Classification, Detection
and Regression

D.A. Forsyth, UIUC

Classification, Detection and
Reconstruction

0: Why
: Classification

I
® Basic classification - features to logistic regression; facts of life
® variant classification (words from pictures; others)
® lane boundaries

® semantic segmentation; masks?; labelling 3D worlds ala torr

II: Detection

® Jocalization + classification FasterRCNN, YOLO
® MaskRCNN
® 3D detection Det?

III: Regression
® (depth from single images is possible); Boxes and primitives

Image classification

/

Image

/

Some neural stuff;
differentiable wrt
parameters, input

Cat
Dog

Car

Key 1deas

® (Goal:

® Adjust classifier so that it accurately classifies *UNSEEN* data

® Procedure:

® Adjust so that it
® classifies training data well
® oeneralizes
® regularization term, either explicit or implicit

® Evaluation:
® Use held out data to check accuracy on *UNSEEN* data

Main Points

Remember this: A classifier predicts a label from a representation.
Classifiers are evaluated by accuracy or error rate, estimated on data not
used 1n training. The standard recipe splits training data into two com-
ponents (train and test), uses one to train the classifier and the other to

evaluate it. Never evaluate on data that was used in training, because your
estimate will be wrong.

Under the hood

RLM
e O U
g g |
roi1 t
Feature e s i
Construction 2 f ‘|3
i C a
(0] S
n S

Olden days

Learned

R LM

e 0 U

Feature gg |
. r1 t
Construction e s i
s t C

s i |

(by hand, i c a
. 0 S
from insight) .

Multiclass logistic regression

For classes 1, .., C

Given a feature vector X
Form W,
Interpret by

P(example is of class i) =

T
e

Zk eng

Multiclass logistic regression - 11

Adjust w_1 to maximize log-likelihood on training data
® possibly regularizing by magnitude

But what is x?

® O(lden days: by hand

—

\
o
3

N MW SN

| |
22
33~
55
F 7

N4 NN

7

Multiclass logistic regression

0.110
2.5 4
3 —— Train Loss
0.105 4

2.0 1 0.100 .
a
2
3 0.095
_g 1.5 4 g
o o 0.090
& 5 B .
o @
g] = oo08s- * '
2" g o
® 0.080 - hd
g * e
c

0.5 0.0754 L

0.070 4
0.0
0 100000 200000 300000 400000 500000 600000 100000 200000 300000 400000 500000 600000
number of training examples seen number of training examples seen

FIGURE 5.1: On the left, the learning curve for a logistic regression classifier trained
on MNIST data. Note the loss falls off quickly, then declines very slowly. The loss
plotted here is the loss for a particular batch after a step has been taken using the
gradient on that batch. Although the step follows the gradient, it may cause the
loss to rise because it goes too far along the gradient direction — there is no search
for a step length that guarantees descent and there are no second order terms here.
Nonetheless, because the steps are small and approximately in the right direction,
the loss declines. On the right, the error rate for the test set plotted at the end of
each epoch. Notice how this declines, but not monotonically.

“Modernity”

Learned Learned
RLM

e O U

Feature g g |
. roi1 t
Construction e s i
S t C

s i |

I C a

O S

N S

Making features using layers of functions

Loss

(D)

f 0
(D) «— Logistic regression
6 —» Layer L

-

D (D-1)
(D) 0

? Something else
o) that isn’t linear
o6 —> Layer 1-4 +“— andis likely to be
f @D helpful.
Must have many
P outputs, many inputs
0
* and a manageable
o® Layer | <+<— number of parameters
X

negative log likelihood loss

Multiple feature constructing layers

—— Train Loss
2.04
1.5 1
1.0 A
0.5 4
0.0 ‘ Andaiada A Al
(IJ 100I000 200000 300000 400000 500000 600000

number of training examples seen

test error rate

0.05 4
0.04 4
a
0.03 4
.
0.02 ®
.02 o
© ° hd "
0.01
100000 200000 300000 400000 500000 600000

number of training examples seen

What do we need to classify?

