Motion Planning |

D.A. Forsyth
(with a lot of H. Choset, and some J. L1)



Large C-Space Dimension
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Dimension and 1ts nuisances

e Counting:
® A d-dimensional cube has 2Ad vertices
® Volume:

® your intuitions about volume are wrong in high dimension
® consider cubical “orange” in high d

® skin depth e/2

® pulp (I-e)

® volume of pulp:
® (l-e)Ad

® volume of skin:
® I-(1-e)Ad

e [T°S ALL SKIN!
® Almost all the volume of high d objects is very close to surface



Dealing with C-Space Dimension

/ O . %
\‘ \/
O — ) 05 — ) A ]

Full set of neighbors  Random subset of neighbors

« We should evaluate all the neighbors of the current
state, but:

« Size of neighborhood grows exponentially with
dimension

« Very expensive in high dimension

Solution:

« Evaluate only a random subset of K of the neighbors
« Move to the lowest potential neighbor
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Why do we care?

Our configuration space may be inconveniently large
® cven 3D i1s much harder than 2D

We need the 1deas to talk about dynamics
® planning with dynamics is very different from kinematic planning



Dynamics make planning harder

® Dynamics introduce differential constraints

x':f($,u)
N

Derivative of state State  Control input -
there might be
constraints on this,

too

Quite possibly nasty



Phase space

e Configuration space + all relevant derivatives

® For us, very likely:

® position+orientation+velocity+ang.velocity



Simple example

Obstacle

Point robot
on a line

Configuration space: X

® (with complications created by obstacle)
State 1s:

* (xX,V)

® 5o phase space is 2D

Dynamics are:



Simplest case - extend obstacles

C

Figure 14.1: An obstacle region C,s C C generates a cylindrical obstacle region
Xops C X with respect to the phase variables. . .
= derivatives

Lavalle, Ch 14



The phase space...

(X, v)




Limits on phase variables

Obstacle

Point robot
on a line

e (Configuration space: x
® (with complications created by obstacle)

® State 1s:
* (x,V)
® 5o phase space is 2D

® Velocity limits are: -1<v<lI
® draw phase space with obstacles



Phase space 1s now




Constraints on phase variables

X-33 Flight Profiles
209,000 {

AT

164,000 it

Malmsirom AIS

Dupway Proving Grounds

NASA /Lockheed Martin X-33 Re-entry trajectory

Figure 14.2: In the NASA /Lockheed Martin X-33 re-entry problem, there are
complicated constraints on the phase variables, which avoid states that cause the
craft to overheat or vibrate uncontrollably. (Courtesy of NASA)

Lavalle, Ch 14



Control limits create nasty obstacles

Obstacle

Point robot
on a line

® State1s: (X, V)
® (differential constraints:

Control constraint: — 1 < Uu < ]_



I’m here, and
decelerate

(X, v)

Distance travelled
until stationary
at acceleration = -1



(X, v)

Keep out of here, to

\
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Helicopter height-velocity diagram

Height-velocity diagram for

Bell 204B Helicopter
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OPERATION IN SHADED AREAS
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Recommended take-off profile
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(colloquially, dead man’s curve;
from wikipedia; there are all sorts
of operating limits to helicopters)



Random roadmaps

® Problems:
® We can’t construct
® visibility complexes
® voronoi diagrams
® orids
® cause the space is “too big” (too many neighbors/faces/etc)
® Potential functions may have nasty behaviors, too

® Idea:

® draw random samples in configuration space, and join up
® we might get a road map like this, and samples are relatively easy to draw



Sampling Techniques
p

Forbidden Space

Free Space
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Sampling Techniques

Sample random locations

Choset slides




Sampling Techniques

Remove the samples in the forbidden regions

Choset slides




Sampling Techniques

Link each sample to its K nearest neighbors

Choset slides




Sampling Techniques
Remove the links that cross forbidden regions
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Sampling Techniques
Remove the links that cross forbidden regions

The resulting graph is a probabilistic roadmap (PRM)

Choset slides




Sampling Techniques
Link the start and goal to the PRM and search using A*
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Sampling Techniques
Continuous Space

!

Discretization

!

A* Search
» “Good” sampling strategies are important:
— Uniform sampling
— Sample more near points with few neighbors
— Sample more close to the obstacles
— Use pre-computed sequence of samples

Choset slides




Sampling Techniques

« Remarkably, we can find a solution by using
relatively few randomly sampled points.

* |n most problems, a relatively small number
of samples Is sufficient to cover most of the
feasible space with probability 1

 For a large class of problems:

— Prob(finding a path) - 1 exponentially with the
number of samples

« But, cannot detect that a path does not exist

Choset slides




Random trees

® Notice how randomized roadmap i1s for “any plan”
® but we may not need that
® plan for a specific start, a specific goal

® For the moment, focus on start

® orow a tree with start at root
® join tree to goal
® perhaps by growing backward from goal, and linking

® Q: how to grow the tree?



