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The Kalman filter 1s wonderful, but...

The linear model of measurement i1sn’t always helpful
® Example:
® our localization procedures

The linear model of movement isn’t always helpful
® Example:
® the car in ND Kalman filter example is completely unrealistic

What to do about non-linearities?



Example: Hard localization

® Example we saw
® Assume
® car state is (position; velocity; acceleration)
® it doesn’t rotate!
® this yields D_i, and noise
® we know M 1 and noise for beacons
® Then it’s all easy (plug in equations and go)

® but what if we localize with IRLS?



IRLS localization

Write state of vehicle:

Can extract position as:

State update is:

Measurement i1s:

position
X; = .
velocity

Pi: — Hsz'

xX; = Dix;—1 +&

y; = argmin, C'(u, x;)

HUH?

)



Harder localization trick

® Model the cost function as:

‘H
C(u,x;) ~ ¢y + VT(u —pi) + (u— pi)TE(u — Pi)

® at the minimum - so actually, v=0
® now the cost function might be slightly wrong, which will cause errors in u
® if we use the model:

yi=u=p; + H 3¢

® then we have: I

do?

C(yi,xi) ~ N(co, 7) N(0,0°1)

And a kind of “evenness” property



Harder localization trick, II

® This property is reasonable:
® we can’t tell noise directions apart by their effect on the cost function

® Now we’re 1n business:
x; ~ N(Djx;_1,%;)

yi ~ N(I,x;, 027-[._1)

1

Choose this Hessian of cost function at best location



Example: Nasty dynamical model
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Formally: car is non-holonomic



Building a movement model
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For sufficiently small timestep, bounded rate of change in angle, we get

X

Yy
0

%

A general movement model

4

-z + R(sin(0 + Af) — sin6)
y — R(cos(f + Af) — cos @)

T + vcosb

y_

- vsin @

0+ u

0+ A

THIS ISN’T LINEAR!

THIS ISN’T LINEAR!

v, u parameters of motion



The extended Kalman filter

® What happens if state update, measurement aren’t linear?
® particle filter
® linearize and approximate (EKF)

Xi = f(Xz'—larTl)

Noise - normal, mean 0, Cov known

}
yi = g(x;,n)



The steps, KF:

Have: Mean and covariance of posterior <

after i-1’th measurement

Construct:

Now construct:




The steps, KF:

Have: 7;'— 1 22_—1 <

Construct:

Now construct:




[inearization and noise

® Two ways in which noise could affect x_1 l

® x_{i-1} is noisy X; = f(X’i—la n)
® AND there is n to account for

® Now consider some nonlinear function with noisy input

® first case
h(x) where x ~ N(X,X,) h(x + () where ( ~ N(0,X,)
Approximate
e - ] h(X+ () = h(x)+ Jn.C
Jh’x = ce 8:1:;
i i Yields

Jacobian === derivative h(X) ~ N(h(}_(), Jh,:c ZCBJIEZL_:aj)



[inearization and noise

® Two ways in which noise could affect x_1 l

® x_{i-1} is noisy X; = f(X’i—la n)
® AND there is n to account for

® Now consider some nonlinear function with fixed input,

noise
® sccond case

h(x,n) where n ~ N(0,0,)
Approximate

By o] h(x,n) ~ h(x,0) + Jp 0

Oh;
Jon=| ... on

Yields

Jacobian === derivative h(x’ n) ~ N(h(X, O), Jh,nznjfzjn)



The extended Kalman filter

® L.inearize: Xi = [i (X’i—la n)
- Of1
19,
FCB — 1 af?,
_ 833j
0 f1
JT_' L on1
n — of;
)

Posterior covariance of x_{i-1}

x; ~ N(fi(x,,0), Fo X\ FL 4+ FuXn i FD)

Noise covariance T




The steps, EKF:

Have: Xz 1 22__1 <

Construct:

Now construct:




The steps, EKF:

Have: Xz 1 22__1 <

Construct:

Now construct:




The extended Kalman filter

® [.inecarize: Yy = gi(Xia n)

ey

B el

ga: — 1 89

i e o o axl
ey

B oo

gn — e 8g

i e o o 8"’2]1

Yi N(gz( ,0), Gop2l, gT‘I‘gn ngT)




Recall: The steps, KF:

Have: Xz 1 22__1 <

Construct:




The steps, EKF:

Have: XZ 1 Z;I_ 1 |

Construct:




Recall: The steps, KF:

Have: Xz 1 22__1 <

Construct:

X, =DiX,, % =Z4+DiZ_ D]

(

Measurement arrives: Yy ~~ N (

Now construct:




The steps, EKF:

Have: Xz 1 Z;_—l <

Construct:

Now construct:




Recall: The steps, KF:

Have: Xz 1 22__1 «

Construct:

X, =D X, , Y. =X4 + DX, DF




The steps, EKF:

Have: Xz 1 Z;_—l <

Construct:

Now construct:




Outcome and 1ssues

® In principle, can now filter position/orientation wrt map

® linearize dynamics following recipe above
® linearize measurements ditto

® There could be problems
® EKF’s are fine if the linearization is reliable
® can be awful if not (examples)
® in fact, the map points are uncertain
® why not try to make/update map while moving? SLAM, to follow



