Semi-direct Methods
for VO and SLAM

D.A. Forsyth, UIUC

PIPH

Perpendicular image plane, fixed height

Imagine a camera at a fixed height

® moving rigidly over a textured ground plane
® bottom half of image is distorted ground plane texture

p

horizon (v=0)

% \ (s’ ¢ -h)

(u, v)=(-s/t, -h/t)

Plane z=-h

horizon (v=0)

e
o
/F/

(u, v)=(-s/t, -h/t)

(s, t, -h)

Plane z—h
C
l
U/w U 1.0 0 s
VIW = V | = 0 0 1 t
1 W 0 1 0 —h

Image coordinates Plane texture coords

State

All landmark positions
in original coordinate
frame

Position and orientation of the robot

Landmark 1 position in OCF

A general movement model

e m T 1+ R(sin(6 + Af) — sin6)
Y} y | = | y— R(cos(60+ Af) — cosb)
0 0+ A

AN |

THIS ISN’T LINEAR!

v_t = velocity
omega_t = rotational velocity

. "] i Z—i (sin(f + wyAt) — sin(6))
+ | =2 (cos(f + wiAt) — cos(6))
tht

NN ey

State update

® The vehicle moves, as above;
® but the landmarks don’t move ~
® and there 1sn’t any noise R
Ly
Lo
Lo

Measuring position

(v
® [andmark is at: %
® in world coordinate system —h

® We record position in vehicle’s frame:

point posn in
world coords

vehicle orientation
in world coords

We don’t actually observe this l l
\ Ly R_Q 0 (’LL — 33)
. Lo — OT | (’U _ y)
_h _h
THIS ISN’T LINEAR! - [- —~ —

vehicle posn in

point posn 1n world coords

vehicle coords

e Options:

® linearize that

OR

What we observe

The steps, EKF:

Have: Xz 1 Z;_—l <

Construct:

Now construct:

Alternative approach

We will do odometry first

Assume we *know* the camera height and intrinsics
® We can *reconstruct™® the ground plane pattern
® apply the inverse of the given map
® actually, don’t need intrinsics (later; fairly mathy)

® Now if camera translates, ground plane translates
® if camera rotates, ground plane rotates

Camera image

/ horizon (v=0) Overhead view of ground plane
y /

(s, t, -h)
(u, v)=(-s/t, -h/t)

Plane z=-h

Camera image

Overhead view of ground plane

Ground plane for translating camera

z horizon (v=0)

(s, t, -h)
(u, v)=(-s/t, -h/t)

Plane z=-h

Red camera (i+1) sees
forward of this

Blue camera (i) sees
forward of this

ID 157340157 © Kondratova

The two ground planes...

can be aligned and this reveals translation

How to align?

® Alternatives
® f{ind interest points; use registration methods, above
® direct method (now)
® semi-direct method (shortly)

A crude direct method

Image obtained at current posn, orientation
l projected down to ground plane

min) | G(s,t) — I*((s — x) cos 0 + (t — y) sin6, —(s — x)sinf + (¢t — y) cos) |
s,t

position of camera in ground plane

Ground plane model in
world coordinates rotation in ground plane

This class of cost function is known as a photometric consistency constraint
KEY IDEA - if you what you see back using your new pose,
you should see the ground plane
KEY IDEA - all pixels contribute to estimate of pose,
so could be very accurate

It’s crude...

® Minimize how?
® ot easy in that form

® As translation gets big, you’ll lose precision
® guaranteed by perspective effects

Steps to fix

Patches rather than all pixels

® centered on interest points
® semi-direct method

Be willing to drop patches

® to control perspective problems

Write in terms of warps
® {0 manage notation

Equivalent to Lucas-Kanade
® see L-K, Baker

In terms of warps

Image in current frame

Parameter update

Zlf (x;p+ Ap)) — T(x)]

P |

Pixels on patch Parametric warp
Patch in original ground plane

Parameters to 1’th frame

p < p-+ Ap.

1sh

® Minimize how?

