It must be possible to localize the point (ie tell where the point is) by looking
at an image window around the point. For example, a corner can be localized;
but a point along a straight edge can’t, because sliding a window around the
point along the edge leads to a new window that looks like the original.

� The location of the point must be covariant under at least some natural image
transformations. This means that, if the image is transformed, the point will
be found in an appropriate spot in the transformed image. Equivalently, the
points “stick to” objects in the image – if the camera moves, the point stays
on the object where it was, and so moves in the image. So if, for example, if
I2 is obtained by rotating I1, then there should be an interest point at each
location in I2 obtained by rotating the position of an interest point in I1.

� It must be possible to compute a description of the image in the neighborhood
of the point, so the point can be matched. Ideally, corresponding points in
different images will have similar descriptions, and different points will have
different images. To compute this description, we need to be able to construct
a neighborhood of the interest point that is covariant. So, for example, if the
image is zoomed in, the neighborhood in the image gets bigger; and if it is
zoomed out, the neighborhood gets smaller. Using a fixed size neighborhood
when the image zooms won’t work, because the neighborhood in the zoomed
in image will contain patterns that aren’t in the neighborhood in the zoomed
out image.

These properties are summarized in Figure ??. The direct constructions for interest
points are worth reviewing, because they expose how these properties are achieved.
Learned constructions are now competitive with direct constructions, and I describe
one in section 32.2.

12.1 DIRECT INTEREST POINT DETECTORS

12.1.1 Finding Corners

Interest points are usually constructed at corners, because they can be localized
and are quite easy to find with a straightforward detector. At a corner, we expect
two important effects. First, there should be large gradients. Second, in a small
neighborhood, the gradient orientation should swing sharply. We can identify cor-
ners by looking at variations in orientation within a window. In particular, the

142
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FIGURE 12.1: The response of the Harris corner detector visualized for two detail
regions of an image of a box of colored pencils (center). Top left, a detail from the
pencil points; top center, the response of the Harris corner detector, where more
positive values are lighter. The top right shows these overlaid on the original
image. To overlay this map, we added the images, so that areas where the overlap
is notably dark come from places where the Harris statistic is negative (which means
that one eigenvalue of H is large, the other small). Note that the detector is affected
by contrast, so that, for example, the point of the mid-gray pencil at the top of this
figure generates a very strong corner response, but the points of the darker pencils
do not, because they have little contrast with the tray. For the darker pencils, the
strong, contrasty corners occur where the lead of the pencil meets the wood. The
bottom sequence shows corners for a detail of pencil ends. Notice that responses
are quite local, and there are a relatively small number of very strong corners. Steve
Gorton cO Dorling Kindersley, used with permission.

matrix

H =
∑

window

{
(∇I)(∇I)T

}
≈

∑
window

{
(∂Gσ

∂x ∗ ∗I)(∂Gσ

∂x ∗ ∗I) (∂Gσ

∂x ∗ ∗I)(∂Gσ

∂y ∗ ∗I)
(∂Gσ

∂x ∗ ∗I)(∂Gσ

∂y ∗ ∗I) (∂Gσ

∂y ∗ ∗I)(∂Gσ

∂y ∗ ∗I)

}

gives a good idea of the behavior of the orientation in a window. In a window of
constant gray level, both eigenvalues of this matrix are small because all the terms
are small. In an edge window, we expect to see one large eigenvalue associated with
gradients at the edge and one small eigenvalue because few gradients run in other
directions. But in a corner window, both eigenvalues should be large.
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FIGURE 12.2: The response of the Harris corner detector is unaffected by rotation
and translation. The top row shows the response of the detector on a detail of the
image on the far left. The bottom row shows the response of the detector on a
corresponding detail from a rotated version of the image. For each row, we show the
detail window (left); the response of the Harris corner detector, where more positive
values are lighter (center); and the responses overlaid on the image (right). Notice
that responses are quite local, and there are a relatively small number of very strong
corners. To overlay this map, we added the images, so that areas where the overlap
is notably dark come from places where the Harris statistic is negative (which means
that one eigenvalue of H is large, the other small). The arm and hammer in the
top row match those in the bottom row; notice how well the maps of Harris corner
detector responses match, too. cO Dorling Kindersley, used with permission.

The Harris corner detector looks for local maxima of

det(H)− k(
trace(H)

2
)2

where k is some constant [?]; we used 0.5 for Figure 12.1. These local maxima are
then tested against a threshold. This tests whether the product of the eigenvalues
(which is det(H)) is larger than the square of the average (which is (trace(H)/2)2).
Large, locally maximal values of this test function imply the eigenvalues are both
big, which is what we want. Figure 12.1 illustrates corners found with the Harris
detector. This detector is unaffected by translation and rotation (Figure 12.2).

12.1.2 Building Neighborhoods

There are many ways of representing a neighborhood around an interesting cor-
ner. Methods vary depending on what might happen to the neighborhood. In
what follows, we will assume that neighborhoods are only translated, rotated, and
scaled (rather than, say, subjected to an affine or projective transformation), and
so without loss of generality we can assume that the patches are circular. We
must estimate the radius of this circle. There is technical machinery available for
the neighborhoods that result from more complex transformations, but it is more
intricate; see [].
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FIGURE 12.3: The scale of a neighborhood around a corner can be estimated by find-
ing a local extremum, in scale of the response at that point to a smoothed Laplacian
of Gaussian kernel. On the left, a detail of a piece of fencing. In the center, a
corner identified by an arrow (which points to the corner, given by a white spot
surrounded by a black ring). Overlaid on this image is a Laplacian of Gaussian
kernel, in the top right corner; dark values are negative, mid gray is zero, and
light values are positive. Notice that, using the reasoning of Section 8.3, this filter
will give a strong positive response for a dark blob on a light background, and a
strong negative response for a light blob on a dark background, so by searching for
the strongest response at this point as a function of scale, we are looking for the size
of the best-fitting blob. On the right, the response of a Laplacian of Gaussian at
the location of the corner, as a function of the smoothing parameter (which is plot-
ted in pixels). There is one extremal scale, at approximately 2 pixels. This means
that there is one scale at which the image neighborhood looks most like a blob (some
corners have more than one scale). cO Dorling Kindersley, used with permission.

To turn a corner into an image neighborhood, we must estimate the radius of
the circular patch (equivalently, its scale). The radius estimate should get larger
proportionally when the image gets bigger. For example, in a 2x scaled version
of the original image, our method should double its estimate of the patch radius.
This property helps choose a method. We could center a blob of fixed appearance
(say, dark on a light background) on the corner, and then choose the scale to be
the radius of the best fitting blob. An efficient way to do this is to use a Laplacian
of Gaussian filter.

The Laplacian of a function in 2D is defined as

(∇2f)(x, y) =
∂2f

∂x2
+
∂2f

∂y2
.

It is natural to smooth the image before applying a Laplacian. Notice that the
Laplacian is a linear operator (if you’re not sure about this, you should check),
meaning that we could represent taking the Laplacian as convolving the image
with some kernel (which we write as K∇2). Because convolution is associative, we
have that

(K∇2 ∗ ∗(Gσ ∗ ∗I)) = (K∇2 ∗ ∗Gσ) ∗ ∗I = (∇2Gσ) ∗ ∗I.

The reason this is important is that, just as for first derivatives, smoothing an
image and then applying the Laplacian is the same as convolving the image with
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the Laplacian of the kernel used for smoothing. Figure 12.3 shows the resulting
kernel for Gaussian smoothing; notice that this looks like a dark blob on a light
background.

Imagine applying a smoothed Laplacian operator to the image at the center
of the patch. Write I for the image, ∇2

σ for the smoothed Laplacian operator with
smoothing constant σ, ↑k I for the the image with size scaled by k, (xc, yc) for
the coordinates of the patch center, and (xkc, ykc) for the coordinates of the patch
center in the scaled image. Assume that upscaling is perfect, and there are no
effects resulting from the image grid. This is fair because effects will be small for
the scales of interest for us. Then, we have

(∇2
kσ ↑k I)(xc, yc) = (∇2

σI)(xkc, ykc)

(this is most easily demonstrated by reasoning about the image as a continuous
function, the operator as a convolution, and then using the change of variables
formula for integrals). Now choose a radius r for the circular patch centered at
(xc, yc), such that

r(xc, yc) =
argmax

σ
∇2

σI(xc, yc)

(Figure 12.3). If the image is scaled by k, then this value of r will be scaled by
k too, which is the property we wanted. This procedure looks for the scale of the
best approximating blob. Notice that a Gaussian pyramid could be helpful here; we
could apply the same smoothed Laplacian operator to different levels of a pyramid
to get estimates of the scale.

As we have seen, orientation histograms are a natural representation of im-
age patches. However, we cannot represent orientations in image coordinates (for
example, using the angle to the horizontal image axis), because the patch we are
matching to might have been rotated. We need a reference orientation so all angles
can be measured with respect to that reference. A natural reference orientation is
the most common orientation in the patch. We compute a histogram of the gradi-
ent orientations in this patch, and find the largest peak. This peak is the reference
orientation for the patch. If there are two or more peaks of the same magnitude,
we make multiple copies of the patch, one at each peak orientation.

12.1.3 Describing Neighborhoods with Orientations

We know the center, radius, and orientation of a set of an image patch, and must
now represent it. Orientations should provide a good representation. They are
unaffected by changes in image brightness, and different textures tend to have
different orientation fields. The pattern of orientations in different parts of the
patch is likely to be quite distinctive. Our representation should be robust to small
errors in the center, radius, or orientation of the patch, because we are unlikely to
estimate these exactly right.