/ VYV / [N1
AFe22 > 3222
33333 3333>
S s 58 5 S{J'J'f
77 F7 7 77 F7 7

FIGURE 6.12: On the left, a selection of digits from the MNIST dataset. Notice how
images of the same digit can vary, which makes classifying the image demanding.
It is quite usual that pictures of “the same thing” look quite different. On the right,
digit images from MNIST that have been somewhat rotated and somewhat scaled,

then cropped fit the standard size. Small rotations, small scales, and cropping really
doesn’t affect the identity of the diqit.

Line ending Loop 2

¢ Crossing
l7_72/2 GO &P \‘84‘8;}'
y

v
q
RARV7 LAQF0 hF

Line ending Loop Crossing

[P

Loop

FIGURE 6.13: Local patterns in images are quite informative. MNIST images, shown
here, are simple 1mages, so a small set of patterns is quite helpful. The relative
location of patterns is also informative. So, for example, an eight has two loops,
one above the other. All this suggests a key strategy: construct features that respond
to patterns in small, localized neighborhoods; then other features that look at patterns
of those features; then others that look at patterns of those, and so on. Fach pattern
(here line-endings, crossings and loops) has a range of appearances. For example,
a line ending sometimes has a little wiggle as in the three. Loops can be big and
open, or quite squashed. The list of patterns isn’t comprehensive. The “?” shows
patterns that I haven’t named, but which appear to be useful. In turn, this suggests
learning the patterns (and patterns of patterns; and so on) that are most useful for
classification.

Convolution

conv(Z, W)

where

Z Ii—u,j—kuv-

N\
M \\

h X € \\t\
} X °i-¢) NN
hh X * Yo = \\\\\

X “o NARALE

\\\\\
I \\ AN
\E\
AN

FIGURE 6.1: To compute the value of N at some location, you shift a copy of M to
lie over that location in I; you multiply together the non-zero elements of M and
7 that lie on top of one another; and you sum the results.

No padding Padding of 1 tblr

M Fe .3 [k
Stride 1 7 pe A —> e *
//i'_‘ > J . _)
% 7 #2s :
N/ Z - Ll=a
Stride 2 1 —> U E
A // é// B K —)

FIGURE 6.14: The effects of stride and padding on conv. On the left, conv without
padding accepts an L, places a 3 x 3 M on grid locations determined by the stride,
then reports values for valid windows. When the stride is 1, a 5 x 5 I becomes
a3 x3N. When the stride is 2, a 5 x 5 I becomes a 2 x 2 N'. The hatching
and shading show the window used to compute the corresponding value in N'. On
the right, conv with padding accepts an I, pads it (in this case, by one row top
and bottom, and one column left and right), places a 3 x 3 M on grid locations in
the padded result determined by the stride, then reports values for valid windows.
When the stride is 1, a 5 x 5 T becomes a 5 x 5 N'. When the stride is 2, a 5 x 5
T becomes a 3 x 3 N'. The hatching and shading show the window used to compute
the corresponding value in N .

Convolution

® Think of this as a form of dot-product
® between kernel and window

® [ike dot-products

® Jargest value when kernel matches window
® smallest when kernel matches window with contrast reversal

e > SIMPLE PATTERN DETECTOR!

(O (. i - N

bbb W R & %

SN SR T R A W

$ R G ~

—,.»u.,f\\...-\., '
4 N

1 -
by ey (D ¢
Woen O f d oo

Superimposed

U Uy Y

Test against threshold

Convolution output

f(z)

The RelLU

r iftx>0
0 otherwise

Issue: contrast reversal in pattern

If we apply a relu to a conv, then
we have a *signed* pattern detector

A

Y

< 3>30N

Basic pattern detector

Notice - not very many parameters
detects the same pattern at each location

cC —m X0

Generalizing convolution

Kemel block 2

Feature
map 2

Kemel block 1

FIGURE 6.15: On the left, two kernels (now 3D, as in the text) applied to a set of

feature maps produce one new feature map per kernel, using the procedure of the
text (the bias term isn’t shown). Abstract this as a process that takes an x x y x d

block to an X xY x D block (as on the right).

