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Key 1ssues

® Physical
® what makes a pixel take its brightness values?
® [Effects
® at surfaces
® in volume
® Human: what can people do?
® which suggests problems we might be able to solve

® Sensing
® can we sense in ways that reduce significance of effects?
® gsensor fusion, etc.

® Inference
® what can we recover from the world using sensed values?



Effects at surfaces

® We assume:

® we see the world in a vacuum
® or very clear air, no fog, nothing



nickwheeleroz



By nickwheeleroz, on Flickr



Very simple ray-tracing

O

Point light source

How much light is travelling
down this ray toward camera?

sometimes known as the “eye ray”




Eye ray strikes diffuse surface

O

Point light source

Compute brightness of
diffuse surface at first contact =
Can it see the light sources 7=
Is there an object in line segment
connecting point to source?

Eye ray




Eye ray strikes specular surface

O

Point light source

Compute brightness of
specular surface at first contact =
eye ray changes direction, and compute
brightness at the end of that

Eye ray

specular
Q surface




Lighting model

® [ight arrives at a surface ONLY from a luminaire
® this is an object that “makes light”
® through chemical, mechanical, etc means

® Wild oversimplification, good for us right now
® wait a few slides and it’ll get more complicated



Processes

® (Cameras
® film: non-linear
® (CCD: linear, with non-linearities made by electronics

® Light
® s reflected from a surface
® oot there from a source

® Many effects when light strikes a surface -- could be:
® absorbed; transmitted; reflected; scattered
® Simplify
® Assume that
® surfaces don’t fluoresce
® surfaces don’t emit light (i.e. are cool)
® all the light leaving a point is due to that arriving at that point



White light tindoor)

UV light (black-light)




Diffuse reflection

® [ight leaves the surface evenly in all directions
® cotton cloth, carpets, matte paper, matte paints, etc.
® most “rough” surfaces
® Parameter: Albedo
® percentage of light arriving that leaves
® range 0-1
® practical range is smaller

® Test:

® surface has same apparent brightness when viewed from different dir’ns



Point source at infinity

® E.g.the sun
® cnergy travels in parallel rays
® cnergy density received is proportional to cos theta

® Write:

® p for albedo
® S for source vector

® {rom surface to source

® length=intensity of source
® N for normal
® [ for image intensity

I =p(N-S)




Shadows cast by a point source

® A point that can’t see the source 1s in shadow
® For point sources, the geometry i1s simple

Cast

Shadow
Boundary

Point
Source

Self Shadow
Boundary




Cues to shape - shadows

terminator (shadow boundary)

volume

shadow

(attached)

shadow

From Koenderink slides on image texture and the flow of light
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From Koenderink slides on image texture and the flow of light



Shadow geometry can be very nasty

From Hel Des, on Flickr



Specularities

® For some surfaces, reflection depends strongly on angle
® mirrors (special case)
® incoming direction, normal and outgoing direction are coplanar
® angle din, normal and angle dout, normal are the same
® gspecular surfaces
® light reflected in a “lobe” of directions
® cg slightly battered metal surface
® can see light sources specularly reflected

® specularities
din




Flickr, by suzysputnik Flickr, by piratejohnny

® Specularities are relatively easy to detect
® small and bright (usually)



Key idea - how bright 1s this point?



Radiometry

® (Questions:
® how “bright” will surfaces be?
® what is “brightness”?
® measuring light
® interactions between light and surfaces
® (Core idea - think about light arriving at a surface
® around any point is a hemisphere of directions

® what is important is what a source “looks like” to a receiver
® receiver can’t know anything else about source



Radiance

® Measure the “amount of light” at a point, in a direction

the power (amount of energy per unit time) traveling at some point in a
specified direction, per unit area perpendicular to the direction of travel,
per unit solid angle.

e Units: watts per square meter per steradian (wm-2sr-1)
® (Crucial property:

® [n a vacuum, radiance leaving p in the direction of q is the same as
radiance arriving at q from p

® hence the units



Why not watts/square meter?