We must build features that can make it obvious what orientations are present,
and roughly where they are, but are robust to some rearrangement. One approach
is to represent the neighborhood with a histogram of the elements that appear
there. This will tell us what is present, but it confuses too many patterns with
one another. For example, all neighborhoods with vertical stripes will get mixed
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FIGURE 12.4: To construct a SIFT descriptor for a neighborhood, we place a grid
over the rectified neighborhood. Each grid is divided into a subgrid, and a gradient
estimate is computed at the center of each subgrid element. This gradient estimate
is a weighted average of nearby gradients, with weights chosen so that gradients
outside the subgrid cell contribute. The gradient estimates in each subgrid element
are accumulated into an orientation histogram. Each gradient votes for its orien-
tation, with a vote weighted by its magnitude and by its distance to the center of
the neighborhood. The resulting orientation histograms are stacked to give a single
feature vector. This is normalized to have unit norm; then terms in the normalized
feature vector are thresholded, and the vector is normalized again.
TODO: Source, Credit, Permission: SIFTPIC

up, however wide the stripe. The natural approach is to take histograms locally,
within subpatches of the neighborhood. This leads to a very important feature
construction.

A SIFT descriptor (for Scale Invariant Feature Transform) is constructed
out of image gradients, and uses both magnitude and orientation. The descriptor is
normalized to suppress the effects of change in illumination intensity. The descriptor
is a set of histograms of image gradients that are then normalized. These histograms
expose general spatial trends in the image gradients in the patch but suppress detail.
For example, if we estimate the center, scale, or orientation of the patch slightly
wrong, then the rectified patch will shift slightly. As a result, simply recording the
gradient at each point yields a representation that changes between instances of
the patch. A histogram of gradients will be robust to these changes. Rather than
histogramming the gradient at a set of sample points, we histogram local averages
of image gradients; this helps avoid noise.

There is now extensive experimental evidence that image patches that match one
another will have similar SIFT feature representations, and patches that do not will tend
not to.



148 Chapter 12 Interest Points

FIGURE 12.5: SuperPoint uses an encoder with two heads (left), one of which pre-
dicts the locations of interest points and the other of which predicts a descriptor.
The location finder assumes that there is at most one interest point per 8x8 image
tile, and predicts which (if any) location is that point. A basic location finder is
trained using a cross-entropy loss with a dataset of rendered images where interest
point locations are known (right).
TODO: Source, Credit, Permission

12.2 SUPERPOINT: A LEARNED INTEREST POINT DETECTOR

It turns out the list of properties of interest points is crisp enough that one can
learn an interest point finder, and learned interest point finders now are dominant.
SuperPoint uses a network architecture that is adapted to fast computation of points
and descriptors, with a mixture of learned and non-learned components. This is
trained in a series of steps. The first builds an elementary interest point finder.
The second uses a clever trick with image transformations to significantly improve
the interest point finder. The third refines point positions and descriptors with a
matching loss.

12.2.1 Network Architecture

First, pass the image through an encoder, which encodes the image with series
of convolutional layers, non-linear layers, and three 2 × 2 downsampling layers, so
that it takes an H ×W image and produces an H/8 ×W/8 × 256 feature block.
This block goes to two heads. One finds interest points, the other describes them.
The interest point finder is trained discriminatively, by dividing the image into a
grid of H/8 ×W/8 tiles (each tile is 8 × 8 pixels). Now assume there is at most
one interest point in any tile. A 65 dimensional one-hot vector encodes where the
interest point is if there is one (there are 64 locations for the point, and the last
component is one if there isn’t a point). The interest point finder maps the original
block to an H/8×W/8× 65 block, which is passed through a softmax. Reshaping
this with a fixed reshaping procedure gives the predicted location of the interest
point. The interest point describer maps the original block to an H/8×W/8× 256
block. This is upsampled using a bicubic interpolation procedure (Section 32.2),
and the predicted vector at each location is normalized to a unit vector.

TODO: Brief description of bicubic interpolation somewhere



Section 12.2 SuperPoint: A Learned Interest Point Detector 149

FIGURE 12.6: The basic location finder of Figure 9 can be significantly improved by
exploiting the constraint that interest point predictions should be covariant. The
response of the finder to a transformed image, which is a heatmap, should be a
transformed version of the response to the original image. Equivalently, apply the
finder to a transformed image, and the inverse of the transformation to the resulting
heatmap – that heatmap should be the same as the one the detector produces from
the original image. This means that a composite finder can be built out of the the
basic location finder by predicting heatmaps from images transformed with random
(but carefully chosen) homographies, transforming the heatmaps back to the original
image frame, then averaging them. Training this composite finder improves the
original basic finder, without requiring real data.
TODO: Source, Credit, Permission

12.2.2 Finding Interest Points

Generating a large number of relatively simple images with known interest point
locations is easy. Use a simple computer graphics program to render collections of
polygons; each vertex is an interest point. If any image has more than one interest
points in one tile, discard all but one at random. We now have a labelled dataset of
images (the labels are interest point locations), and a basic detector can be trained
with this.

An interest point detector should be covariant under homographies – the
interest points for a transformed image should be obtained by transforming the
interest points of the original image. This likely won’t be a property of the basic
interest point detector, but it can be self-supervised very strongly using this idea.
Write f(I, θ) for the output of the interest point detector with parameters θ applied
to the image I (this is a heat map – at every pixel location, there is a value giving
the probability of an interest point at that location), and H(I) for the result of
applying a homography to I. The output of the detector can be thought of as an
image, so a homography can be applied to it. Covariance means that the heat map
H−1(f(H(I), θ)) should be the same as f(I, θ), at least for reasonable choices of
H. For each of the training images above, choose a collection of N homographies
at random (taking care with cropping, etc. – details in []), and train the detector
which produces the heat map

1

N

∑
i

H−1
i (f(H(I), θ)).
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Training like this has quite strong effects on θ because the detector receives gradient
if (say) an interest point is detected in the wrong place in a (say) rotated version
of the original image. It is also an extremely efficient use of data.

12.2.3 Refining Detection and Learning to Describe

The refined detector can now be trained to improve interest point detections and to
produce descriptions. Take a synthetic image with interest points known and apply
a homography. The interest points in the result should be close to those predicted by
applying the homography to the interest points in the original image. This property
can be imposed with a cross-entropy loss between Hf(I, θ) and f(H(I), θ).

Corresponding points in I and H(I) should have similar descriptors and pairs
of points that don’t correspond should have different descriptors. It is easier to
impose this on tiles than points. For every pair of tiles, where one comes from
I and the other from H(I), say the pair corresponds if there is some interest
point in the first that maps to a point in the second. Otherwise, the pair does
not correspond. Recall that the descriptors are computed on a coarse grid where
each location corresponds to a tile (and are then upsampled). Write d(t) for the
descriptor of a tile, and so on. The matching loss is a hinge loss that ensures that, if
tiles t and t′ correspond, then dT (t)d(t′) is positive and greater than some margin,
and if they do not, it is negative and less than some margin.

Resources: Interest Points A pretrained version of Su-
perPoint can be found at https: // github. com/ magicleap/

SuperPointPretrainedNetwork . There are implementations
for TensorFlow () and PyTorch (). HPatches is an evaluation
dataset (at https: // github. com/ hpatches/ hpatches-dataset )
which comes with evaluation protocols and benchmarks (at https:

// github. com/ hpatches/ hpatches-benchmark ). OpenCV provides an
implementation of the Harris corner detector, and procedures to compute
SIFT descriptors.
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FIGURE 12.7: SuperPoint produces many good interest point locations together with
descriptors that are distinctive. Left shows SuperPoint detections and matches for
four image pairs, and right for a SIFT based matcher. The images are trans-
formed with a known homography (red dots are detected interest points; blue dots
are detected interest points that are outside the field of view of the corresponding
image, and so could not have a match; green lines indicate matches). Generally,
SuperPoint produces large numbers of interest points that match well. The original
SuperPoint is trained with relatively small image rotations, because big rotations
are less common in practice, and so handles large image rotations poorly compared
to a SIFT based matcher (fourth row).
TODO: Source, Credit, Permission
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Registration

Computing a transformation that aligns an image or a depth map or a set
of images with another such is generally known as registration. One approach to
registration is to abstract the image (etc.) as a set of points, yielding the following
general problem. Assume we know a set of N reference points in d dimensions. We
observe M points in d dimensions, and these observed M points are obtained by
transforming the reference points with some transformation and adding noise, then
dropping some points and including some pure noise points. The two sets of points
are often referred to as point clouds. We want to determine the transformation
from the two point clouds.

This problem occurs in a wide range of practical applications. As we shall
see, calibrating a camera involves solving a version of this problem (Section 32.2).
Determining where you are in a known map very often involves solving a version
of this problem. Imagine, for example, a camera looking directly downwards from
an aircraft flying at fixed height. The image in the camera translates and rotates
as the aircraft moves. If we can compute the transformation from image i to image
i+ 1, we can tell how the aircraft has moved. Another useful case occurs when we
have a depth map of a known object and want to compute the pose of the object
(its position and orientation in the frame of the depth sensor). We could do so
by having reference points on the object, finding interest points in the depth map,
then solving for a transformation that maps reference points to depth points.

How one approaches this class of problem depends on three important factors.

� Correspondence: if it is known which observation corresponds to which
reference point, the problem is relatively straightforward to solve (unless
there are unusual noise effects). This case is uncommon, but does occur.
In robotics, beacons are objects that identify themselves (perhaps by wearing
a barcode; by transmitting some code; by a characteristic pattern) and can be
localized. They are useful, precisely because they yield correspondence and
so simplify computing the transformation. If correspondence is not known,
which is the usual case, computing the transformation becomes rather harder.