Patterns of patterns of patterns....

c v— >
1
U ocCc>
i
c v— S
1
UocCc>
i
c v— >
1
U ocCc>
i
c v— >

UocCc>

Stride and redundancy

The receptive field of a location in a data block (or, equivalently, a unit)
1s the set of image pixels that affect the value of the location. Usually, all that
matters 1s the size of the receptive field. The receptive field of a location in the
first convolutional layer will be given by the kernel of that layer. Determining the
receptive field for later layers requires some bookkeeping (among other things, you
must account for any stride or pooling effects).

If you have several convolutional layers with stride 1, then each block of data
has the same spatial dimensions. This tends to be a problem, because the pixels
that feed a unit in the top layer will tend to have a large overlap with the pixels that
feed the umit next to it. In turn, the values that the units take will be similar, and
so there will be redundant information in the output block. It is usual to try and
deal with this by making blocks get smaller. One natural strategy is to occasionally
have a layer that has stride 2.

Pooling 2x2s2 Pooling 3x3s2

FIGURE 7.1: In a pooling layer, pooling units compute a summary of their inputs,
then pass it on. The most common case is 2z2, illustrated here on the left. We tile
each feature map with 2x2 windows that do not overlap (so have stride 2). Pooling
units compute a summary of the inputs (usually either the maz or the average),
then pass that on to the corresponding location in the corresponding feature map of
the output block. As a result, the spatial dimensions of the output block will be about
half those of the input block. On the right, the common alternative of pooling in
overlapping 3x3 windows with stride 2.

32x32x3 Data blocks
32x32x32

[/ 16x16x32 16x16x32

16x16x32 16x16x32

8x8x32 8x8x64 8x8x64

4x4x64

VYUY ES s

—
——
C—
C—
C—
C——
——
—
—

@
g Z g > g > & S
3 g < .§ < '8 1 < g)
O EDEDE PEP eI PIED 2z D EDPIEDEDED
w w '] w = L = L] (=2} = g [~
& o 2 5 & >
N 3 2 2 =
Network layers
5 7 7 15 15 19 35 35 43 67 67 67 67
Receptive fields

FIGURE 7.3: Three different representations of the simple network used to classify
CIFAR-10 images for this example. Details in the text.

FIGURE 7.7: Visualizing the patterns that the final stage ReLU’s respond to for the
simple CIFAR example. FEach block of images shows the images that get the largest
output for each of 10 ReLU’s (the ReLU’s were chosen at random from the 6}
available in the top ReLU layer). Notice that these ReLU outputs don’t correspond
to class — these outputs go through a fully connected layer before classification — but
each ReLU are clearly responds to a pattern, and different ReLU’s respond more
strongly to different patterns.

Classification variants

Predict more labels with complex semantics

Predict a cost function from the image
® report the minimum

This allows
® Visual question answering

® function accepts question, offered answers and takes min at best
® Writing sentences

® choose sentence that minimizes cost

Situations

| SPRAYING | |
ROLE VALUE ROLE VALUE
AGENT MAN AGENT VET AGENT BOY AGENT BEAR AGENT MAN AGENT FIREMAN
SOURCE SHEEP SOURCE DOG SOURCE CUFF SOURCE ICEBERG SOURCE SPRAY CAN SOURCE HOSE
TOOL SHEARS TOOL CLIPPER OBSTACLE - OBETACLE WATER SUBSTANCE PAINT SUBSTANCE | WATER
ITEM WOOL ITEM cLAwW DESTINATION WATER DESTINATION ICEBERG DESTINATION ~ WALL DESTINATION FIRE
PLACE FIELD PLACE ROOM PLACE LAKE PLACE OUTDOOR PLACE ALLEYWAY PLACE OUTSIDE