® Consider sphere radiating 1 W into vacuum
® Radius 1, center at origin
® Vacuum neither creates nor consumes power
® There’s another sphere around it
® Radius R, center at origin
® Area-4piRA2
® [t can’t collect more power than first sphere radiates so
® watts/square meter must go down with distance....!!! (ew)

Receiver



Surfaces and the BRDF

Many effects when light strikes a surface -- could be:
® absorbed; transmitted. reflected; scattered

Assume that

® surfaces don’t fluoresce
® surfaces don’t emit light (i.e. are cool)
® all the light leaving a point is due to that arriving at that point

Can model this situation with the Bidirectional
Reflectance Distribution Function (BRDF)
the ratio of the radiance in the outgoing direction to the

incident irradiance
Pra (X’ﬁo,qﬁo,ﬁi,qoi,) —

L() (E’ 19() ’ (p() )
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[.ambertian surfaces and albedo

® For some surfaces, the BRDF i1s independent of direction

cotton cloth, carpets, matte paper, matte paints, etc.

radiance leaving the surface is independent of angle

Lambertian surfaces (same Lambert) or ideal diffuse surfaces

Use radiosity as a unit to describe light leaving the surface
percentage of incident light reflected is diffuse reflectance or albedo

® Useful fact:

Py
Porar =
JU



Specular surfaces

® Another important class of surfaces is specular, or mirror-

like.

radiation arriving along a direction leaves along the specular direction
reflect about normal

some fraction is absorbed, some reflected

on real surfaces, energy usually goes into a lobe of directions

can write a BRDF, but requires the use of funny functions

from

point

Source A

specular
direction




Phong’s model

® There are very few cases where the exact shape of the
specular lobe matters.

® Typically:
® very, very small --- mirror
® small -- blurry mirror

® bigger -- see only light sources as “specularities”
® very big -- faint specularities

® Phong’s model
® reflected energy falls off with specular

A direction

00

cos" (09



Lambertian + specular

® Widespread model

® all surfaces are Lambertian plus specular component

® Advantages

® casy to manipulate
® very often quite close true

® Disadvantages
® some surfaces are not
® c.g.underside of CD’s, feathers of many birds, blue spots on many
marine crustaceans and fish, most rough surfaces, oil films (skin!), wet
surfaces
® Generally, very little advantage in modelling behaviour of light at a surface

in more detail -- it is quite difficult to understand behaviour of L+S
surfaces



The Rendering Equation- 1

® We can now write Angle between normal
and incoming direction

|
LO(XawO) — LG(X7WO) _|_/ pbd(Xawovwi)Li(Xvwi) COS szwz
Q2
| |

BRDF Incoming radiance

Average over hemisphere

Radiance emitted from surface at that point in that direction

Radiance leaving a point in a direction \

Radiance 1s constant along straight lines, so this 1s what we want to know



The Rendering Equation - 11

® This balance works for

® cach wavelength,
® at any time, SO

® So

Lo(X,wo, A\ t) =  Le(X, w0, A\, T)+
fQ ,Obd(X, Wo, Wy, )\, t)LZ (X, Wi, )\, t) COS szwz



Global 1llumination

Lo(X,wo) = Le(X,w,) / Pbd (X, Wo, w; ) L; (X, w;) cos 0;dw;
Q

Incoming radiance l

® Incoming radiance 1sn’t Poinfliht source

just from luminaires

® the reason you can see
surfaces is they reflect light

® other surfaces don’t Eye ray

distinguish between
reflected light and generated /_\

light @&MJ




Light paths

® Recursively expand, as above
® sample the incoming directions peintlight source
® what radiance is coming in?
® o0 to far end - what is emitted+reflected?
® recur

Eye ray




Interreflections

® [ssue:
® Jocal shading model is a poor description of physical processes that give
rise to images
® because surfaces reflect light onto one another