� Transformation: there are closed form solutions for known correspondence
and Euclidean or affine transformations. Homographies (and higher dimen-
sional analogs) do not admit closed form transformations.

� Noise: computing a transformation can become very hard if many of the
observations do not come from reference points, if many of the reference
points are dropped, or if some observations are subject to very large noise
effects.

152
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13.1 REGISTRATION WITH KNOWN CORRESPONDENCE AND GAUSSIAN NOISE

13.1.1 Affine Transformations and Gaussian Noise

In the simplest case, the correspondence is known – perhaps the reference points
are beacons – and the only noise is Gaussian (so N = M). Write xi for the i’th
observation and yi for the i’th reference point. We will assume the noise is isotropic,
which is by far the most usual case. Once you have followed this derivation, you
will find it easy to incorporate a known covariance matrix. We have

xi = Myi + t+ ξi

where ξi is the value of a normal random variable with mean 0 and covariance matrix
Σ = σ2I. A natural procedure to estimate M and t is to maximize the likelihood
of the noise. Because it will be useful later, we assume that there is a weight wi for
each pair, so the negative log-likelihood we must minimize is proportional to∑

i

wi (xi −Myi − t)
T
(xi −Myi − t)

(the constant of proportionality is σ2, which doesn’t affect the optimization prob-
lem). The gradient of this cost with respect to t is

−2
∑
i

wi (xi −Myi − t)

which vanishes at the solution. In turn, if
∑

i wixi =
∑

i wiMyi, t = 0. One
straightforward way to achieve this is to ensure that both the observations and the
reference points have a center of gravity at the origins. Write

cx =

∑
i wixi∑
i wi

for the center of gravity of the observations (etc.) Now form

ui = xi − cx and vi = yi − cy

and if we use ui as observations and vi as reference points, then the translation will
be zero. In turn, the translation from the original reference points to the original
observations is cx − cy.

We obtain M by minimizing∑
i

wi (ui −Mvi)
T
(ui −Mvi) .

Now write W = diag ([w1, . . . , wN ]), U = [u1, . . . ,uN ] (and so on). You should
check that the objective can be rewritten as

Tr
(
W(U −MV)T (U −MV)

)
.

Now the trace is linear; UTU is constant; and we can rotate matrices through the
trace (Section 32.2). This means the cost is equivalent to

Tr
(
−2MVUT +MTMVVT

)
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which will be minimized when

MVWVT = VWUT

(which you should check). Many readers will recognize a least squares solution here.
The trace isn’t necessary here, but it’s helpful to see an example using the trace,
because it will be important in the next case.

13.1.2 Euclidean Motion and Gaussian Noise

One encounters affine transformations relatively seldom in practice, though they
do occur. Much more interesting is the case where the transformation is Euclidean.
The least squares solution above isn’t good enough, because the M obtained that
way won’t be a rotation matrix. But we can obtain a least squares solution with a
rotation matrix, using a neat trick. We adopt the notation of the previous section,
and change coordinates from xi to ui as above to remove the need to estimate
translation.

We must choose R to minimize

∑
i

wi(ui −Rvi)
T (ui −Rvi).

This can be done in closed form (a fact you should memorize). Equivalently, we
must minimize

∑
i

wi(ui −Rvi)
T (ui −Rvi) = Tr

(
W(U −RV)(U −RV)T

)
= Tr

(
−2UWVTRT

)
+K

(because RTR = I)
= −2Tr

(
RUWVT

)
Now we compute an SVD of UVT to obtain UWVT = ASBT (where A, B are
orthonormal, and S is diagonal – Section 32.2 if you’re not sure). Now BTRA is
orthonormal, and we must maximize Tr

(
BTRAS

)
, meaning BTRA = I (check this

if you’re not certain), and so R = BAT .
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Procedure: 13.1 Weighted Least Squares for Euclidean Transformations

We have N reference points xi whose location is measured in the agent’s
coordinate system. Each corresponds to a point in the world coordinate
system with known coordinates yi, and the change of coordinates is a
Euclidean transformation (rotation R, translation t). For each (xi,yi)
pair, we have a weight wi. We wish to minimize∑

i

wi(xi −Ryi − t)T (xi −Ryi − t)

Write

cx =

∑
i wixi∑
i wi

cy =

∑
i wiyi∑
i wi

ui = xi − cx

vi = yi − cy

Then the least squares estimate t̂ of t is

t̂ = cx − cy

Write U = [u1,u2, . . . ,uN ] (etc); W = diag(w1, . . . , wN ); and
SVD(USV) = AΣBT . The least squares estimate R̂ is

R̂ = BAT

13.1.3 Homographies and Gaussian Noise

We now work with d = 2, and allow the transformation to be a homography.
Solving for a homography requires solving an optimization problem, but estimating
a homography from data is useful, and relatively easy to do. Furthermore, we can’t
recover the translation component from centers of gravity (exercises TODO:
homography exercise ). In all cases of interest, the points xi and yi will be
supplied in affine coordinates, rather than homogeneous coordinates, and we convert
to homogeneous coordinates by attaching a 1, as before. Write mij for the i, j’th
element of matrix M. In affine coordinates, a homography M will map yi =
(yi,x, yi,y) to xi = (xi,x, xi,y) where

xi,x =
m11yi,x +m12yi,y +m13

m31xi,x +m32xi,y +m33
and xi,y =

m21yi,x +m22yi,y +m23

m31xi,x +m32xi,y +m33

Write M(y) for the result of applying the homography to y, in affine coordinates.
In most cases of interest, the coordinates of the points are not measured precisely, so
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we observe xi = M(yi) + ξi, where ξi is some noise vector drawn from an isotropic
normal distribution with mean 0 and covariance Σ.

The error will be in affine coordinates – for example, in the image plane –
which justifies working in affine rather than homogeneous coordinates. Again, we
assume that the noise is isotropic, and so that Σ = σ2I. The homography can
be estimated by minimizing the negative log-likelihood of the noise, so we must
minimize

∑
i

wiξ
T
i ξi

where

ξi =

[
xi,x − m11yi,x+m12yi,y+m13

m31yi,x+m32yi,y+m33

xi,y − m21yi,x+m22yi,y+m23

m31yi,x+m32yi,y+m33

]

using standard methods (Levenberg-Marquardt is favored; Chapter 32.2). This
approach is sometimes known as maximum likelihood . Experience teaches that
this optimization is not well behaved without a strong start point.

There is an easy construction for a good start point. Notice that the equations
for the homography mean that

xi,x(m31yi,x +m32yi,y +m33)−m11yi,x +m12yi,y +m13 = 0

and

xi,y(m31yi,x +m32yi,y +m33)−m21yi,x +m22yi,y +m23 = 0

so each corresponding pair of points xi, yi yields two homogeneous linear equa-
tions in the coefficients of the homography. They are homogeneous because scaling
M doesn’t change what it does to points (check this if you’re uncertain). If we
obtain sufficient points, we can solve the resulting system of homogeneous linear
equations. Four point correspondences yields an unambiguous solution; more than
four – which is better – can be dealt with by least squares (exercises TODO:
fourpoint homography ). The resulting estimate of M has a good reputation as a
start point for a full optimization.
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Procedure: 13.2 Estimating a Homography from Data

Given N known source points yi = (yi,x, yi,y) in affine coordinates and
N corresponding target points xi with measured locations (xi,x, xi,y)
and where measurement noise has zero mean and covariance Σ = σ2I,
estimate the homography M with i, j’th element mij by minimizing:∑

i

ξTi ξi

where

ξ =

[
xi,x − m11yi,x+m12yi,y+m13

m31yi,x+m32yi,y+m33

xi,y − m21yi,x+m22yi,y+m23

m31yi,x+m32yi,y+m33

]
Obtain a start point by as a least-squares solution to the set of homo-
geneous linear equations

xi,x(m31yi,x +m32yi,y +m33)−m11yi,x +m12yi,y +m13 = 0

and

xi,y(m31yi,x +m32yi,y +m33)−m21yi,x +m22yi,y +m23 = 0.

13.1.4 Projective Transformations and Gaussian Noise

A projective transformation is the analogue of a homography for higher dimensions.
In affine coordinates, a projective transformation M will map yi = (yi,1, . . . , yi,d)
to xi = (xi,1, . . . , xi,d) where

xi,1 =
m11yi,1 + . . .+m1dyi,d +m1(d+1)

m(d+1)1yi,1 + . . .+m(d+1)dyi,d +m(d+1)(d+1)

and

xi,d =
md1yi,1 + . . .+mddyi,d +md(d+1)

m(d+1)1yi,1 + . . .+m(d+1)dyi,d +m(d+1)(d+1)

Estimating this transformation follows the recipe for a homography, but there are
now more parameters. I have put the result in a box, below.
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Procedure: 13.3 Estimating a Projective Transformation from Data

Given N known source points yi = (yi,1, . . . , yi,d) in affine coordi-
nates and N corresponding target points xi with measured locations
(xi,1, . . . , xi,d) and where measurement noise has zero mean and is
isotropic, the homography M with i, j’th element mij by minimiz-
ing: ∑

i

ξTi Σ
−1ξi

where

ξi =

 xi,1 −
m11yi,1+...+m1dyi,d+m1(d+1)

m(d+1)1xi,1+...+m(d+1)dxi,d+m(d+1)(d+1)

. . .

xi,d −
md1yi,1+...+mddyi,d+md(d+1)

m(d+1)1xi,1+...+m(d+1)dxi,d+m(d+1)(d+1)


Obtain a start point by as a least squares solution to the set of homo-
geneous linear equations

0 = xi,1(m(d+1)1yi,1 + . . .+m(d+1)dyi,d +m(d+1)(d+1))−
m11yi,1 + . . .+m1dyi,d +m1(d+1)

. . .

