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Thread

® With two cameras and some calibration:
® we can recover the position of 3D points
® in the vehicle’s coordinate system

® Together with an EKF, we can use this to recover

® points in world coordinates (a map)
® vehicle location

® [n fact, we can do all this with one camera
® with some minor care



Two calibrated cameras yield 3D points, I



Two calibrated cameras yield 3D points, I
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Visual odometry established

® Correspondences between left and right yield
® the fundamental matrix, and so the essential matrix

® The essential matrix yields

® the rotation between two cameras
® the translation *up to scale*
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Camera 1

Origin T



We can reconstruct in 3D

® 3D points:
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Point in camera one’s coordinate system Point in camera two’s coordinate system



We can reconstruct in 3D, 11

® Image points are:
® (remember we know camera calibration!)
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Recovering the depth

X =yz3

z3 (1 /23) = 2
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The effect of scale

(yif's — 1'1)
(yirs — Pl)
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® [f we scalet
® point coordinates scale
® x I=y_ 1x 3,x 2=y 2x_3
® Assume that scale 1s known

® Fasiest: fix two cameras in some position
® Then we have points in 3D



Thread

® With two cameras and some calibration:
® we can recover the position of 3D points
® in the vehicle’s coordinate system
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® points in world coordinates (a map)
® vehicle location

® [n fact, we can do all this with one camera
® with some minor care



The SLAM Problem

" SLAM stands for simultaneous localization and
mapping

" The task of building a map while estimating
the pose of the robot relative to this map

" Why is SLAM hard?
Chicken-or-egg problem:

" a map is needed to localize the robot and
a pose estimate is needed to build a map

From Burgard et al slides



Simplest case

® Vehicle moves in 2D

® FEach measurement is
® a 2D measurement
® of position of a known beacon in vehicle coords
® (i.e. we know which measurement corresponds to which 3D point)



State

All landmark positions
in original coordinate
frame

Position and orientation of the robot

Landmark 1 position in OCF



A general movement model
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THIS ISN’T LINEAR!

v_t = velocity
omega_t = rotational velocity
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State update

® The vehicle moves, as above;
® but the landmarks don’t move ~
® and there 1sn’t any noise R
Ly
Lo
Lo




Recall: The extended Kalman filter

® [inearize: x; = f(Xi-1,1)
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Posterior covariance of x_{i-1}

x; ~ N(f(xF,,0), Fo. Xt | FL 4+ FuXn i FD)

Noise covariance




Measuring position

U
U

® [andmark is at:
® in world coordinate system

® We record position in vehicle’s frame:

vehicle orientation point posn in
in world coords  world coords

Observation l
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THIS ISN’T LINEAR! [ X
point posn in vehicle posn in

vehicle coords world coords



The steps, EKF:

Have: Xz 1 Z;_—l <

Construct:

Now construct:




In principle, now easy

® Rather horrid from the point of view of complexity
® ]ooks like we have to invert a 3+2N by 3+2N matrix!

e BUT

® [_x is much simpler than it might look
® the landmarks do not move!
® [ n ditto
® there is no noise in the landmark updates - the landmarks are fixed
® (Qutcome:
® We can deal with landmarks one by one
® and so do many small matrix inversions rather than one large one



State update

® The vehicle moves, as above;
® but the landmarks don’t move ~
® and there 1sn’t any noise R
Ly
Lo
Lo




State update, 11

e BUT

® [_x is much simpler than it might look
® the landmarks do not move!
® F_nditto
® there is no noise in the landmark updates - the landmarks are fixed
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® Imagine we have 2 landmarks

Recall EKF:
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State update, 111
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Notice fewer matrix multiplies!




State update, IV

® Imagine we have 2 landmarks

Recall EKF:

.
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x; ~ N(f(xi_1,0), FoXif (FL + Fpn3n i Fr
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More simplifications

e BUT

® G_x 1s much simpler than it might look
® cach set of measurements affected by only one landmark!

N N=Number of landmarks
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More simplifications

e BUT

® G_n is usually much simpler than it might look
® noise is usually additive normal noise

® This means that the term: Qn En Zg;{

® s actually a block diagonal matrix



Big simplification

® The nasty bit...
—1
G Gy +Gn Ym0, |

® But notice key point

® measurements interact only through the position/orientation of the vehicle
each measurement depends on only one landmark and pose of v.
OR measurements are conditionally independent conditioned on pose of v.
OR you could subdivide time and update measurements one by one
OR matrix G_x has the sparsity structure above

the same point, manifesting in different ways)

R



Subdividing time...