® This is a major nuisance; the distribution of light (in principle) depends on
the configuration of every radiator; big distant ones are as important as
small nearby ones (solid angle)

The effects are easy to model
It appears to be hard to extract information from these models



Interreflections

From Koenderink slides on image texture and the flow of light



The color of objects

® (Colored light arriving at the camera involves two effects
® The color of the light source
® The color of the surface

® Changes caused by different colored light sources can be large

Receptor response
of k'th receptor class

Jo (WPAE@)dA
A

Incoming spectral radiance J

E@®)

Outgoing spectral
radiance

E(AMpA)

Spectral albedo
p(A)



Constancy

® You perceive objects in terms of their properties
® rather than what they look like in an image

e Examples:

® size constancy
® distant objects are small in pictures, nearby objects bigger
® but you don’t think of them as changing size
® lightness constancy
® dark things in bright rooms can be brighter than light objects in dark
rooms
® but you perceive their lightness (=albedo)
® color constancy
® image color changes when lighting color changes
® but you perceive the surface color
® obiect constancv



?

ich fish is bigger

Wh




More complicated effects at surfaces



Refraction

® [ight striking an interface changes direction

® between translucent surfaces with different speed-of-light
® (refraction)

® At critical angle, total internal reflection



Films on surfaces

® cg water
® Assume:
® film is thin
® You see:
e specular reflection+diffuse term umination Specular Diffuse (ish)
reflection reflection
Refraction Water

Tar




Interference effects

® Sometimes seen on films
® if the film is the right number of wavelengths thick
® waves will interfere destructively (resp constructively)
® can give rise to intense colors
® oil films on water often do this



30 pm

/







Effects 1n air



Refraction

® [ight striking an interface changes direction

® between translucent surfaces with different speed-of-light
® (refraction)

® At critical angle, total internal reflection



From Lynch and Livingstone, Color and Light in Nature
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From Lynch and Livingstone, Color and Light in Nature
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From Lynch and Livingstone, Color and Light in Nature



Minnaert, Light and Color in the outdoors
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Scattering

® Fundamental mechanism of light/matter interactions

® Visually important for

® slightly translucent materials (skin, milk, marble, etc.)
® participating media



Participating media

® for example,

® smoke,
wet air (mist, fog)
rain

dusty air
® air at long scales

® [ight leaves/enters a ray travelling through space
® |eaves because it 1s scattered out
® enters because it 1s scattered in

® New visual effects



Light hits a small box of material

Scattering material

o Forward scattered
Incoming light (what we’re accustomed to)

= >

Scattered
out of view



A ray passing through scattering material

In scattering
from other elements

o Forward scattered
Incoming light (what we’re accustomed to)

> >

Scattered
out of view



Airlight as a scattering effect

Air

Sunlight

Inscattered
light, mostly
sunlight

Outscattered
light

Y

Eye



original unique filename: 201 8039-»1 41 7_t:naie_des_fourmis.jpg

hosted hy www.carto.net photo ®@ André M. Winter



From Lynch and Livingstone, Color and Light in Nature



HENRIK WANN JENSEN - 2000




From Lynch and Livingstone, Color and Light in Nature




Absorption

Box of material

Eye ray Eye ray

I(T) -

A
°

Want 1(0)
(at start of eye ray)

dt

® [gnore in-scattering
® only account for forward scattering

® Assume there is a source at t=T
® of intensity I(T)
® what do we see at t=0?



Cross sectional area of “slab” is E
Contains particles, radius r, density rho

Too few to overlap when projected

% light absorbed = (area of projected particles)/
(area of slab)

This 1s:

(pEAs)mr?

7 = o(s)As




dl
o =01
dlog I

i oW

Extinction
coefficient

1(0) = I(T)e Jo o)t

]

Eyeis at0 Intensity at T



More 1nteresting...