0 = xi,d(m(d+1)1yi,1 + . . .+m(d+1)dyi,d +m(d+1)(d+1))−
m(d+1)1xi,1 + . . .+m(d+1)dxi,d +m(d+1)(d+1)

13.2 UNKNOWN CORRESPONDENCE

13.2.1 Unknown Correspondence and ICP

Now assume correspondences are not known, and some reference (resp. observed)
points may not even have corresponding observed (resp. reference) points. We
have N reference points yi and M observed points xi. For the moment, we will
assume that all weights wi are 1. A straightforward, and very effective, recipe
for registering the points is iterative closest points or ICP. The key insight here is
that, if the transformation is very close to the identity, then the yc(i) that corre-
sponds to xi should be the closest reference point to xi. This finding the closest
reference point to each measurement and computing the transformation using that
correspondence. But the transformation might not be close to the identity, and so
the correspondences might change. We could repeat the process until they stop
changing.

Formally, start with a transformation estimate T1, a set of m
(1)
i = T (1)(yi)

and then repeat two steps:

� Estimate correspondences using the transformation estimate. Then, for

each xi, we find the closest m(n) (say m
(n)
c ); then xi corresponds to m

(n)
c(i).
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� Estimate a transformation T (n+1) using the corresponding pairs. This

maps each m
(n)
c(i) to its corresponding xi.

These steps are repeated until convergence, which can be tested by checking if
the correspondences don’t change or if T (n+1) is very similar to the identity. The
require transformation is then

T (n+1) ◦ T (n) ◦ . . . T (1)

There are a number of ways in which this very useful and very general recipe
can be adapted. First, if there is any description of the points available, it can be
used to cut down on correspondences (so, for example, we match only red points
to red points, green points to green points, and so on). Second, finding an exact
nearest neighbor in a large point cloud is hard and slow, and we might need to
subsample the point clouds or pass to approximate nearest neighbors (more details
below). Third, points that are very far from the nearest neighbor might cause
problems, and we might omit them (again, more details below).

13.2.2 ICP and Sampling

One particularly useful application of ICP occurs when one wishes to register a mesh
to a set of points. For example, you might want to register a cloud of measured
points to a mesh model of an object built using a CAD modelling system. A natural
procedure is to sample points on the mesh model to get a point cloud, then treat the
problem using ICP. Another useful application is when one has two mesh models,
where the triangulation of the meshes might not be the same. In this case, you
could sample both meshes to end up with two point clouds, then register the point
clouds. How one samples the mesh or meshes is important.

The ICP recipe becomes difficult to apply to point clouds when M or N are
very large. One obvious strategy to control this problem applies when something
else – say, a color measurement – is known about each point. For example, we
might get such data by using a range camera aligned with a conventional camera,
so that every point in the depth map comes with a color. When extra information
is available, one searches only compatible pairs for correspondences.

Large point clouds are fairly common in autonomous vehicle applications. For
example, the measurements might be LIDAR measurements of some geometry. It
is quite usual now to represent that geometry with another, perhaps enormous,
point cloud, which you could think of as a map. Registration would then tell the
vehicle where it was in the map. Notice that in this application, there is unlikely
to be a measurement that exactly corresponds to each reference point. Instead,
when the registration is correct, every xi is very close to some transformed yi, so
a least squares estimate is entirely justified. In cases like this, one can subsample
the reference point cloud, the measurement point cloud, or both.

The sampling procedure depends on the application, and can have significant
effects. For example, imagine we are working with LIDAR on a vehicle which is
currently in an open space next to a wall (Figure ??). There will be many returns
from the wall, and likely few from the open space. Uniformly sampled measurements
would still have many returns from the wall, and few from the open space. This
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Sample

Register

FIGURE 13.1: In many problems, one has to register a mesh – which might come
from a CAD model – to a set of measurements – which might come from LIDAR
or from a range camera. Top left: shows a view of a very simple 1D mesh, in
2D. Registering this mesh to a set of measurements bottom is a straightforward
application of ICP. One samples the mesh top left, then registers this set of points
to the measurements.

FIGURE 13.2: On the left a map of a simple arena, represented as a point cloud.
Such a map could be obtained by registering LIDAR measurements to one another.
A LIDAR or depth sensor produces measurements in the sensor’s coordinate sys-
tem, and registering these measurements to the map will reveal where the sensor is.
However, the sensor may measure points more densely at some positions than at
others. Left shows such a measurement; note the heavy sampling of points near the
corner and the light sampling on the edges. This can bias the registration, because
the large number of points near the corner mean that the registration error consists
mostly of errors from these points. It can also create significant computational prob-
lems, because finding the closest points will become slower as the number of points
increases. A stratified sample of the measurements (right) is obtained by dividing
the plane (in this case) into cells of equal area (usually a grid), then resampling the
measurements at random so there are no more than a fixed number of samples in
each box. Such a sample can both reduce bias and improve the speed of registration.
TODO: Source, Credit, Permission
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FIGURE 13.3: The sample of points used in registration can be biased in useful ways.
For example, (a) shows a cross section of a flat surface with a small groove (above)
which needs to be registered to a similar surface (below). If point samples are drawn
on the surface at random, then there will be few samples in the groove; the dashed
lines indicate correspondences. In turn, the registration will be poor, because the
surfaces can slide on one another. In (b), the samples have been drawn so that
normal directions are evenly represented in the samples. Notice this means more
samples concentrated in the groove, and fewer on the flat part. As a result, the
surface is less free to slide, and the registration improves.
TODO: what do c and d show? TODO: Source, Credit, Permission

could bias the estimate of the vehicle’s pose. A better alternative would be to
build a stratified sample by breaking the space around the vehicle into blocks of
fixed size, then choosing uniformly at random a fixed number of samples in each
block. In this scheme, the wall would be undersampled, and the open space would
be oversampled, somewhat resolving the bias.

Another stratified sampling strategy is to ensure that surface normal direc-
tions are evenly represented in the samples. Make an estimate of a surface normal
at each point (for example, by fitting a plane to the point and some of its nearest
neighbors). Now break the unit sphere, which encodes the surface normals, into
even cells, and sample the points so that each cell has the same number of samples.
This approach is particularly useful when we are trying to register flat surfaces with
small relief details on them (Figure ??).

13.2.3 ICP: Finding Nearest Neighbors

Finding the exact nearest neighbor of a query point in a large collection of reference
points is more difficult than most people realize (one can beat linear search, but
by only a very small factor []). However, finding a point that has high probability
of being almost as close as the nearest neighbor (an approximate nearest neighbor)
can be done rather fast using a variety of approximation schemes []. It is usual to
substitute an approximate nearest neighbor, found using a k-d tree (eg []).
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FIGURE 13.4: Significant registration errors can be caused by just one point that is
in the wrong place. On the left, a set of empty points must be registered to a set of
filled points. Notice that one empty point is badly out of place. An ideal registration
would ignore this, and put the approximate line of empty points on the line of filled
points. On the right, the registration that actually results. The square of a large
number is very large, meaning the minimum of the squared error isn’t where you
might think; reducing the large offset entirely justifies a set of medium sized errors.
Points that lie significantly far from their “natural” positions are often known as
outliers.

Resources: ICP TODO: ICP Resources

13.3 NOISE THAT ISN’T GAUSSIAN: ROBUSTNESS AND IRLS

In our examples, if we assume the noise is normal and isotropic, the squared error
is reasonably described as negative log-likelihood. But in some cases, even when
the measurements and the reference points are properly aligned, some measurement
points may lie quite far from the closest reference point. One reason is pure error.
Effects like scattering from rain or translucency can cause LIDAR or depth sensors
to report measurements that are quite different from the actual geometry. Another
is overhangs, which occur when either the reference or measured set contains points
representing geometry that isn’t in the other set. In this case, some points from
one set should be far away from the closest point in the other set. Each of these
effects (Figure 32.2) means that modelling noise as Gaussian may not be justified.

Large distances between some point pairs could have a significant effect on
the estimate of the transformation. The square of a large number is very large
indeed, so that reducing a large distance somewhat can justify incurring small to
medium error on many other pairs (Figure ??). A simple procedure to manage this
effect is to ignore corresponding pairs if the distance between them is too large.
One estimates the transformation using only pairs where distances are small. If
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points were omitted in one step of the iteration, they may return in another. This
strategy can be helpful, but there is a danger that too many pairs are omitted
and the iteration does not converge. Corresponding pairs with large distances
between them are likely outliers – measurements or data that will not conform to a
model, but can have significant impact on estimating the model. Well established
procedures for handling outliers are easily adapted to registration problems.