Naive Random Tree

Start with middle

Sample near this
node

Then pick a node at
random in tree

Sample near it

End up Staying in
middle

Kosecka slides




Even More Radical: Rapidly
Exploring Random Trees (RRT)

Algorithm BuildRRT
Input: Initial configuration g;,;+, number of vertices in RRT K, incremental distance A4q)

Output: RRT graph G

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 .. o .
. G.init(g;pit) :
1 1
! for Kk = 1 to K do !
: Qyand & RAND_CONF () :
1 1
| — NEAREST_VERTEX(Qpang: G) |
1 - 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

9new < NEW_CONF(qnear' 9rand’ Aq)
G.add_vertex(gpew)

qnear

G.add_edge(Gpearr 9new)
return G

_______________________________________________________________________________________________________________________

m "«"denotes assignment. For instance, "largest « item" means that the value of /argest changes to the value
of item.

= "return” terminates the algorithm and outputs the following value.
Choset slides




RRT’s are biased towards large Voronoi
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The nodes most likely to be closest to a randomly chosen point in state space

are those with the largest Voronoi regions. The largest Voronoi regions belong

to nodes along the frontier of the tree, so these frontier nodes are
Kosga;cggﬂaglscally favored when choosing which node to expand.



RRT’s expand (another way)

® The nodes of the tree are

® mostly on the boundary
® of a “blob” of nodes
® Dbecause that’s where the volume 1s

® Draw a sample in c-space

® if the blob is spread out in c-space, it’s “inside”, but we’re OK
® otherwise, sample is likely “outside”
® 5o nearest node is very likely on boundary



_______________________________________________________________________________________________________________________

Algorithm BuildRRT
Input: Initial configuration g;,;+, number of vertices in RRT K, incremental distance A4q)

Output: RRT graph G

1 1
1 1
1 1
1 1
1 1
1 1
1 1
i i
1 1
1 . . 1
! G.init(qgjpjit) i
1 1
! for k = 1 to K do !
: Qrand & RAND CONF() !
: — NEAREST VERTEX(Qyapg: G) :
1 1
i i
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
H 1

9new < NEW_CONF(qhear' 9randr Aq)
G.add_vertex(gpew)

qnear

G.add_edge(GQpearr 9new)
return G

_______________________________________________________________________________________________________________________

m "«"denotes assignment. For instance, "largest « item" means that the value of /argest changes to the value
of item.

m "return” terminates the algorithm and outputs the following value.

® The sample grand 1s drawn UAR from configuration space
® or reject if inside obstacle
® this could be tricky

® Notice

® tree builds out into free space quickly
® in different applications, one uses different epsilon
® sometimes even add whole edge
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Properties

» %‘&3‘%‘
R

Tends to explore the space rapidly in all directions

Does not require extensive pre-processing
Single query/multiple query problems

Needs only collision detection test - No need to
represent/pre-compute the entire C-space

Choset slides




Properties

® Notice

® Drawing the sample could get tricky
® You need to be able to do the collision detection for the edge

e BUT
® many/most edges should be easy if there is a lot of free space
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A quick conservative test - |

® (Construct an axis aligned bounding box in 3-space
® containing all configurations on the edge segment
® how? below

® Test this box against objects

® 1o intersection? edge is OK
® ntersection? more detailed test



A quick conservative test - 11

® Building a box for robot rotating and translating
® Robot rotates about origin in its own coordinate system
® this origin translates

Y _—

In c-space

In 3D



A quick conservative test - 11

® Building a box for robot rotating and translating
® Robot rotates about origin in its own coordinate system
® this origin translates
® Build bounding sphere, centered on origin, in advance
® Translate this sphere’s center - yields box

® [.oose, quick bound
® [.oose
® if segment intersects by this test

® subdivide and go again / ’
.‘




Bad for kinematic chains

—X




Bad for kinematic chains - 11

® Specialized techniques
® typically per segment bounds
® sce Lavalle chapter, on website



Build one out from start
one out from goal
join

Choset slides



Grow two RRT’s together

[ Kuffner, LaValle ICRA *00]

qgoal




Two RRT's

A single RRT-Connect iteration...

qgoal

Kosecka slides



Two RRT's

1) One tree grown using random target

qgoal

qinit

Kosecka slides



Two RRT's

2) New node becomes target for other tree

9 target
qgoal

qinit

Kosecka slides



Two RRT's

3) Calculate node “nearest™ to target

qtarget

\ q goal

Kosecka slides



Two RRT's

4) Try to add new collision-free branch

qtarget

qgoal

Kosecka slides



Two RRT's

5) If successtul, keep extending branch

9 new

’/ qtarget

qgoal

Kosecka slides



Two RRT's

5) If successtul, keep extending branch

9 new

\ qtarget

\ qgoal

qnear
qim’t

Kosecka slides
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From Kuffner et al.
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. (Li

mited) background in Russell&Norvig

Chapter 25

* Two main books:
—J-C. Latombe. Robot Motion Planning. Kluwer.

1991.

— S. Lavalle. Planning Algorithms. 2006.

http://msl.cs.uiuc.edu/planning/

— H. Choset et al., Principles of Robot Motion:
Theory, Algorithms, and Implementations. 2006.

Ot

ner demos/examples:
http://voronoi.sbp.ri.cmu.edu/~choset/

http://www.kuffner.org/james/research.htmi

http://msl.cs.uiuc.edu/rrt/
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