Cross sectional area of “slab” is E

Ce e Contains particles, radius r, density tho
® Intensity is “created along the

ray” Too few to overlap when projected
® by (say) airlight

® Model - the particles glow with Light out = Light in -

intensity C(x) L%ght absorbed+
Light generated
As
° Light generated: C x (area fraction
D of proj. particles)
E||° <
(@) ° . .
50 which 1s
(©)
e
2
pEAs)mr
C(X(s))( ) = C'(x(s))o(s)As



I(t)

I(t — &) = I(t) — () ()5t + c(x(t))o (1)t

T

Absorption

Generation

](O):/O c(x(s))o(s)e™ Jo 7(wdugg



I(O):/O c(x(s))o(s)e™ Jo olwdugy

Absorbed 1n transit
fromsto O

Made at s

Accumulate along ray



Dehazing and airlight

Airlight color at p

}

I(p) = J(p) xT(p) + Alp) x (1 = T(p))
Image color at p T

Surface radiance color at p

Absorption term, exponential in depth, at p

® (Consequences

® Brightness is a depth cue
® Reasoning about airlight color yields dehazed image



Airlight yields a depth cue

® Assume that airlight is dominant

® (i.e. most of light arriving at camera is airlight)
® then you can recover depth from a single image

® Disadvantages
® requires significant fog (but not too much) or large scales



Nayar and Narasimhan, 1999

(b)




Model

Airlight color - same at all points

!
I(p)=J(p) xT(p)+ A(p) x (1 =T(p))

A

Observed T

Shading x albedo

Independent of shading

® With work, this yields
® neighboring pixels with same albedo yield
® constraints on shading and T
® assume shading and T independent
® ecstimate A to yield “most independent” shading and T
® result: J(p)



Figure 1: Dehazing based on a single input image and the corresponding depth estimate.

Fattal, 08 - note depth map AND dehaze; note also slightly odd colors



Improved estimation by cleaner model

Fig. 1. Old Town of Lviv. Input image on the left, our result on the right.

Fattal, 08 - note depth map AND dehaze; note also slightly odd colors



Simple learning

® [dea:
® recover transmission map from image
® you could train by
® oectreal images
® make fake transmission maps, and combine
® now have (hazy image, transmission map) pairs - train CNN



Fig. 11. The haze-free images and depth maps restored by DehazeNet

Cai et al 16 (DeHazeNet)



Paired datasets

® [dea:
® obtain pairs (hazy image, clear image)
® Strategy:
® Fake fog model on real image
® Foggy cityscapes
® https://people.ce.ethz.ch/~csakarid/SFSU_synthetic/

® Render synthetic images fog/no-fog
e RESIDE
® https://arxiv.org/pdf/1712.04143.pdf
® Take photos outdoors; introduce fog; repeat
e NH-HAZE
® https://data.vision.ee.ethz.ch/cvl/ntire20/nh-haze/




Single 1mage dehazing

® Essentially
® obtain images with/without haze (with haze by synthetic)
® train network to reproduce without haze image from with haze

- 13.35 15.45 16.37 14.50 19.42 00

- 16.70 16.76 15.97 14.23 19.86 00
:é;.{:f
‘;‘JM;~. 4% : .
- 15.42 11.28 13.27 17.64 00
(a) HAZY (b) DCP [15] (c) AOD-Net [20] (d) GRID-Net [24] (e) FFA-Net [26] (f) OURS (g) GT

Figure 6. Qualitative comparisons with different state-of-the-art dehazing methods for indoor synthesis hazy images. The top two rows are
from SOTS, the third row is from TestA dataset and the bottom three rows are from MiddleBury dehazing dataset. The numbers below

image are PSNR (dB) value of each image.
Shen et al 19
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.

DCP EPDN FD-GAN (ours)

Figure 5: Visual comparisons on real-world hazy images. Our model can generate more natural and visual pleasing dehazed
results with less color distortion. Please see the details in red rectangles. Zoom in for best view.