13.3.1 IRLS: Weighting Down Outliers

Rather than just ignoring big distances, one might weight down correspondences
that seem implausible. Doing so requires some way to estimate an appropriate
set of weights. A large weight for errors at points that are “trustworthy” and a
low weight for errors at “suspicious” points should result in a registration that
is robust to outliers. We can obtain such weights using a robust loss, which will
reduce the cost of large errors. This can be seen as modifying the probability model.
Gaussian noise tends to produce few large values (which so have very large negative
log-likelihood), and we want a model that has higher probability of large errors
(equivalently, penalizes them less severely than a normal model would). Write θ for
the parameters of the transformation, Tθ for the transformation, and ri(xi,yc(i), θ)
for the residual error of the model on the ith measurement and its corresponding
reference point. For us, ri will always be l2normxi − Tθ(yc(i)). So rather than
minimizing ∑

i

(ri(xi,yc(i), θ))
2

as a function of θ, we will minimize an expression of the form∑
i

ρ(ri(xi,yc(i), θ);σ),

for some appropriately chosen function ρ. Clearly, our negative log-likelihood is
one such estimator (use ρ(u;σ) = u2). The trick is to make ρ(u;σ) look like u2 for
smaller values of u, but ensure that it grows more slowly than u2 for larger values
of u.

The Huber loss uses

ρ(u;σ) =

{
u2

2 |u | < σ

σ|u | − σ2

2

which is the same as u2 for −σ ≤ u ≤ σ, switches to |u | for larger (or smaller) σ,
and has continuous derivative at the switch. The Huber loss is convex (meaning
that there will be a unique minimum for our models) and differentiable, but is not
smooth. The choice of the parameter σ (which is known as scale) has an effect on
the estimate. You should interpret this parameter as the distance that a point can
lie from the fitted function while still being seen as an inlier (anything that isn’t
even partially an outlier).

The Pseudo Huber loss uses

ρ(u;σ) = σ2

(√
1 +

(u
σ

)
− 1

)
.



164 Chapter 13 Registration

FIGURE 13.5:

TODO: Figure showing a bunch of robust loss functions TODO: Source, Credit,
Permission

A little fiddling with Taylor series reveals this is approximately u2 for |u |/σ small,
and linear for |u |/σ big. This has the advantage of being differentiable.

The **** TODO: what is this loss called uses

ρ(u;σ) =
σ2u2

u2 + σ2

which is approximately u2 for |u | much smaller than σ, and close to σ2 for |u |
much larger than σ.

Each of these losses increases monotonically in |u | (the absolute value is im-
portant here!), so it is always better to reduce the residual. For the Huber loss and
the Pseudo-Huber loss, the penalty grows with |u |, but grows more slowly with
big |u | than with small |u |. This implies that the underlying probability model
will produce very large distances less often than large distances, but more often
than a Gaussian model would. For the **** loss, the penalty eventually increases
extremely slowly with increasing |u |, implying the underlying probability model is
willing to produce arbitrarily large distances on occasion, and that the probability
of large distances declines very slowly.

Our minimization criterion is

∇θ

(∑
i

ρ(r(xi,yi, θ);σ)

)
=

∑
i

[
∂ρ

∂u

]
∇θr(xi,yi, θ)

= 0.

Here the derivative ∂ρ
∂u is evaluated at r(xi,yi, θ, so it is a function of θ. Now notice

that∑
i

[
∂ρ

∂u

]
∇θr(xi,yi, θ) =

∑
i

[(
∂ρ
∂u

r(xi,yi, θ)

)]
r(xi,yi, θ)∇θr(xi,yi, θ)

=
∑
i

[(
∂ρ
∂u

r(xi,yi, θ)

)]
∇θ [r(xi,yi, θ)]

2

= 0.

Now [r(xi,yi, θ)]
2
is the squared error. If we happened to know the true minimum

θ̂ and wrote

wi =

(
∂ρ
∂u

r(xi,yi, θ)

)
(evaluated at that minimum), then∑

i

wi∇θ [r(xi,yi, θ)]
2
= 0
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at θ = θ̂. We do not know wi, but if we did, we already have a recipe to solve this
problem for a variety of different transformations (Sections 32.2, 32.2 and 32.2). A
natural strategy to adopt is to start with some transformation estimate and unit
weights, then repeat:

� Estimate correspondences using the estimated transformation. Because
all the robust losses are monotonic in |u |, finding the closest reference point
to each measurement will do.

� Re-estimate weights using the new correspondences and the transforma-
tion.

� Re-estimate transformation using the new correspondences and the new
weights, and the closed form algorithms from Sections 32.2, 32.2 and 32.2.

This procedure is known as iteratively reweighted least squares

Procedure: 13.4 Estimating a Transformation from Data with a Robust
Loss: Initialization

Given N known reference points yi = (yi,1, . . . , yi,d) in affine co-
ordinates and M measurements xi = (xi,1, . . . , xi,d), initialize by:
TODO: What is best? likely translation from cogs, affine / euclidean
from second moments, but how do you compute second moments ro-
bustly?
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Procedure: 13.5 Estimating a Transformation from Data with a Robust
Loss: Iteration

Start with N known reference points yi = (yi,1, . . . , yi,d) in affine coor-
dinates andM measurements xi = (xi,1, . . . , xi,d), and a transformation

estimate Tθ(1) with parameters θ1. Form m
(1)
i = Tθ(1)(yi), then iterate:

� for each xi, find m
(n+1)
c(i) that is closest;

� for each pair (xi,m
(n+1)
c(i) ), form ui = ||xi −m

(n+1)
c(i) ||2 and

wi =

(
∂ρ
∂u

ui

)
;

� estimate Tθ(n+1) using the set of pairs (xi, mc(i)) and the weights
wi;

� form mi = Tθ(n+1)(mi).

Test for convergence by testing either that the correspondences did not
change in a round, or by checking that Tθ(n+1) is close to the identity.
The required transformation is Tθ(n+1) ◦ Tθ(n) ◦ . . . ◦ Tθ(1) .



C H A P T E R 14

A Camera Above a Ground Plane

Imagine a camera is moving above a ground plane. Using registration tools
together with camera matrices makes means we can calibrate the camera’s intrinsics,
reason about the position and orientation of the camera, and reconstruct the pattern
on the ground plane. In turn, this reconstruction can yield estimates of what objects
are moving and whether there are objects that have relief (“stick out” from the
ground).

14.1 PIPH: PERPENDICULAR IMAGE PLANE AND FIXED HEIGHT

Assume the camera moves at fixed height above a ground plane, and the ground
plane is at right angles to the image plane (call this configuration PIPH for short).
This is a good model for a camera on (say) an autonomous car or a taxiing aircraft.
Figure 14.1 shows the notation, etc. Here the focal length is f , the ground plane
is the plane y = −h in the camera coordinate system (remember, z is depth into
the scene). Remarkably, we can calibrate the camera with elementary geometric
reasoning in a configuration like this, at least for simple cameras.

X

Y

Z

z=f

camera center

focal point

image plane

Ground plane

(U, -h, V)

(fU/V, -fh/V, f)

FIGURE 14.1: A perspective camera with its image plane at right angles to a ground
plane (y = −h), imaging a point on the ground plane.

167
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14.1.1 PIPH Geometry

From Figure 14.1, in the camera coordinate system, the point (u,−h, v) on the
ground plane in intersects the image plane at (fu/v,−fh/v, f). These are affine
coordinates for a point in 3D. Homogeneous coordinates for the point on the image
plane are (u/v,−h/v, 1) or equivalently (u,−h, v). Similarly, homogeneous coordi-
nates for the point on the ground plane are (u, v, 1).

To get the transformation from the ground plane in world coordinates to the
image in image coordinates, we must account for extrinsics and intrinsics. The
homography from the ground plane to the image will be

Tg→i = Tint

 1 0 0
0 0 −h
0 1 0

 Text =

 as k cx
0 s cy
0 0 1

 1 0 0
0 0 −h
0 1 0

 Text.

Here Tint comes from the camera intrinsics and Text (which represents extrinsics)
is a rotation and translation in the ground plane. This transformation is present
because the coordinate system on the ground plane may not be directly below the
focal point and aligned with the camera.

You should check that, in PIPH geometry, the horizon of the ground plane is
horizontal in the image and passes through cy (Figure 14.1 should help), so we can
determine cy from an image. Write (ix, iy) for the affine coordinates of a point in
the image. If we ensure that the horizon is the line iy = 0 (which we can do by a
simple subtraction), then cy = 0. In these coordinates, we have

Tg→i =

 as k cx
0 s 0
0 0 1

 1 0 0
0 0 −h
0 1 0

 Text =

 as cx −hk
0 0 −sh
0 1 0

 Text.

This is not an affine transformation. However

Cg→iTg→i =

 1 0 0
0 0 1
0 −1 0

 Tg→i

=

 as cx −hk
0 1 0
0 0 sh

 Text

≡

 a
h

cx
sh −k

s
0 1

sh 0
0 0 1

 Text

(recall ≡ means that they are the same homography; one is a scaling of the other,
which doesn’t matter in homogeneous coordinates). This means Cg→iTg→i is an

affine transformation. This is a powerful fact. If we know some points on the ground
plane and corresponding points in the image, we can recover Tg→i, premultiply by

Cg→i (which we know), then read off some camera parameters. Remarkably, we

can also estimate camera ground plane motion and the pattern on the ground
plane without calibrating the camera. These estimates are up to scale – we cannot
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get the magnitude of the translation or the size of objects on the ground plane
without other information.