Yatskar+Zettlemoyer+Farhadi 2016

Visual Question Answering

Q. What is the cat wearing? Q. What is the weatherlike? Q. What surface is this?
A. Hat A. Rainy A. Clay

Ly

Q. What is the weatherlike? Q. What coloris the cat's eyes? Q. What toppings are on the pizza?
A. Sunny A. Green A. Mushrooms

Figure 1.22 Visual question answering systems produce natural language answers to
questions about images. It is difficult for a VQA system to hide ignorance in the way that a
captioning system can. Here the system is producing quite sensible answers to rather difficult
questions about the image (answers are typically chosen from a multiple choice set). Figure
courtesy of Devi Parikh, produced by a system described in “Making the V in VQA Matter:
Elevating the Role of Image Understanding in Visual Question Answering” by Goyal, Khot,
Summers-Stay, Batra, and Parikh and published in CVPR 2017.

doesn’t always work...

Q. What coloris the front right eg?
A. 8 A. Brown

Q. What letter is on the racket? Q. Why is the sign bent?
A w A. It's not

Figure 1.23 Because it is difficult for a VQA system to hide ignorance in the way that

Sentence generation

® Decode features into sentence (with LSTM, etc)
® ecssentially classification with funky taxonomy

A baby eating a piecé of food in A young boy eating a piece of cake
his mouth.

Aneja et al, 2018

doesn’t always work...

® And scoring system is easily subverted!

&

A small bird 1s perched on branch A small brown bear is sitting

in the grass

Aneja et al, 2018

Encoders

o vo-a1D

VvVOc>0—>S+—=0C

o vo-1D

VO C>0—>5+—0C

C vd4D

VO EC>0—5+—0C

Encoder

A classifier

Encoder

p ol i

Can train encoder *without labels™

Encoder yields embedding of the image

Exploit data augmentation
® take image and
® crop+resize; adjust colormap; etc

Strategy: Contrastive learning
® Adjust embedding so that
® A and Augment(A) should be close
® A and B should be far

Then multiclass logistic regression when you have labels

SOA - rough summary

® Very high accuracy with 1000’s of classes
® Using
® very deep residual networks
® clever trick to improve training convergence
® alternative feature construction methods

® (lassification wrt

® (Object present
® Scene type
® Ltc

® (Challenges

® tough with little training data (but encoders are somewhat interchangeable)
® change in dataset presents problems

Open questions

Rules of machine learning

® [t all works when test data is “like” training data
® [ID samples from the same distribution
® All bets are off otherwise; very little theoretical support

Practice in computer vision
® [t is tough to tell when this condition occurs
® Mostly, it isn’t imposed
® instead, we say that there was a generalization failure when classifier
doesn’t work

Q: Why don’t we get in trouble when we break the rules?
Q: Tell when datasets A, B are “compatible”

® [n a crisp, formal way (rather than try and see)

Classification vs detection

® (lassification:

® there is an X in this image
® what

® Detection:

® there is an X HERE in this image
® what AND where

e Key issues
® how to specify where
® relationship between what and where
® cfficiency, etc
® ecvaluation
® surprisingly fiddly

Two threads

® [ocalize then classify

® find boxes that likely contain objects
® decide what is in the box

® YOLO: Localize while classifying

® in parallel, score
® boxes for “goodness of box™
® boxes for “what is in it”

® combine

Start simple

® Where = axis aligned box

e Decide on a window shape: this is easy. There are two possibilities: a
box, or something else. Boxes are easy to represent, and are used for almost
all practical detectors. The alternative — some form of mask that cuts the
object out of the image — is hardly ever used, because it is hard to represent.

e Build a classifier for windows: this is easy — we’ve seen multiple construc-
tions for image classifiers.

e Decide which windows to look at: this turns out to be an interesting
problem. Searching all windows isn’t efficient.

e Choose which windows with high classifier scores to report: this is
interesting, too, because windows will overlap, and we don’t want to report
the same object multiple times in slightly different windows.

e Report the precise locations of all faces using these windows: this is
also interesting. It turns out our window is likely not the best available, and
we can improve it after deciding it contains a face.