Dong et al 21 - Use an adversarial loss




(a) INPUT (b) DCP [15] (¢) GRID-Net [24] (d) FFA-Net [26] (e) FD-GAN [11] (f) OURS
Figure 7. Qualitative comparisons with different dehazing state-of-the-art methods for real hazy images.

Shen et al 20 - Use sequence model (resnet as implicit euler method)



Challenges

® NTIRE workshops and challenges

® https://data.vision.ee.ethz.ch/cvl/ntire21/
® https://data.vision.ee.ethz.ch/cvl/ntire20/




Image interpretation strategies

® Dehaze (derain; denighttime; etc) image, then apply
® detector, segmenter, etc
® jssues:
® dehazing (etc.) may create signal problems
® Simulate haze (rain; night; etc) existing labelled data, then train
® detector, segmenter, etc.
® jssues:
® simulator may not be accurate
Collect paired data (good conditions/bad conditions)
Multi-sensor fusion
® (ifferent sensors are affected in different ways, so....

There’s a review in Hnewa, 21



Paired data

® (Collect data on good days, bad days
® along the same routes, w/ GPS
® use dynamic programming, GPS to compute alignment at the image level

® Now label

® annotator labels bad image round 1
® compares to good image; fixes labelling round 2

(a) Input image [ (b) Stage 1 annotation (draft) (c) Corresponding image I’ (d) Stage 2 annotation (GT) (e) Invalid mask J
Figure 2. Illustration of annotation protocol for ACDC. The color coding of the semantic classes matches Fig. 1. All annotations in (b),
(d) and (e) pertain to the input image [/ in (a). A white color in (b) and (d) denotes unlabeled pixels.

Sakaridis et al, 21



time t

Fog and Lidar: Lidar

distance d
\

>

About 800-1000 nm
wavelength (longer than red)

Wikipedia



Raindrop backscatter

Raindrop

=

Source

Detector



Fog scattering

FOG

Source

Detector



What the sensor sees...

No fog

1

Extreme fog

/\Q\ g




(a)

Fig. 5: Static targets and adverse weather experiments at JARI’s weather chamber: (a) configuration of the different scenarios,
(b) and (c) measurement, (e) to (g) sample adverse weather scenes, (d) setting up ground truth.

Carballo, 20



(a) VLS-128 (b) HDL-64S2 (c) HDL-32E

Carballo, 20




Fig. 9: “Rain pillars” as detected by a LiDAR.

® (ualitative effects
lost returns

fog torus

early returns

rain pillars

noise

Carballo, 20



(a) strongest returns (b) last returns

Figure 1: LiDAR returns caused by fog in the (top) scene.
(a) shows the strongest returns and (b) the /ast returns, color
coded by the LiDAR channel. The returns of the ground are
removed for better visibility of the points introduced by fog.
Best viewed in color (red = low, cyan = high, 3D bounding
box annotation in green, ego vehicle dimensions in gray).

Hahner 21



Radar 1s unaffected

Bad Weather Depth Estimation Camera Image
121 —. GT
- Radar
€101 — Lidar -
£
g 8
©
3
© 6]
£
w
W 4-
2.

4 6 8 10 12
GT depth (m)

Figure 16: Performance comparison of different sensors in the pres-
ence of adverse conditions. The left plot shows the depth estimation
performance of Radar and LiDAR for an object directly in front of the
sensor in the presence of fog. The right figure shows the camera image
for the experiment.

Bansal et al 20



What the sensor sees...

