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Linear dynamics and measurement

Square matrix of full rank

v
X; = Dixi—1 +§

|

This 1s a normal random variable with zero mean and known covariance

® State changes as:

Any matrix whose dimensions are OK
v
yi = Mix; +¢

|

This 1s a (different!) normal random variable with zero mean and known covariance

® Measurements are:



Other notation

Read this as: x_i is normally distributed.
The mean is a linear function of x_1i-1 and
whose variance is known (and can
depend on 1).

x; ~ N(D;x;—1;%4:)

yi ~ N(M;xi; Xm;)

\Read this as: y_i is normally distributed.
The mean 1s a linear function of x_1 and

whose variance is known (and can
depend on 1)



Examples

® Dynamical models

® Drifting points
® new state = old state + gaussian noise

® Points moving with constant velocity
® new position=old position + (dt) old velocity + gaussian noise
® new velocity= old velocity+gaussian noise

® Points moving with constant acceleration
® ctc

® Measurement models
® state=position; measurement=position+gaussian noise
® state=position and velocity; measurement=position+gaussian noise
® but we could infer velocity

® state=position and velocity and acceleration;
measurement=position+gaussian noise



Key point

o P(y;i|x;) isnormal.

o If P(Xz'_l ]yo, e ,yi_l) 1s normal, then

P(Xi‘YO7'°°7Yi—1)

are both normal

P(Xi’}IO7 RN 7y2)




Checking...

® Probability distribution 1s normal iff it has the form:

log p(x) = — [(x — 1) (x — )] + K

® and you can check this for each of the relevant dists.



The Kalman Filter

® Dynamic Model

® Notation

x; ~ N(D;x;_1,%4,)
yi ~ N(M;x;, Xm,)

mean of P
mean of P

covar of P

covar of P

(
(

(Xi‘yo, ce.
(Xilyo, - - -
Xilyo, - -
Xilyo, - -

7yi—1) a§ Xz'_
7y2) as Xz+

. 7yi—1) as Zz—
., Y;) as Z;r



Prediction

® We have:

X;_1 N(X:__l, E;_—l) Xq ™ N(Dixi—la Zdz)
X; = Dixi—1 +¢

T

This is a normal random variable with zero mean and known covariance

mean(x;) = D;mean(x;_1)

cov(x;) = DiCOV(X¢—1)D;‘;T + cov(()



Prediction

® We have:

X;_1 N(X,L—l_ 15 E;_—l) Xq ™ N(Dixi—la Zdz)

X; = Dixi—1 +¢

T

This is a normal random variable with zero mean and known covariance

Which yields....

X =D, X. Y. =%y +D;% D]



Useful Fact: 9.2 The parameters of a normal posterior with a single
measurement

Assume we wish to estimate a parameter #. The prior distribution for
f is normal, with known mean p, and known standard deviation o.
We receive a single data item 2, and a scale ¢;. The likelihood of 2,
is normal with mean ¢;0 and standard deviation oym,,1, where op, 1 is
known. Then the posterior, p(0|z1,c1,0m,1, ftx,0x), is normal, with

mean . . .
17102 + px02, posterior mean is weighted combo

S N P of prior mean and measurement

and standard deviation

posterior covar is weighted combo
01211.10 72r .
o1 = ' : of prior covar, measurement
01271.1 Netat ]
' matrix and measurement covar

Ki =3, Mj [MiZ; M; + Emi]_l

+ _ — v — osterior mean is weighted combo
X=X + K lyi — M X[ P °

v v of prior mean and measurement

posterior covar is weighted combo

[I — ]CzMz] D z— of prior covar, measurement

matrix and measurement covar
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Have:

Construct:

Now construct:

The steps:

Mean and covariance of posterior
after i-1’th measurement




Have: Xi—l i1 |

Construct:

Now construct:




Very simple example

® (ar is translating
® we supply a known demand to the accelerator,
® changing at each time step
® it sees 2 beacons (which are in its coordinate system)
® beacon 1 measured in car x but not y
® beacon 2 measured in car y but not x
o Q:
® recover filtered estimates of:
® position, velocity and acceleration in world coords



Dynamical model

® We supply a demand to the accelerator
® acceleration updates as noise (measured to be about the same as demand!)

a;+1 = a; + noise
® velocity by integrating acceleration
V,11 = V; + ota; + noise

® position by integrating velocity

C;11 = ¢; + 0tv; + noise



Stack the vectors to get:

Which gives:

Xi4+1l =

Where:

Ci+1
Vit1l
Ai41

Xi = | Vi
- a’l/ —
7T 6L 0
=1 0 Z otZ
0 0 g




Measurement model

® The acceleration at 1 should be demand
® 4noise

® Beacons are in car coordinate system)
® beacon |1 measured in car x but not y
® beacon 2 measured in car y but not x



O bs

In world coordinates, car is at:
In car coordinates, beacon 1 measurement 1s:

In car coordinates, beacon 2 measurement is:



Yi —

These are known constants

The acceleration demand

-

d;
el'b; —b; | + noise
e2Tb2 — b2 _

!

l

!

-+ noise =

Measurements from the beacons

X; + G



Have: Xi—l i1 |

Construct:

Now construct:




Velocity
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FIGURE 11.7: A constant velocity dynamic model for a point on the line. In this case,
the state space i1s two dimensional, with one coordinate for position, one for velocity. The
figure on the top left shows a plot of the state; each asterisk is a different state. Notice
that the vertical axis (velocity) shows some small change compared with the horizontal
axis. This small change is generated only by the random component of the model, so
the velocity is constant up to a random change. The figure on the top right shows
the first component of state (which is position) plotted against the time axis. Notice
we have something that is moving with roughly constant velocity. The figure on the
bottom overlays the measurements (the circles) on this plot. We are assuming that the
measurements are of position only, and are quite poor; as we see, this doesn’t significantly
affect our ability to track.



Notice how uncertainty
1 in state grows with

1 movement and

T " ; ’ 1 is reduced with
measurement.
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FIGURE 11.9: The Kalman filter for a point moving on the line under our model of constant
velocity (compare with Figure 11.7). The state is plotted with open circles as a function of
the step 7. The *s give T, , which is plotted slightly to the left of the state to indicate that
the estimate 1s made before the measurement. The xs give the measurements, and the +s
give T, , which is plotted slightly to the right of the state. The vertical bars around the
*s and the +s are three standard deviation bars, using the estimate of variance obtained
before and after the measurement, respectively. When the measurement is noisy, the bars

don’t contract all that much when a measurement is obtained (compare with Figure 11.10).



Tricks

® Smoothing
® You can build a representation of P(X_ilY_O, .... Y_N)
® (i.e.incorporating future measurements)
® run one filter forward, one backward
® posterior of forward filter is normal
® predictive for backward is normal
® ctc.

® Polishing
® This means that, if I can endure latency, I can have two estimates

® one at the time of the 1’th measurement
® one a few measurements later, that is more accurate



Data Association

® Nearest neighbours
® choose the measurement with highest probability given predicted state
® popular, but can lead to catastrophe

® Probabilistic Data Association

® combine measurements, weighting by probability given predicted state
® gate using predicted state