® Pose by accumulating updates
® advantage
® ecfficient
e BUT
® accumulated error (drift - which we’ll fix)

Minimize How? Gauss Newton

min » i (p)
k

At minimum, we have:

ka pfk: —O

Imagine we are at p_i close to minimum; extract step from:

Z fr(Pi +0P) (Vp fi)|lp+sp =0
K

Minimize How? Gauss Newton

S L1 (Pi 4 6D) (Vp fi)lprop = O
k

By truncating a Taylor series, this 1s approximately:

> (fu(Pi) + Vo fulZ0D)) (Vo filp + Hop) = 0
k

Hessian - matrix of second partials
Ignore this, in the hope it is small
and because it 1S inconvenient,
expand to get

Z (fk(pz)vpfk) — Z (fok) (fok)T 5p

k k

Notice

> (o) Vpfe) == (Vpfe)(

k

k

Approximate Hessian:
Issue: need to recompute
at every step, which is slow

pfk:)

Inverse compositional method

< .
Image in current frame

Parameter update

|

S [T(W(x;Ap)) — I(W(x;p))]

Pixels on patch T X [

Parametric warp

Patch in original ground plane

Parameters to 1’th frame

W (x;p) + W(x;p) o W(x; Ap)~"

Why? cheap updates

Taylor series

> [T(W(X; 0)) + VT%—V:AP — I(W(x;p))
Yields: .
Mp = HOX | VTR HWlkip) - 700
Where:

VI—| |VI——

But this 1s evaluated at O warp, and doesn’t change from step to step

H= Y

X

[e)w]T [OW

We now have odometry

® [F height is known, camera is calibrated

® [ssues
® managing perspective issues
® drop patches
® create patches
® managing compute
® interleave two kinds of registration
® interest points (v. quick, quite accurate)
® patches (slower, more accurate)
® map
® put all patches in original coordinate system
®]oop closure
® camera updates may drift

Working in 3D

® Map
® Point measurements
® do we have depth?
® [f so, EKFSlam, above, will work easily
® if we don’t, it will still work (initialize depths carefully)
® Patches and photometric consistency
® must account for depth in matching
® must control computation

SLLAM with depth measurements

® RGB-D or stereo (sketch)

® align depth map in view 2 with that of view 1
® using rotation, translation, m-estimator+IRLS
® wrinkle - use intensity as well as depth
® keep
® aligned depths (prune redundancies) for mapping
® transformation (for localization)

® Key question
® How do we manage computational cost?

SLLAM with depth measurements - 11

® Strategies:
® Find image/depth interest points and register those
® advantage: we know how to do this, straightforward, fast
® possible disadvantage: ignoring a lot of information
® Direct method: minimize photometric/depth alignment cost at every point
® advantage: we know how to do this, all points contribute, accurate
® disadvantage: much more expensive

Semi-direct methods

® Problem:

® a direct method means you must touch many image/depth measurements
® accurate, but likely slow

® Idea:
® find interest points
® use interest point AND its neighborhood
® computing photometric consistency for neighborhood

Semi-direct visual odometry and mapping

® Monocular cameras
® semi-direct
® for the moment, consider interest points in the image
® worry about neighborhoods in a moment
® to predict image positions, we need depths
® associate a depth with each interest point, and a depth estimate
® for that point in each frame
® stick a filter on this

SVO (semi-direct visual odometry)

® Must estimate camera motion from interest points
® assume we have a depth associated with 1’th interest point
® update when camera moves
® start
® depth from prior OR
® stereo in first two frames OR
® depth from single image estimate

Camera 2
Camera 1

Origin

SVO (semi-direct visual odometry)

® Steps:
® estimate camera motion from correspondences using photometric error
® assume constant depth at each patch
® now move patches in 2D to improve photometric error
® now adjust 3D configuration of points and camera motion

Estimate camera motion from correspondences using photometric error

Recall: we know how to make these patches

Fig. 2: Changing the relative pose Tyx_1 between the current and the
previous frame implicitly moves the position of the reprojected points in the
new image u.. Sparse image alignment seeks to find Ty, that minimizes
the photometric difference between image patches corresponding to the same
3D point (blue squares). Note, in all figures, the parameters to optimize are
drawn in red and the optimization cost is highlighted in blue.

now move patches in 2D to improve photometric error

Fig. 3: Due to inaccuracies in the 3D point and camera pose estimation,
the photometric error between corresponding patches (blue squares) in
the current frame and previous keyframes r; can further be minimised by
optimising the 2D position of each patch individually.

now adjust 3D configuration of points and camera motion

|

|

s \ /7 N \ / 1
Ple » P2 "¢ P3 e P3

Fig. 4: In the last motion estimation step, the camera pose and the structure
(3D points) are optimized to minimize the reprojection error that has been
established during the previous feature-alignment step.