No fog

>

Simulate this effect, with a form of point spread function Extreme fog

1 g

Hahner 21



Hahner 21

PV RCNN trained on
good weather lidar returns
only

Lidar captured in dense fog

PV RCNN trained on
good and simulated bad
weather lidar returns
only



Hahner 21

PV RCNN trained on
good weather lidar returns
only

Lidar captured in dense fog

PV RCNN trained on
good and simulated bad
weather lidar returns
only



Multi sensor methods

Image-only Detection

Figure 1: Existing object detection methods, including effi-
cient Single-Shot detectors (SSD) [} 1], are trained on auto-
Lidar-only Detection motive datasets that are biased towards good weather con-
ditions. While these methods work well in good condi-
tions [ 19, 59], they fail in rare weather events (top). Lidar-
only detectors, such as the same SSD model trained on pro-
jected lidar depth, might be distorted due to severe backscat-
ter in fog or snow (center). These asymmetric distortions
are a challenge for fusion methods, that rely on redundant
information. The proposed method (bottom) learns to tackle
unseen (potentially asymmetric) distortions in multimodal
Proposed Fusion Architecture data without seeing training data of these rare scenarios.

Bijelic et al 20



Gated cameras

From sensors unlimited website



Multi sensor bad weather data

DATASET
SENSOR SETUP

Waymo [ ]

NuScenes [/]

Ours

RGB CAMERAS
RGB RESOLUTION
LIDAR SENSORS
LIDAR RESOLUTION
RADAR SENSOR
GATED CAMERA
FIR CAMERA
FRAME RATE

5
19201080

*x X% % P

10Hz

6
1600x900

X B2 -

| Hz/10 Hz

2

1920x 1024
2

64
1
1
1

10Hz

DATASET STATISTICS

LABELED FRAMES
LABELS

SCENE TAGS
NIGHT TIME
LIGHT WEATHER
HEAVY WEATHER
FOG CHAMBER

198k
7.8TM

*x X X N %

40K
1.4M

xx NSNS

13.5K

SNSSNANNS

Table 1: Comparison of the proposed multimodal adverse
weather dataset to existing automotive detection datasets.

Bijelic et al 20



Gated Camera RGB Camera BEV Lidar Intensity Radar

Figure 3: Multimodal sensor response of RGB camera,
scanning lidar, gated camera, and radar in a fog chamber
with dense fog. Reference recordings under clear condi-
tions are shown in the first row, recordings in fog with visi-
bility of 23 m are shown in the second row.

Bijelic et al 20



Fused Detections

Entropy
Estimation
Projected
Lidar Stream T~
RGB Camera
Stream

Gated Camera
Stream

Projected

Radar Stream |:| Entropy Exchange EI Deep Feature Exchange

l:l SSD Bbox Block . SSD Feature Block

Sensor Input Entropy Fused Feature Extraction

Figure 4: Overview of our architecture consisting of four single-shot detector branches with deep feature exchange and
adaptive fusion of lidar, RGB camera, gated camera, and radar. All sensory data is projected into the camera coordinate
system following Sec. 4.1. To steer fusion in-between sensors, the model relies on sensor entropy, which is provided to each
feature exchange block (red). The deep feature exchange blocks (white) interchange information (blue) with parallel feature

extraction blocks. The fused feature maps are analyzed by SSD blocks (orange).

Bijelic et al 20



Rain has multiple interesting effects

Blur from wet air Puddles

Color shifts Streaks

These are often quite strongly coupled to scene geometry



Rain - multiple extrinsic phenomena,
including smoothing, raindrops, loss of saturation,
glossy/wet surfaces, etc. etc.



Rain - phenomena

Refraction causes each drop to contain a tiny image

(a) An image of a drop hanging from a pipette (b) Perspective views created from (a)
Figure 7. Looking at the world through a raindrop. (a) An image of a drop hanging from a pipette and a magnified version. (b) Near-perspective

views computed using the geometric mapping due to refraction. Note that, in the perspective views, straight lines in the scene are mapped to straight
lines in the image.

Garg and Nayar 07



Backscatter

® Refraction in drops causes backscatter of headlight light
® makes driving in rain at night harder

® Neat trick

® (Tamburo et al 14)
® Do not illuminate raindrops by
® having headlights that are highly steerable (multiple micro mirrors)
® very fast exposure with usual illumination identifies raindrops
® too fast for driver to resolve
® now direct light between drops



s

e Qe :.0

o Sese*e
Kl

Fig.7. A: Our headlight has unprecedented resolution over space and time so that
beams of light may be sent in between the falling snow. Illustration adapted from [11].
B: Artificial snowflakes brightly illuminated by standard headlight. C: Our system
avoids illuminating snowflakes making them much less visible.