Which window

® Astonishing fact
® Fagsy to tell whether a region is likely to be an object

® cven if you don’t know what object (Endres+Hoiem, 10; Uijlings et al
12)

® if it’s an object
® there’s contrast with surroundings in texture, etc

® if not
® often neighbor region is similar

General strategy

Construct hierarchy of image regions
® using a hierarchical segmenter

Rank regions using a learned score
Make boxes out of high-ranking regions

Selective search

Selective search pipeline

Gound truth

Object hypotheses
.g’ ‘-,—* T -

Difficult negatives
—

if overlap with
positive 20-50%

Model

SVM

(Histogram Intersection
Kernel)

Search for
—

false positive

False Positives

—— Add to training

Retrain

Training Examples

——
examples

Figure 3: The training procedure of our object recognition pipeline. As positive learning examples we use the ground truth. As negatives
we use examples that have a 20-50% overlap with the positive examples. We iteratively add hard negatives using a retraining phase.

Uijlings et al, 12

You need to search at multiple scales

Figure 2: Two examples of our selective search showing the necessity of different scales. On the left we find many objects at different
scales. On the right we necessarily find the objects at different scales as the girl is contained by the tv.

Simplest detector

® Use selective search to propose boxes
® Check with classifier

e BUT
® boxes likely overlap - non-maximum suppression
® boxes likely in poor location - bounding box regression

Non maximum suppression

Deciding which windows to report presents minor but important problems.
Assume you look at 32 x 32 windows with a stride of 1. Then there will be many
windows that overlap the object fairly tightly, and these should have quite similar
scores. Just thresholding the value of the score will mean that we report many
instances of the same object in about the same place, which is unhelpful. If the
stride is large, no window may properly overlap the object and it might be missed.
Instead, most methods adopt variants of a greedy algorithm usually called non-
maximum suppression. First, build a sorted list of all windows whose score is
over threshold. Now repeat until the list is empty: choose the window with highest
score, and accept it as containing an object; now remove all windows with large
enough overlap on the object window.

Bounding box regression

Deciding precisely where the object is also presents minor but important prob-
lems. Assume we have a window that has a high score, and has passed through
non-maximum suppression. The procedure that generated the window does not
do a detailed assessment of all pixels in the window (otherwise we wouldn’t have
needed the classifier), so this window likely does not represent the best localization
of the object. A better estimate can be obtained by predicting a new bounding

box using a feature representation for the pixels in the current box. It’s natural to
use the feature representation computed by the classifier for this bounding box
regression step.

Selective
Search

Neural net Non-max
Classifier Suppression

—>»| Reshape

FIGURE 18.6: A schematic picture of how R-CNN works. A picture of Inkost Albert
Luthuli is fed in to selective search, which proposes possible boxes; these are cut
out of the image, and reshaped to fized size; the boxes are classified (scores next
to each box); non-mazimum suppression finds high scoring boxes and suppresses
nearby high scoring boxes (so his face isn’t found twice); and finally bounding box

regression adjusts the corners of the box to get the best fit using the features inside
the bozx.

Neural net Cro Neural e :
' ‘Top eural net Non-max Bounding box
Image —3p! feature > Rrois [P ROTpool 1| cgifier [Suppression _)regression >
stack

T

Selective
Search

FIGURE 18.7: Fust R-CNN is much more efficient than R-CNN, because it computes
a single feature map from the image, then uses the bores proposed by selective search
to cut regions of interest (ROI’s) from it. These are mapped to a standard size by
a ROI pooling layer, then presented to a classifier. The rest should be familiar.