Motion Estimation Thread

(New Image k —————————————
!

Sparse Model-based

!
!
| Image Alignment :
Last Fr
(5 ame)r:/' v i

A

Feature Alignment

v

Refinement

|
|
Pose & Structure :
|
|

|
|
| |
| |
| |
| Feature Update '
| Extraction Depth-Filters :
1 |
| |
| Initialize Converged? I —
| Depth-Filters | yes:
| | 1insert
| new Point

Fig. 1: Tracking and mapping pipeline

Quick and efficient

-

Processor
Camera

&

F

Fig. 17: “Nano+" by KMel Robotics, customized with embedded processor
and downward-looking camera. SVO runs at 55 frames per second on the
platform and is used for stabilization and control.

LSD-SLAM

® Essential point:
® careful use of keyframes speeds things up a lot
® Monocular cameras
® direct
® to predict image positions, we need depths
® Recall:
® keyframes are fine
® Discovery:
® keyframe depths are enough
® pose graph:
® key frames (nodes) linked by transforms (edges)

we groundtruth

7 == odometry
=== Optimized trajectory
- |oop closure

Fig. 1: We propose a dense SLAM method for RGB-D
cameras that uses keyframes and an entropy-based loop
closure detection to eliminate drift. The figure shows the
groundtruth, frame-to-keyframe odometry, and the optimized
trajectory for the fr3/office dataset.

Essential steps

® Compare new frame to keyframe
® which has known depths
® compute R, T, from
® photometric error and depth error
® recall:
® depth -> image match -> photometric error
® (could adjust depths in keyframe using R,T, photometric error)

e Keyframe selection
® cven sampling OR
® entropy of R, T from last keyframe to current frame j = H_]
® JookatH_j/H_1

® ic am [getting bad at computing motion?
°

Essential steps

® [oop Closure
® match keyframes
® Map
® pose graph
® Start
® how do I get depth for first keyframe?
® doesn’t seem to matter - random initialization

® as long as you refine the depths
® (roughly) stereo matching yields depth

Tracking

|
|
. |
4 I
|
|
New Image | ves @ o .
(640 x 480 at 30Hz) .
|
.

Create New KF Refine Current KF

I
I

I

I

I

I

I

I

I

I

I

I

. I
— propagate depth map| |— small-baseline stereo |
to new frame — probabilistically :
I

I

I

I

|

I

I

I

|

I

I

I

|

Track on Current KF:

[
|
|
|
[
|
|
|
|
|
|
|
[
|
|
|
[

— estimate SE(3) transformation |
|

i
[
|
|
|
[
|
|
|
|
|
|
|

— regularize depth map merge into KF

— regularize depth map

Add KF to Map

r2(p.£) — find closest keyframes
miﬁs : —F— . — estimate Sim(3) edges
Ese . -
¢ B I reiesils 208 |, ripé)

Curren_t KF

min o2 2
g€sim(3) o rp(p.£) ra(p.€) ||5

* tracking reference

I
I
I
I
I
I
I
I
I
: * replace KF ¢ refine KF
I
I
I
I
I
I
I
|
I

(See Sec. 3.3) (See Sec. 3.4) | (See Sec. 3.2, 3.5 and 3.6)
Fig. 3: Overview over the complete LSD-SLAM algorithm.

; nodi’"“".""”‘-’,’”f’(&’/u

S ey
-~ . *A“;)",’--g‘., l‘_- <

-

R Gbs S o ~»_,.‘,_

T
et T

Vo G
PR ey

: S g
= -

Fig. 7: Loop closure for a long and challenging outdoor trajectory (after the loop
closure on the left, before on the right). Also shown are three selected close-ups
of the generated pointcloud, and semi-dense depth maps for selected keyframes.

More...

https://vision.in.tum.de/research/vslam/lsdslam

References on web page

