Motion Planning II

D.A. Forsyth
(with a lot of H. Choset, and some J. Li)

Choset slides

Dimension and its nuisances

- Counting:
- A d-dimensional cube has 2^{\wedge} d vertices
- Volume:
- your intuitions about volume are wrong in high dimension
- consider cubical "orange" in high d
- skin depth e/2
- pulp (1-e)
- volume of pulp:
- $(1-\mathrm{e})^{\wedge} \mathrm{d}$
- volume of skin:
- 1-(1-e) ${ }^{\wedge} \mathrm{d}$

- IT'S ALL SKIN!
- Almost all the volume of high d objects is very close to surface

Dealing with C-Space Dimension

Full set of neighbors

Random subset of neighbors

- We should evaluate all the neighbors of the current state, but:
- Size of neighborhood grows exponentially with dimension
- Very expensive in high dimension

Solution:

- Evaluate only a random subset of K of the neighbors
- Move to the lowest potential neighbor

Sampling Techniques

Forbidden Space

Free Space
Choset slides

Sampling Techniques

Sample random locations

Choset slides

Sampling Techniques

Remove the samples in the forbidden regions

Sampling Techniques

Link each sample to its K nearest neighbors

Sampling Techniques

Remove the links that cross forbidden regions

Choset slides

Sampling Techniques

Remove the links that cross forbidden regions

The resulting graph is a probabilistic roadmap (PRM)

Sampling Techniques

Link the start and goal to the PRM and search using A*

Sampling Techniques

Continuous Space

Discretization】

A* Search

- "Good" sampling strategies are important:
- Uniform sampling
- Sample more near points with few neighbors
- Sample more close to the obstacles
- Use pre-computed sequence of samples

Sampling Techniques

- Remarkably, we can find a solution by using relatively few randomly sampled points.
- In most problems, a relatively small number of samples is sufficient to cover most of the feasible space with probability 1
- For a large class of problems:
- Prob(finding a path) $\rightarrow 1$ exponentially with the number of samples
- But, cannot detect that a path does not exist

Random trees

- Notice how randomized roadmap is for "any plan"
- but we may not need that
- plan for a specific start, a specific goal
- For the moment, focus on start
- grow a tree with start at root
- join tree to goal
- perhaps by growing backward from goal, and linking
- Q: how to grow the tree?

Naïve Random Tree

Algorithm BuildRRT

Input: Initial configuration $q_{\text {init }}$, number of vertices in RRT K, incremental distance Δq)
Output: RRT graph G
G.init($\left.q_{\text {init }}\right)$
for $k=1$ to K do
$q_{\text {rand }} \leftarrow$ RAND_CONF ()
$q_{\text {near }} \leftarrow$ NEAREST_VERTEX $\left(q_{\text {rand }}, G\right)$
$q_{\text {new }} \leftarrow$ NEW_CONF $\left(q_{\text {near }}, q_{\text {rand }}, \Delta q\right)$
G.add_vertex $\left(q_{\text {new }}\right)$
G. add_edge ($q_{\text {near }}, q_{\text {new }}$)
return G

- " \leftarrow " denotes assignment. For instance, "largest \leftarrow item" means that the value of largest changes to the value of item.
- "return" terminates the algorithm and outputs the following value.

RRT's are biased towards large Voronoi cells

The nodes most likely to be closest to a randomly chosen point in state space are those with the largest Voronoi regions. The largest Voronoi regions belong to nodes along the frontier of the tree, so these frontier nodes are automatically favored when choosing which node to expand. Kosecka slides

RRT's expand (another way)

- The nodes of the tree are
- mostly on the boundary
- of a "blob" of nodes
- because that's where the volume is
- Draw a sample in c-space
- if the blob is spread out in c-space, it's "inside", but we're OK
- otherwise, sample is likely "outside"
- so nearest node is very likely on boundary

Algorithm BuildRRT

Input: Initial configuration $q_{\text {init }}$ number of vertices in RRT K, incremental distance Δq)
Output: RRT graph G
G.init($\left.q_{\text {init }}\right)$
for $k=1$ to K do
$q_{\text {rand }} \leftarrow$ RAND_CONF ()
$q_{\text {near }} \leftarrow$ NEAREST_VERTEX $\left(q_{\text {rand }}, G\right)$
$q_{\text {new }} \leftarrow$ NEW_CONF $\left(q_{\text {near }}, q_{\text {rand }}, \Delta q\right)$
G.add_vertex ($q_{\text {new }}$)
G. add_edge $\left(q_{\text {near }}, q_{\text {new }}\right)$
return G

- " \leftarrow " denotes assignment. For instance, "largest $\leftarrow i t e m "$ means that the value of largest changes to the value of item.
- "return" terminates the algorithm and outputs the following value.
- The sample qrand is drawn UAR from configuration space
- or reject if inside obstacle
- this could be tricky
- Notice
- tree builds out into free space quickly
- in different applications, one uses different epsilon
- sometimes even add whole edge

Choset slides

Properties

- Tends to explore the space rapidly in all directions
- Does not require extensive pre-processing
- Single query/multiple query problems
- Needs only collision detection test \rightarrow No need to represent/pre-compute the entire C-space

Properties

- Notice
- Drawing the sample could get tricky
- You need to be able to do the collision detection for the edge
- BUT
- many/most edges should be easy if there is a lot of free space

A quick conservative test - I

- Construct an axis aligned bounding box in 3-space
- containing all configurations on the edge segment
- how? below
- Test this box against objects
- no intersection? edge is OK
- intersection? more detailed test

A quick conservative test - II

- Building a box for robot rotating and translating
- Robot rotates about origin in its own coordinate system
- this origin translates

In 3D

A quick conservative test - II

- Building a box for robot rotating and translating
- Robot rotates about origin in its own coordinate system
- this origin translates
- Build bounding sphere, centered on origin, in advance
- Translate this sphere's center - yields box
- Loose, quick bound
- Loose
- if segment intersects by this test
- subdivide and go again

Bad for kinematic chains

Bad for kinematic chains - II

- Specialized techniques
- typically per segment bounds
- see Lavalle chapter, on website

Choset slides

Grow two RRT's together

Kosecka slides

Two RRT's

A single RRT-Connect iteration...

Kosecka slides

Two RRT's

1) One tree grown using random target

Kosecka slides

Two RRT's

2) New node becomes target for other tree

Kosecka slides

Two RRT's

3) Calculate node "nearest" to target

Kosecka slides

Two RRT's

4) Try to add new collision-free branch

Kosecka slides

Two RRT's

5) If successful, keep extending branch

Kosecka slides

Two RRT's

5) If successful, keep extending branch

Kosecka slides

Choset slides

From Kuffner et al.

Choset slides

- (Limited) background in Russell\&Norvig Chapter 25
- Two main books:
- J-C. Latombe. Robot Motion Planning. Kluwer. 1991.
-S. Lavalle. Planning Algorithms. 2006. http://msl.cs.uiuc.edu/planning/
- H. Choset et al., Principles of Robot Motion: Theory, Algorithms, and Implementations. 2006.
- Other demos/examples:
- http://voronoi.sbp.ri.cmu.edu/~choset/
- http://www.kuffner.org/james/research.html
- http://msl.cs.uiuc.edu/rrt/