Configuration spaces

® You should think of a box as a point in a 4D space
® configuration space of the boxes

® Seclective search 1s weird
® networks don’t do lists much

® Alternative

® sample the configuration space on some form of grid
® cg three aspect ratios, three scales, grid of locations
® important: many possible sampling schemes
® check each sample with rank score

Anchor boxes

Image

FIGURE 18.8: Faster RCNN uses two networks.
“objectness” scores for a sampling of possible image boxes.
“anchor boxes”) are each centered at a grid point. At each grid point, there are nine
bozxes (three scales, three aspect ratios). The second is a feature stack that computes
a representation of the image suitable for classification.
objectness score are then cut from the feature map, standardized with ROI pooling,
then passed to a classifier. Bounding box regression means that the relatively coarse

Neural net
feature
stack

Crop

—> Rrois [

ROI pool

Neural net
Classifier

A

Box proposal
network

Box non-max
Suppression

Non-max
Suppression

Bounding box
regression

The boxes with highest

One uses the image to compute
The samples (called

sampling of locations, scales and aspect ratios does not weaken accuracy.

YOLO

® YOLO v3 is about as fast and accurate as you can get
® link on webpage
® key idea

® Jook at box scores, label values independently

We split the image into a grid
FO I GRS I WL o e AN

e "'*'.*3% . AR o pdal
)

St (2T ;
.- ' - S
i K

Each cell predicts boxes and confidences: P(Object)

__w

- I

mw\m Fﬂmmmb\‘--t ‘

T

Each cell predicts boxes and confidences: P(Object)

) A
) w(:,“' \" ’ ., ".'J - v .y, ", 3 ."',.' - ‘.

Each cell predicts boxes and confidences: P(Object)

. ‘\ - *m""ﬂ.;m
I e e O Y O I

Each cell predicts boxes and confidences: P(Object)

m&‘ mmng\‘--

Each cell predicts boxes and confidences: P(Object)

< 2
- w",“' Vo ’ ., “.)J - . Y " . 3 o 1 ". e

Each cell predicts boxes and confidences: P(Object)

=3

Kad ‘;‘
e
I) I) r\-}I\
'.J‘ :' ._‘»,.' =y »
— L AR AT
Myl e Y 9 e 4

PR T = e W W I

Each cell also predicts a class probability.

Bicycle

| Car

Conditioned on object: P(Car | Object)

Bicycle Car

-. Dining
2 . B

Finally we do NMS and threshold detectlons

This parameterization fixes the output size

Each cell predicts:

- For each bounding box:

4 coordinates (x,y, w, h)
1 confidence value

- Some number of class
probabilities

For Pascal VOC:

- 7x7 grid
- 2 bounding boxes / cell
- 20 classes

7x7x(2x5+20)=7x7x30tensor =1470 outputs

1st - 5th
Box #1

6th - 10th
Box #2

11th - 30th
Class Probabilities

Thus we can train one neural network to be a whole

detection pipeline

A

64

Conv. Layer Convolutional Layers Conn. Layer

% XX R
e e il

H |~

[l ; , ™
1024 4096 30 -1

P | ElL |
e] 50 I YD

Pascal 2007 mAP |Speed
DPM v5 33.7 .07 FPS | 14 s/img
R-CNN 66.0 .05 FPS | 20s/img
Fast R-CNN 70.0 2 s/img
Faster R-CNN 73.2 140 ms/img
YOLO 1 69.0 22 ms/img

Evaluating detectors

Compare detected boxes w ground truth boxes
Favor

right number of boxes with right label in right place

Penalize

awful lot of boxes
multiple detections of the same thing

Strategy

® Detector makes a ranked list of boxes

GT 1s a list of boxes
Mark detector boxes with relevant/irrelevant
summarize lists

SOA and variants: rough summary

® Very accurate detection for hundreds of categories
® with enough training data
® important variations in training data available
® vyou don’t have to put a box on everything

® YOLO allows a tradeoff between speed and accuracy
® and can be very fast

® Variants

Localization more accurate than boxes
Incorporate LIDAR, etc.