14.1.2 PIPH Calibration

Now assume we have a set of points pi on the ground plane, and we can find the
corresponding points qi on the image plane. Fit Tg→i to this information using

procedure 13.2, to obtain F . Now

Cg→iF ≡

 a
h

cx
sh −k

s
0 1

sh 0
0 0 1

 Text

=

 a
h

cx
sh −k

s
0 1

sh 0
0 0 1

[ R t
0T 1

]

=

[
M u
0T 1

]
where Text is a Euclidean transformation on the plane. We cannot recover k

s from u
because we don’t know t, the translation from the ground plane coordinate system
to the camera coordinate system. However, for many cameras k = 0, and we assume
this is the case for our camera. We have

M =

[
a
h − cx

sh
0 1

sh

]
R

and we can factor M using an RQ factorization (see procedure 30.1). Doing so
yields h

a , cx and sh.
Notice there is a weakness in this procedure. The homography Tg→i has a

known, special parametric form and we did not impose this form when we estimated
the homography. The correct way to resolve this is to minimize the error between
Tg→i(pi) and qi for a homography of the correct form, using our estimates to

provide a start point. This is an example of general recipe for calibration that we
shall see again – first, make an estimate of parameters to provide a start point,
then polish that estimate using an optimization problem

Procedure: 14.1 PIPH Calibration: Overview

Given a set of points pi on the ground plane, corresponding points qi on
the image plane, and a camera known to be in PIPH geometry, estimate
camera intrinsics and extrinsics by:

� Assuming k = 0;

� Obtaining a start point for h
a , cx, sh and extrinsic parameters as

below;

� Polishing the start point by optimization.
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Procedure: 14.2 PIPH Calibration: Initialization

Initial: Fit Tg→i to the points using procedure 13.2, to obtain F . Now
compute

Cg→iF =

[
M u
0 1

]
.

Intrinsics start point: Use an RQ factorization on M to obtain
M = RQ; R is upper triangular, and yields h

a , cx, sh. Extrinsics
start point: We have

Text =
[

Q u
0 1

]

Procedure: 14.3 PIPH Calibration: Optimization

Solve the optimization problem∑
i

(qi,x − wi,x)
2 + (qi,y − wi,y)

2

where

wi,x =
h11pi,x + h12pi,y + h13
h31pi,x + h32pi,y + h33

wi,y =
h21pi,x + h22pi,y + h23
h31pi,x + h32pi,y + h33

H =

 a
h

cx
sh 0

0 1
sh 0

0 0 1

[ Q u
0T 1

]

Q =

[
cos θ − sin θ
sin θ cos θ

]
and the parameters are a

h , cx, sh, θ and u using the start point of
procedure 14.2.

14.1.3 Using PIPH to Estimate Motion

Imagine the camera captures an image In at frame n, moves rigidly, then captures
In+1. The camera image plane stays perpendicular to the ground plane, and the
height of the focal point doesn’t change. We can recover the camera motion and
some camera parameters in this case. We know that Cg→iTg→in and Cg→iTg→in+1

are both affine. Notice that

Tin→in+1
= Tg→in+1

T −1

g→in
.



Section 14.1 PIPH: Perpendicular Image Plane and Fixed Height 171

We can measure Tin→in+1
by finding interest points in the two images, then using

Procedure 13.2. Write F for the measured transformation. We must have that

Cg→iFC−1

g→i = Cg→iTg→in+1
T −1

g→in
C−1

g→i =
[
Cg→iTg→in+1

] [
Cg→iTg→in

]−1

and so Cg→iFC−1

g→i is affine. In fact, we know the form of this matrix, which is a
h

cx
sh 0

0 1
sh 0

0 0 1

 Textn+1
T −1
extn

 a
h

cx
sh 0

0 1
sh 0

0 0 1

−1

.

Now En→n+1 = Textn+1
T −1
extn

is the camera motion on the ground plane. Notice

that  a
h

cx
sh 0

0 1
sh 0

0 0 1

 =

 1 cx
sa 0

0 1
sa 0

0 0 1

 a
h 0 0
0 a

h 0
0 0 1


and recall that isotropic scaling commutes with rotation (Section 32.2), to find that

F =

 1 cx
sa 0

0 1
sa 0

0 0 1

 E

 1 cx
sa 0

0 1
sa 0

0 0 1

−1

.

Now write M = Cg→iFC−1

g→i. The upper 2× 2 block of M is[
cos θ + cx

sa sin θ −(sa+
c2x
sa ) sin θ

1
sa sin θ cos θ − cx

sa sin θ

]
so we can recover the rotation from

cos θ = m11 +m22,

and some calibration parameters from

s2a2 =
1− cos2 θ

m2
12( cx

as

)2
=

(m22 − cos θ)2

(1− cos2 θ)
.

This means we can recover as and cx if we can determine the signs of the square
roots. But a and s are necessarily positive and we can obtain the sign of cx by
elementary reasoning about the camera, so we can recover the signs. Now if the
camera translates by [tx, ty], then the translation component of M is[

m13

m23

]
=

[
−h

a tx + hcx
a ty

−shty

]
so that

−(as)m13 +
cx
asm23

−m23
=
tx
ty
.
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Now we observe u and v, and can recover as and cx, so we know the direction but
not magnitude of the translation. Equivalently, we can recover the movement of
the camera up to scale.

Procedure: 14.4 PIPH Motion Estimation

Given an image In at frame n and In+1 at frame n + 1, where an
uncalibrated camera with k = 0 moves rigidly, with image plane per-
pendicular to the ground plane, and the height of the focal point fixed
but unknown, obtain an estimate of TIn→In+1 ; write F for this esti-
mate. Find this by identifying interest points in In and In+1, and
fitting a homography to these interest points (Procedure 13.2). Then
M = Cg→iFC−1

g→i is affine. We have

cos θ = m11 +m22

s2a2 =
1− cos2 θ

m2
12( cx

as

)2
=

(m22 − cos θ)2

(1− cos2 θ)

yielding rotation and some camera parameters. The translation is re-
covered from

−(as)m13 +
cx
asm23

−m23
=
tx
ty
.

14.1.4 The Pattern on the Ground Plane

We can recover the pattern on the ground plane up to scale as well from two
images. Write the true pattern P. Recall that Cg→iTg→i is affine, which means

that Ti→gC
−1

g→i is affine as well (Section 32.2). This means that if we apply the

homography Cg→i to the image, we will obtain a pattern that is within an affine

transformation of the ground plane, and we can determine the form of the affine
transformation. This is easy to do, because Cg→i is known.

We have

Tg→i =

 as cx −hk
0 0 −sh
0 1 0

 Text.

so that

Ti→gC
−1

g→i = T −1
ext

 as cx −hk
0 0 −sh
0 1 0

−1

C−1

g→i.
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Now as in Section 14.1.2, we assume k = 0. We have

Cg→i

 as cx 0
0 0 −sh
0 1 0

 ≡

 a
h

cx
sh 0

0 1
sh 0

0 0 1


so that

Ti→gC
−1

g→i = T −1
ext

 h
a 0 0
0 h

a 0
0 0 1

 1 −cx 0
0 as 0
0 0 1

 .
In turn, if we know cx and as, we can recover the image plane pattern up to scale.
As Section 14.1.3 shows, these parameters can be estimated from two distinct views
of the ground plane.

Procedure: 14.5 PIPH Pattern Estimation

Given an image In at frame n and In+1 at frame n + 1, where an
uncalibrated camera with k = 0 moves rigidly, with image plane per-
pendicular to the ground plane, and the height of the focal point fixed
but unknown, obtain camera parameters as and cx from procedure 14.4.
Write

Tpartial =

 1 −cx 0
0 as 0
0 0 1

 .
Then the ground plane pattern is within a scale of

T −1

partial
Cg→i(In)

14.1.5 Off Perpendicular Image Planes

All the procedures above can be extended to deal with an off-perpendicular image
plane if one is allowed a single calibration step. This step essentially estimates the
angle between the image plane and the ground plane. In particular, notice that the
methods of Section 14.1.3 and 14.5 depend on the fact that a known homography
applied to the image yields something that is within an affine transformation of the
ground plane.

When the image plane is not perpendicular to the ground plane, the homogra-
phy from ground plane to image can be derived from Figure 32.2 (assuming k = 0)
as

Pg→i =

 as 0 cx
0 s cy
0 0 1

 1 0 0
0 γ −h
0 1 0

 Text =

 as cx −hk
0 sγ + cy −hs
0 1 0

 Text.

You should check that 1 0 0
0 0 1
0 1

sγ+cy
−1

Pg→i ≡

 a
h

cx
hs 0

0 1
hs 0

0 0 1

 Text.
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This means that, if we can estimate sγ + cy, we can apply the strategies of
the previous section. A simple strategy for doing so is to image a set of reference
points on the ground plane, compute the homography from ground plane to image
Pg→i, then obtain

Dw =

 1 0 0
0 0 1
0 w −1


such that DwPg→i is affine.

14.1.6 PIPH Mosaics

14.2 CAMERA CALIBRATION FROM PLANE REFERENCES

It is possible to calibrate a camera with a plane calibration object, but you need
to have several views. Plane patterns are easy to make and easy to disseminate.
Obtain a plane pattern with a set of easily localized points (a checkerboard is good)
where the locations of those points on the plane are known in world units. So if one
is using a checkerboard, one might know that the checks are square and 10cm on
edge, for example. Lay this down flat, and take a set of images of it from different
views. In each view the calibration points should be visible.

For each view, we will compute the homography from the calibration object’s
plane to the image plane using point correspondences (Section 32.2). It turns out
that these homographies yield constraints on the camera matrix (Section 32.2)
and these constraints yield a camera estimate (Section 32.2). This estimate is a
start point for an optimization problem (Section 32.2, very much on the lines of
Section 32.2).