Tamburo et al 14



Rain - phenomena

Drops move fast, and so create motion blur (streaks)

i

Drop @

Pixel O 0O

8 E'_ """ ‘;:.:)

= )

% Al/T :__c_.;

= 2
E, ! [-» .

ey Tipe ., Frage
’n‘T ’n 1”+T n-1 n n+l
(a) Short exposure time (1 ms)  (b) Normal exposure time (30 ms) (a) Average irradiance at a pixel (b) Intensity at a pixel

Figure 9. (I) Raindrops and motion-blur. An image of a scene taken in rain with (a) a short exposure time of 1 ms and (b) with typical exposure
time of a camera (30 ms). (II) The intensities produced by motion-blurred raindrops. II (a) The average irradiance at the pixel due to the raindrop
is E, and that due to the background scene is Ej. Note that E, > Ej. The drop projects onto a pixel for time T < 1.18 ms, which is far less than
the typical exposure time T of a camera. (b) Intensities of a pixel in three frames. A drop stays over the pixel in only a single frame and produces a
positive intensity fluctuation of unit frame width.

Garg and Nayar 07



Rain - phenomena

Shallow free space - individual rain streaks
Deep free space - more bulk, fog-like effects

| 11
ov)
- m
: 1a
. -~
- g
. =
: ©
H c
i 5 2
:< : 3 Fog like :
; Rz, - appearance :
2 80| 80} () 4 : :
0]
3 Al |
= 70 70
£ M’
2
(a9 60 g :
60 o Ti T3 Noise :
0 10 20 30 "¢ ¢ 10 20 30 ¢ level : 2N -
a Rain visible b Rain invisible Zm R:z, Distance

Figure 13. Dynamic weather and visibility: (I)(a) Frame from a video of a scene where rain is visible. The intensity variation due to rain is high.
(b) Frame from a video of the same scene taken with camera parameters to reduce the visibility due to rain. The intensity at the same pixel shows low
variance over time. (II) The change in intensity produced by a falling raindrop as a function of the drop’s distance z from the camera. The change in
intensity A/ does not depend on z for drops that are close to the camera (z < z,,). While for raindrops far from the camera (z > z,,), Al decreases as
1/z and for distances greater than R z,,, A[ is too small to be detected by the camera. Therefore, the visual effects of rain are only due to raindrops

that lie close to the camera (z < Rz,,) which we refer to as the rain visible region.
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Rain - phenomena

Shallow free space - individual rain streaks
Deep free space - more bulk, fog-like effects
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Figure 1: (a) An example real photo that demonstrates the
scene visibility variation with depth, and the presence of
rain streaks and fog; and (b) a plot of rain streak intensity
(t,-) against scene depth (d) based on the model in [13].
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Simulating rain
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Fig. 1 Vision tasks in clear and rain-augmented images. Our syn-
thetic rain rendering framework allows for the evaluation of computer
vision algorithms in challenging bad weather scenarios. We render
physically-based, realistic rain on images from the KITTI [23] (rows
1-2) and Cityscapes [ | 3] (rows 3-4) datasets with object detection from
mx-RCNN [ 73] (row 2), semantic segmentation from ESPNet [65] (row
4). We also present a combined data-driven and physic-based rain ren-
dering approach which we apply to the nuScenes [V] (rows 5-6) dataset
with depth estimation from Monodepth2 [25] (row 6). All algorithms
are quite significantly affected by rainy conditions.

