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Image neighborhoods

• We want to find patches that are “worth representing”

• to match from image to image

• to represent textures

• to represent objects


• Requirements

• Covariant to translation, rotation, scale


• i.e. if the image is translated, rotated, scaled, so are the neighborhoods

• important to ensure that the representation of the patch is stable


• Localizable in translation, rotation, scale

• we can estimate the position, orientation and size of the patch

• and get the answer about right


• Methods exist for richer sets of requirements



Recall: Edges

• Idea:

• points where image value change very sharply are important


• changes in surface reflectance

• shadow boundaries

• outlines


• Finding Edges:

• Estimate gradient magnitude using appropriate smoothing

• Mark points where gradient magnitude is


• Locally biggest and

• big



Recall: Smoothed gradients

• Fact:  These two are the same

• Smooth, then differentiate 

• Filter with derivative of Gaussian


• Exploit:

• Filter image with derivative of Gaussian filters to get smoothed gradient



Edge Maps Depend on Shading

• If the image is brighter (resp. darker)

• because the camera gain is higher (resp. lower)

• because there is more (resp. less) light

• because the pixel values got multiplied by a constant


• Then the gradient magnitude is bigger (resp. smaller)


• So scaling image brightness changes the edge map

• because some magnitudes will go above (resp. below) the test threshold


• Edge maps differ for brighter/darker copies of a picture 



Orientations - I

• Gradient magnitude is affected by illumination changes

• but gradient direction isn’t



Orientations - II

• Notice larger gradients are “better”

• we know the orientation better; associated image points “more interesting”



Finding image neighborhoods - I

• Corner finding strategy

• Find centers

• At each center, estimate scale

• Now from center, scale, estimate orientation



Harris corner detector - I

• Good corners 

• High contrast

• Sharp change in edge orientation


• Image features at good corners

• Large gradients

• That change direction sharply


• Compute matrix H by summing over window



Harris corner detector - II

• Matrix H 


• Will have two large eigenvalues if the window has

• Large gradients

• That change direction sharply


• Look for big values of 







Estimating scale - I

• Assume we have detected a corner 

• How big is the neighborhood?

• Use Laplacian of Gaussian filter


• Details on next slide

• Kernel looks like fuzzy dark blob on pale light foreground 

• Scale (sigma) of Gaussian gives size of dark, light blob


• Strategy

• Apply Laplacian of Gaussian at different scales at corner


• response is a function of scale

• Choose the scale that gives the largest response


• the scale at which the neighborhood looks “most like” a fuzzy blob

• This is covariant (see text)



Estimating scale - II

• Laplacian of a function


• Gaussian


• So Laplacian of Gaussian


• Convolve with image
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Extremal scale



Estimating orientation of neighborhood

• Within neighborhood, estimate image orientations

• Trick: use a smoothing scale that is a function of neighborhood size


• Form a histogram of orientations

• Weighting by distance to center, or unweighted


• Choose the orientation with the maximum count

• if there are two or more


• make copies of the neighborhood

• each has one of the peak count orientations





Describing Neighborhoods

• Alternative:  SIFT features

• SIFT=Scale Invariant Feature Transform

• Very strong record of effectiveness in matching applications


• use orientations to suppress intensity change effects

• use histograms so neighborhood need not be exactly localized

• weight large gradients higher than small gradients


• Weighting processes are different

• SIFT features behave very well using nearest neighbors matching


• i.e. the nearest neighbor to a query patch is usually a matching patch



SIFT Features



Neighborhoods and SIFT - Key Points

• Algorithms to find neighborhoods 

• Represented by location, scale and orientation

• Neighborhood is covariant


• If image is translated, scaled, rotated

• Neighborhood is translated, scaled, rotated

• Important property for matching


• Affine covariant constructions are available


• Once found, describe with SIFT features

• A representation of local orientation histograms, comparable to HOG

• Normalized differently



Learning to detect and describe keypoints

• You should be able to learn all this

• keypoints are stable under rotation, translation, scale (homographies)

• descriptions are stable under rotation, translation, scale (homographies)
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