14.2.1 Constraining Intrinsics with Homographies

Each map from the pattern to an image is a homography. Choose the world coor-
dinate system so that the pattern lies on the plane z = 0. Doing so just changes
the camera extrinsics, so no generality has been lost, but it allows us to write the
homography in a useful form. Recall the camera is

TiCpTe,j

where Te,j is the euclidean transformation giving the extrinsics for the j’th view.
This is applied to a set of points (sx,i, sy,i, 0, 1). In turn, the homography for the
j’th view must have the form

λjMj = Ti [r1,j , r2,j , tj ]

(where r1,j , r2,j are the first two columns of the rotation matrix in Te,j and tj
is the translation). We do not know λj (which is non-zero) because scaling the

homography matrix yields the same homography. Now write Nj = T (−1)
i Mj =

[n1,n2,n3]. We must have that

nT
1 n1 − nT

2 n2 = 0 and nT
1 n2 = 0.
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These equations constrain the unknown values of Ti, and we get two for each ho-
mography. In turn, with sufficient views (and so homographies), we can estimate
Ti.

14.2.2 Estimating Intrinsics from Homographies

In the j’th view of the plane calibration object, we recover a homography Mj . Now

write Nj = T (−1)
i Mj = [nj,1,nj,2,nj,3]. We know from Section 32.2 that

nT
j,1nj,1 − nT

j,2nj,2 = 0 and nT
j,1nj,2 = 0.

Now write A = (T (−T )
i T (−1)

i ) (which is unknown). These two constraints are linear
homogenous equations in the entries of A, which is 3×3 but symmetric, and so has
6 unknown parameters. If we have 3 homographies, we will have 6 constraints, and
can use least squares to recover a 1D family of solutions λB, where B is known and

λ is a scale. We now need to find Ti and λ so that λB is close to (T (−T )
i T (−1)

i )).

There are constraints here. Write U = T (−1)
i . Recall Ti is upper triangular,

and i33 = 1. This means that U is upper triangular, and u33 = 1. We will find U
and λ by finding V such that VTV is closest to B, then computing U = (1/v33)V.

Finding V is straightforward. We obtain the closest symmetric matrix to
B, then apply a Cholesky factorization (Section 32.2). The factorization could be
modified if a very small number appears on the diagonal, but this event is most
unlikely. We now invert U to obtain an estimate E of Ti. Recall this has the form as′ k′ c′x

0 s′ c′y
0 0 1

 .
so we have c′x = e13, c

′
y = e23, s

′ = e22, a = e11/e22 and k′ = e12. This is usually
an acceptable start point for optimization.

14.2.3 Estimating Extrinsics from Homographies

We have an estimate of the camera intrinsics, and now need an estimate of the
extrinsics for each view. Recall from Section ?? that

λjMj = Ti [r1,j , r2,j , tj ]

(where r1,j , r2,j are the first two columns of the rotation matrix in Te,j and tj is
the translation). We have estimates of Mj and of Ti, but we do not know λj . We
can solve for λj by noticing that the first two columns of

λjT −1
i Mj = λjQj = λj [q1,j ,q2,j ,q3,j ]

are unit vectors, and are normal to one another. For example, we might estimate

λj =

√
2

qT
1,jq1,j + qT

2,jq2,j

and from this follows the estimate

Te,j =
[
λjq1,j λjq2,j λ2jq1,j × q2,j λjq3,j

0 0 0 1

]
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14.2.4 Formulating the Optimization Problem

As in Section 32.2, we will calibrate the camera by solving an optimization problem.
The optimization problem is relatively straightforward to formulate, and follows the
same lines as that in Section 32.2. The main difference with that section is that
all calibration points will lie on the plane z = 0 in world coordinates, and we will
have more than one view of that plane. Write tij = [tx,ij , ty,ij ] for the measured
x, y position in the image plane of the i’th reference point in the j’th view. We
have that tij = t̂ij + ξij , where ξij is an error vector and t̂ij is the true (unknown)
position. Again, assume the error is isotropic, so it is natural to minimize∑

ij

ξTijξij .

The main issue here is writing out expressions for ξij in the appropriate coordinates.
Write Ti for the intrinsic matrix whose u, v’th component will be iuv; Te,j for the j’th
extrinsic transformation, whose u, v’th component will be euv; and si = [sx,i, sy,i, 0]
for the known coordinates of the i’th reference point in the coordinate frame of
the reference points. Recalling that Ti is lower triangular, and engaging in some
manipulation, we obtain∑

ij

ξTijξij =
∑
i

(tx,ij − px,ij)
2 + (ty,ij − py,ij)

2

where

px,ij =
i11gx,ij + i12gy,ij + i13gz,ij

gz,ij

py,ij =
i22gx,ij + i23gz,ij

gz,ij

and

gx,ij = e11,jsx,i + e12,jsy,i + e14,j

gy,ij = e21,jsx,i + e22,jsy,i + e24,j

gz,ij = e31,jsx,i + e32,jsy,i + e34,j

(which you should check as an exercise – notice the missing sz,i terms!). This is a
constrained optimization problem, because Te is a Euclidean transformation. The
constraints here are

1−
∑
v

e2j,1v = 0 and 1−
∑
v

e2j,2v = 0 and 1−
∑
v

e2j,3v = 0∑
v

ej,1vej,2v = 0 and
∑
v

ej,1vej,3v = 0 and 1−
∑
v

ej,2vej,3v = 0 .

As in Section 32.2, we could just throw this into a constrained optimizer (review
Section 32.2), but good behavior requires a good start point.
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Procedure: 14.6 Calibrating a Camera from Multiple Homographies

Procedure: 14.7 Calibrating a Camera from Multiple Homographies:
Start Point



C H A P T E R 15

Using Camera Models

Registration tools make it possible to reason about position and orientation
of manouvering cameras, movement of a camera at fixed height, and to calibrate a
camera in two ways.

15.1 CAMERA CALIBRATION FROM A 3D REFERENCE

Camera calibration involves estimating the intrinsic parameters of the camera, and
perhaps lens parameters if needed, from one or more images. There are numerous
strategies, all using the following recipe: build a calibration object, where the posi-
tions of some points (calibration points) are known; view that object from one or
more viewpoints; obtain the image locations of the calibration points; and solve an
optimization problem to recover camera intrinsics and perhaps lens parameters. As
one would expect, much depends on the choice of calibration object. If all the cal-
ibration points sit on an object, the extrinsics will yield the pose (for position and
orientation) of the object with respect to the camera. We use a two step procedure:
formulate the optimization problem, then find a good starting point.

15.1.1 Formulating the Optimization Problem

The optimization problem is relatively straightforward to formulate. Notation is
the main issue. We have N reference points si = [sx,i, sy,i, sz,i] with known position
in some reference coordinate system in 3D. The measured location in the image for
the i’th such point is t̂i =

[
t̂x,i, t̂y,i

]
. There may be measurement errors, so the

t̂i = ti+ ξi, where ξi is an error vector and t is the unknown true position. We will
assume the magnitude of error does not depend on direction in the image plane (it
is isotropic), so it is natural to minimize the squared magnitude of the error∑

i

ξTi ξi.

The main issue here is writing out expressions for ξi in the appropriate coordinates.
Write Ti for the intrinsic matrix whose u, v’th component will be iuv; Te for the
extrinsic transformation, whose u, v’th component will be euv. Recalling that Ti is
lower triangular, and engaging in some manipulation, we obtain∑

i

ξTi ξi =
∑
i

(tx,i − px,i)
2 + (ty,i − py,i)

2

where

px,i =
i11gx,i + i12gy,i + i13gi,3

gi,3

py,i =
i22gx,i + i23gi,3

gi,3

178
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and

gx,i = e11sx,i + e12sy,i + e13sz,i + e14

gy,i = e21sx,i + e22sy,i + e23sz,i + e24

gz,i = e31sx,i + e32sy,i + e33sz,i + e34

(which you should check as an exercise). This is a constrained optimization problem,
because Te is a Euclidean transformation. The constraints here are

1−
∑
v

e2j,1v = 0 and 1−
∑
v

e2j,2v = 0 and 1−
∑
v

e2j,3v = 0∑
v

ej,1vej,2v = 0 and
∑
v

ej,1vej,3v = 0 and 1−
∑
v

ej,2vej,3v = 0 .

We might just throw this into a constrained optimizer (review Section 32.2), but
good behavior requires a good start point. This can be obtained by a little ma-
nipulation, which I work through in the next section. Some readers may prefer to
skip this at first (or even higher) reading because it’s somewhat specialized, but it
shows how the practical application of some tricks worth knowing.

15.1.2 Setting up a Start Point

Write CT
j for the j’th row of the camera matrix, and Si = [sx,i, sy,i, sz,i, 1]

T
for

homogeneous coordinates representing the i’th point in 3D. Then, assuming no
errors in measurement, we have

t̂x,i =
CT

1 Si

CT
3 Si

and t̂y,i =
CT

2 Si

CT
3 Si

,

which we can rewrite as

CT
3 Sit̂x,i −CT

1 Si = 0 and CT
3 Sit̂y,i −CT

2 Si = 0.

We now have two homogenous linear equations in the camera matrix elements for
each pair (3D point, image point). There are a total of 12 degrees of freedom in the
camera matrix, meaning we can recover a least squares solution from six point pairs.
The solution will have the form λP where λ is an unknown scale and P is a known
matrix. This is a natural consequence of working with homogeneous equations, but
also a natural consequence of working with homogeneous coordinates. You should
check that if P is a projection from projective 3D to the projective plane, λP will
yield the same projection as long as λ ̸= 0.