Semantic segmentation [05]
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Simulating rain - 1ssues

® Near field:;

® drops are bright, discrete, likely ballistic motion
® how bright?
® where?
® how moving?
® Jikely airis “wet”
® 50 some fogging, depending on depth

e Far field:
® fog like effects

® So we need to know
® depth, environment map, falling drops, camera movement



Simulating rain
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Fig. 2 Physics-Based Rendering for rain augmentation. We use par-
ticles simulation together with depth and illumination estimation to

render arbitrarily controlled rainfall on clear images.
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Simulating rain
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Minor errors in environment map have
no real effect on rain appearance
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® Trick:

Simulating rain

® rain causes color effects, specular effects etc.
® (CycleGAN is good at this, but bad at streaks
® Physics based simulation is bad at this but good at streaks
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Clear images
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Rain translations

Physic-based
rain augmentation

[fig. 2]
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Rainy images

Fig. 5 GAN+PBR rain-augmentation architecture. In this hybrid
approach, clear images are first translated into rain with CycleGAN [* ]
and subsequently augmented with rain streaks with our PBR pipeline

(see fig. 2).
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- Other physic-based rain rendering

'y AT it ey
rain 100H [ ] rain800 [/9] did-MDN [75]
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Original Rain augmented (PBR)
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Fig. 11 Object detection on PBR rain augmentation of KITTIL From left to right, the original image (clear) and three PBR augmentations with
varying rainfall rates. Images are cropped for visualization.
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Original Rain augmented (GAN+PBR)
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Fig. 15 Object detection on our GAN+PBR augmented nuScenes. From left to right, the original image (clear), the GAN augmented image and
three GAN+PBR images.
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Deraining - strategies

® Essentially

® obtain images with/without rain (with rain by synthetic)
® train network to reproduce without rain image from with rain

® starts with Eigen et al 13

From Eigen et al. 13

Figure 1. A photograph taken through a glass pane covered in rain,
along with the output of our neural network model, trained to re-
move this type of corruption. The irregular size and appearance of
the rain makes it difficult to remove with existing methods. This
figure is best viewed in electronic form.



Rainy windows
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From Eigen et al. 13



Rain streaks

Figure 7: Visual comparison of different rain streak removal methods on real example images.

Lietal 16




Streaks

Figure 6: Real rain streaks removal experiments under different scenarios. From left to right are input image, results of

DSC[26], LP [24], CNN [10], DID-MDN[31] and ours. Demarcated areas in each image are amplified at a 3 time large:
scale.
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Both rain streaks and haze
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rar

Figure 7. Examples of JORDER-R-DEVEIL on heavy rain (left two images) and mist images (right two images).
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Scattering profiles can be complicated



Big (dust, smoke)

Ailr molecules

(b)

%,; Water drops
T

Fig. 2.7C Scattering patterns for different particles'. (a) Largc irregular
particles, lilke those comprising dust and smoke, are irregular in the sense
that they are not symmetric. They do, however, have a strong forwgrd
scattcririg peak and a smaller though st{ll pr.onounce.d backs?at.terfmg)
peak. (b) Ar molecules have a scattering h%nctx(')n that is symmetric or::,1
and aft: thiey scatter the same amount of light in both the for\.vard an

backward irections but lack both the forward and backscaFtermg pc:akCi
(c) Large water drops have a strong f()rwarfi and backscattering pce}k an ,
ai:g&ho\ 7 Stro iqnhancements at the primary and secondary rainbow

From [.ynch and Livingstone, Color and Light in Nature




Fig. 2.7A (LEFT) Aurcole around the sun. The
sun is hidden by a street lamp. To the eye, the
sky appeared clear. '

Fig. 2.7B (RIGHT) The next day the sky was
exceptionally clear and there was no aureole.

From Lynch and Livingstone, Color and Light in Nature






Minnaert, Light and Color in the outdoors

Notice flattened sun,
sparkles




etc.




RENDERED USING DALI = HENRIK WANN JENSEN 2001






HENRIK WANN JENSEN 2001







subsurface scattering in skin (not rendered!)






Paints are films with colored scatterers

etc.

Colorant particle

Translucent medium



Glowing paint from specular refl’ns




‘Boeing Autonomy data