® We receive measurements of landmarks in some order
® a measurement of the position of landmark i affects the whole state
® because it changes your estimate of the pose of the vehicle
® and that affects your estimate of state of every landmark
e BUT
® the change in estimate of pose depends ONLY on
® pose
® Jandmark 1



Subdividing time...

® Sequence
® repeat
® move (so make predictions)
® Jandmark 1 measurement arrives (update pose and so all based on 1)
[ J
[

landmark N measurement arrives (update pose and so all based on N)



Steps in EKF
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One measurement from one landmark!

Steps in EKF

34+INX2 342N x 2 2x2

Notice:
Inverting only a small matrix

3+2Nx2
2x1
Notice:
But affecting the whole state!




Why is SLAM a hard problem?
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= In the real world, the mapping between
observations and landmarks is unknown

= Picking wrong data associations can have
catastrophic consequences

= Pose error correlates data associations

From Burgard et al slides



Data Association Problem

X
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= A data association is an assignment of

observations to landmarks
= In general there are more than ("’)

m

(n observations, m landmarks) possible
associations

= Also called "assignment problem”

From Burgard et al slides



Landmarks

Which measurement comes from which landmark?

® data association -
® use some form of bipartite graph matching

® [dea: _
X,
® predicts landmark positions, vehicle position before obs
® compute distances between all pairs of
® predicted obs, real obs
® bipartite graph matcher

® OR greedy



Landmarks

® No measurement from a landmark?

® structure of EKF means you can process landmarks one by one
® that’s what all the matrix surgery was about
® 50 don’t update that landmark

® How do we know no measurement from a landmark?

® refuse to match if distance in greedy/bipartite is too big
® other kinds of matching problem (color, features, etc)



New landmarks

® Sequence
® repeat
® move (so make predictions)
landmark 1 measurement arrives (update pose and so all based on 1)

landmark N measurement arrives (update pose and so all based on N)
check if there is a new landmark
® ifso
® initialize landmark position and covariance
® conditioned on current state and measurement
® process from now on (we have N+1 landmarks)



Initializing new landmarks, I

® Recall we have state estimate, state covar

vehicle orientation point posn in
1in world coords world coords

Observation \ \ l
T Ty (u — x)
| = R_
sl mf]
point losn in vehicle posn in

vehicle coords world coords



Initializing new landmarks, II

® Recall we have state estimate, state covar

point posn in

vehicle orientation Observation
world coords

in world coords

vehicle posn in
world coords



Inverse observation model

{ :}L ] = h(state, meas)

® Where the landmark is
® conditioned on measurement and state

® Advantage:

® when a new landmark is encountered, we can introduce it



Initializing new landmarks, I11

® Recall we have state estimate, state covar

{ :}L ] = h(state, meas)

state ~ N ()_( ;r : Zj) (our model)

® Previous results yield compute mean, covar of landmark!



Measuring distance and orientation

e [.andmark is at: { u }

® in global coordinate system

® We record distance and heading:
® measurement

Hﬁ}:[ V(e —u)? +(y—v)? }

atan2(y —u,x —v) — 0

THIS ISN’T LINEAR!



A further trick: inverting measurement

e Example: measure distance and orientation to point

U point posn in
|: v :| world coords

vehicle posn in
world coords l

Observation

[ ][ e ]

atan2(y —u,x —v) — 0

|

vehicle orientation
in world coords




Range and bearing

Landmark position

Observation »[ Z ] _ [ \/(95—114)2 + (9—711)2 ]

atan2(y — u,x —v) — 0

P

Vehicle state

- 515;132;28;?2%]

|

Noise affecting measurements

These are measurements
of landmark ONLY

Here use the current estimate of vehicle state



Bearing only

Important case
® cameras

EKF is fine

® we’re OK with one measurement of two degrees of freedom

but how do we 1nitialize?
® inverse observation model idea needs work



Initializing bearing only

(v ][l et

R

Noise affecting measurements

Don’t know d!

® Inverse observation model presents problems
® because location could be anywhere on a line

® Apply a prior!
® d ~ N(something, something big)
® now previous results yield mean, covar of [u, v]’