This is enough information to recover the focal point of the camera. Recall
that the focal point is the single point that images to [0, 0, 0]

T
. This means that

if we are presented with a 3 × 4 matrix claiming to be a camera matrix, we can
determine what the focal point of that camera is without fuss – just find the null
space of the matrix. Notice that we do not need to know λ to estimate the null
space.
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Remember this: Given a 3 × 4 camera matrix P, the homogeneous
coordinates of the focal point of that camera are given by X, where PX =
[0, 0, 0]

T

There is an important relationship between the focal point of the camera and
the extrinsics. Assume that, in the world coordinate system, the focal point can be

represented by
[
fT , 1

]T
. This point must be mapped to [0, 0, 0, 1]

T
by Te. Because

we can recover f from P easily, we have an important constraint on Te, given in the
box.

Remember this: Assume camera matrix P has null space λu =

λ
[
fT , 1

]T
. Then we must have Teu = [0, 0, 0, 1]

T
, so we must have

Te =
[

R −Rf
0T 1

]

This means that, if we know R, we can recover the translation from the focal
point. We must now recover the intrinsic transformation and R from what we
know.

λP = Ti

 1 0 0 0
0 1 0 0
0 0 1 0

[ R −Rf
0T 1

]
=
[
TiR −TiRf

]
We do not know λ, but we do know P. Now write Pl for the left 3× 3 block of P,
and recall that Ti is upper triangular and R orthonormal. The first question is the
sign of λ. We expect Det (R) = 1, and Det (Ti) > 0, so Det (Pl) should be positive.
This yields the sign of λ – choose a sign s ∈ {−1, 1} so that Det (sPl) is positive.

We can now factor sPl into an upper triangular matrix T and an orthonormal
matrix Q. This is an RQ factorization (Section 32.2). Recall we could not distin-
guish between scaling caused by the focal length and scaling caused by pixel scale,
so that

Ti =

 as k cx
0 s cy
0 0 1


In turn, we have λ = s(1/t33), cy = (t23/t33), s = (t22/t33), cx = (t13/t33), k =
(t12/t33), and a = (t11/t22).
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Procedure: 15.1 Calibrating a Camera using 3D Reference Points

For N reference points si = [sx,i, sy,i, sz,i] with known position in some
reference coordinate system in 3D, write the measured location in the
image for the i’th such point t̂i =

[
t̂x,i, t̂y,i

]
. Now minimize∑

i

ξTi ξi =
∑
i

(t̂x,i − px,i)
2 + (t̂y,i − py,i)

2

where

px,i =
i11gx,i + i12gy,i + i13gi,3

gi,3

py,i =
i22gx,i + i23gi,3

gi,3

and

gx,i = e11sx,i + e12sy,i + e13sz,i + e14

gy,i = e21sx,i + e22sy,i + e23sz,i + e24

gz,i = e31sx,i + e32sy,i + e33sz,i + e34

subject to:

1−
∑
v

e2j,1v = 0 and 1−
∑
v

e2j,2v = 0 and 1−
∑
v

e2j,3v = 0∑
v

ej,1vej,2v = 0 and
∑
v

ej,1vej,3v = 0 and 1−
∑
v

ej,2vej,3v = 0 .

Use the start point of procedure 15.2
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Procedure: 15.2 Calibrating a Camera using 3D Reference Points: Start
Point

Estimate the rows of the camera matrix Ci using at least six points and

CT
3 Sit̂x,i −CT

1 Si = 0 and CT
3 Sit̂y,i −CT

2 Si = 0.

Write λP for the 1D family of solutions to this set of homogeneous
linear equations, organized into 3×4 matrix form. Compute the vector
n =

[
fT , 1

]
such that Pn. Write Pl for the left 3×3 block of P. Choose

s ∈ {−1, 1} such that Det (sPl) > 0. Use RQ factorization to obtain
T and Q such that sPl = T Q. Then the start point for the intrinsic
parameters is: 

a
s
k
cx
cy

 =


(t11/t22)
(t22/t33)
(t12/t33)
(t13/t33)
(t23/t33)


and for Te is: [

Q −Qf
0 1

]
.

15.2 CALIBRATING THE EFFECTS OF LENS DISTORTION

Now assume the lens applies some form of geometric distortion, as in Section 32.2.
There are now strong standard models of the major lens distortions (Section 32.2).
We will now estimate lens parameters, camera intrinsics and camera extrinsics from
a view of a calibration object (as in Section 32.2; note the methods of Section 32.2
apply to this problem too). As in those sections, we use a two step procedure:
formulate the optimization problem (Section 32.2), then find a good starting point
(Section 32.2).

15.2.1 Modelling Geometric Lens Distortion

Geometric distortions caused by lenses are relatively easily modelled by assuming
the lens causes (x, y) in the image plane to map to (x+δx, y+δy) in the image plane.
We seek a model for δx, δy that has few parameters and that captures the main
effects. A natural model of barrel distortion is that points are “pulled” toward the
camera center, with points that are further from the center being “pulled” more.
Similarly, pincushion distortion results from points being “pushed” away from the
camera center, with distant points being pushed further (Figure ??).

Set up a polar coordinate system (r, θ) in the image plane using the image
center as the origin. The figure and description suggest that barrel and pincushion
distortion can be described by a map (r, θ) → (r + δr, θ). We model δr as a
polynomial in r. Brown and Conrady [] established the model δr = k1r

3 + k2r
5 as

sufficient for a wide range of distortions, and we use (r, θ) → (r + k1r
3 + k2r

5, θ)
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k  = -0.2 k  =  0.2k  = 0
1 1 1

k =-0.026

k =0

k = 0.026

2

2

2

FIGURE 15.1: The effects of k1 and k2 on a neutral grid (center), showing how
the parameters implement various barrel or pincushion distortions. Notice how k2
slightly changes the shape of the curves that k1 produces from straight lines in the
grid.

for unknown k1, k2. We must map this model to image coordinates to obtain a
map (x, y) → (x + δx, y + δy). Since cos θ = x/r, sin θ = y/r, we have (x, y) →
(x+ x(k1(x

2 + y2) + k2(x
2 + y2)2), y + y(k1(x

2 + y2) + k2(x
2 + y2)2)). Figure 15.1

shows distortions resulting from different choices of k1 and k2. This model is known
as a radial distortion model.

More sophisticated lens distortion models account for the lens being off-center.
This causes tangential distortion (Figure 15.2). The most commonly used model of
tangential distortion is a map (x, y) → (x+ p1(x

2 + y2 + 2x2) + 2p2xy, y+ p2(x
2 +

y2 + 2y2) + 2p1xy) (derived from []; more detail in, for example []).
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p  = -0.8 p  = 0 p  = 0.8

p  = -0.8

p  = 0

p  = 0.8

1 1 1

2

2

2

FIGURE 15.2: The effects of p1 and p2 on a neutral grid (center), showing how
the parameters implement various distortions. These parameters model effects that
occur because the lens is off-center; note the grid “turning away” from the lens.

Remember this: A full lens distortion model is(
x
y

)
→
(
x+ x(k1(x

2 + y2) + k2(x
2 + y2)2) + p1(x

2 + y2 + 2x2) + 2p2xy
y + y(k1(x

2 + y2) + k2(x
2 + y2)2) + p2(x

2 + y2 + 2y2) + 2p1xy

)
.

for k1, k2, p1, p2 parameters. It is common to ignore tangential distortion
and focus on radial distortion by setting p1 = p2 = 0.

15.2.2 Formulating the Optimization Problem

The optimization problem is relatively straightforward to formulate. Notation is
the main issue. Write ti = [tx,i, ty,i] for the measured x, y position in the image
plane of the i’th reference point. We have that ti = t̂i + ξi, where ξi is an error
vector and t̂ is the true (unknown) position. Again, assume the error is isotropic,
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so it is natural to minimize ∑
i

ξTi ξi.

The main issue here is writing out expressions for ξi,j in the appropriate coordinates.
Write Ti for the intrinsic matrix whose u, v’th component will be iuv; Te for the ex-
trinsic transformation, whose u, v’th component will be euv; and si = [sx,i, sy,i, sz,i]
for the known coordinates of the i’th reference point in the coordinate frame of the
reference points. Recalling that Ti is lower triangular, and engaging in some ma-
nipulation, we obtain∑

i

ξTi ξi =
∑
i

(tx,i − lx,i)
2 + (ty,i − ly,i)

2

where

lx,i = px,i + px,i(k1(p
2
x,i + p2y,i) + k2(p

2
x,i + p2y,i)

2) + p1(p
2
x,i + p2y,i + 2p2x,i) + 2p2px,ipy,i

ly,i = py,i + py,i(k1(p
2
x,i + p2y,i) + k2(p

2
x,i + p2y,i)

2) + p2(p
2
x,i + p2y,i + 2p2y,i) + 2p1px,ipy,i

px,i =
i11gx,i + i12gy,i + i13gi,3

gi,3

py,i =
i22gx,i + i23gi,3

gi,3

and

gx,i = e11sx,i + e12sy,i + e13sz,i + e14

gy,i = e21sx,i + e22sy,i + e23sz,i + e24

gz,i = e31sx,i + e32sy,i + e33sz,i + e34

(which you should check as an exercise). This is a constrained optimization problem,
because Te is a Euclidean transformation. The constraints here are

1−
∑
v

e2j,1v = 0 and 1−
∑
v

e2j,2v = 0 and 1−
∑
v

e2j,3v = 0∑
v

ej,1vej,2v = 0 and
∑
v

ej,1vej,3v = 0 and 1−
∑
v

ej,2vej,3v = 0 .

We might just throw this into a constrained optimizer (review Section 32.2), but
good behavior requires a good start point. This can be obtained by a little ma-
nipulation, which I work through in the next section. Some readers may prefer to
skip this at first (or even higher) reading because it’s somewhat specialized, but it
shows how the practical application of some tricks worth knowing.