Boxes in 3D rather than 2D

Variant feature constructions are very important

Application: Lane boundary detection

Not even in “Computer Vision for Autonomous Vehicles™
® (recent review by Janai et al - very good)

Lane boundaries are very important

® |ots of money in good lane boundary detection
® casy cases are firmly solved; hard cases remain hard

Interplay of detection, geometry
® variance and bias

Firmly scene understanding

400

FIGURE 4A

Strategy: detect markers (reflective paint), join up
exercise in robust fitting of curves

US 9081385

Issues

You have to do it fast

You have to do it right
Paint detection problems
Geometric model problems

[Labelled data methods

® Generally, rack up a labelled dataset and regress
® Datasets
® Oxford lane boundaries
® https://oxford-robotics-institute.github.io/road-boundaries-dataset/
® (CULane
® https://xingangpan.github.io/projects/CULane.html
® (alTech
® http://www.mohamedaly.info/datasets/caltech-lanes
e TUSimple
® https://github.com/TuSimple/tusimple-benchmark/tree/master/doc/
lane_detection

Simple marker method

® Place markers on lane boundaries
® organized into lanes (colors)

® Notice
® datasets contain lanes, not marker locations

Simple marker method

(® — addition
& —» multiplication Anchor-based Attention Mechanism
€3 — concatenation Feature Poollng

wx .0 wl 1—1 Wy, |+1 Wy, Nunc—l

Anchor 7
)
O Image plane softmax
| . - loc a":i-cl lo::"c_ -
A

[FC | L
Lcls
Backbo
ackbone P:i = (Po|---|PK
)
Iﬁ * re=| 1|70 - Nt
lob
Al pTe .

Foreach anchor i
Figure 1. Overview of the proposed method. A backbone generates feature maps from an input image. Subsequently, each anchor is projected
onto the feature maps. This projection is used to pool features that are concatenated with another set of features created in the attention
module. Finally, using this resulting feature set, two layers, one for classification and another for regression, make the final predictions.

Tabelini et al 21

Figure 2. LaneATT qualitative results on TuSimple (top row), CU-
Lane (middle row), and LLAMAS (bottom row). Blue lines are
ground-truth, while green and red lines are true-positives and false-
positives, respectively. See more samples in the videos'.

Tabelini et al 21

It’s fast

TuSimple CULane
0.96 H.\.t’ * ineATT (ResNet-122)
' A neATT (ResNet- 122 0.76
0-94 0.74
~ b .
L 0.92 U A4
0.72
>
00 1 = ¢
’ 0.70
088 9p—N
0.68
10! 102 10! 102
Latency (ms) Latency (ms)
® LaneATT @ [29] @ EL-GAN[7] ¢ ENetSAD[11] <« PolyLaneNet [23] B Cascaded-CNN[19]
% [20] » SCNN[17] FastDraw [18] @ Line-CNN[13] A PointLaneNet [5] ¥ ERFNet-IntRA-KD [10]

Figure 3. Model latency vs. F1 of state-of-the-art methods on CULane and TuSimple.

Tabelini et al 21

Figure 2. LaneATT qualitative results on TuSimple (top row), CU-
Lane (middle row), and LLAMAS (bottom row). Blue lines are
ground-truth, while green and red lines are true-positives and false-
positives, respectively. See more samples in the videos'.

Tabelini et al 21

Khan et al 20

® Strategy
® detect keypoints in image
® rectify
® using estimated horizon from vanishing points
® impose structural model on keypoints in rectified image

Rectification

® Imagine a camera at a fixed height

® moving rigidly over a textured ground plane
® bottom half of image is distorted ground plane texture
® [f we know the camera, we can map image plane texture to ground plane

horizon (v=0)

z

% \ (s, ¢ -h)

(u, v)=(-s/t, -h/t)

Plane z=-h

Estimating the camera

Height
® from car (calibrated and known)

Roll and pitch

® f{rom horizon

® 1oll is why horizon isn’t parallel to image plane
® pitch is why it isn’t centerline

horizon (v=0)

/
y/
/F/

(s, t, -h)
(u, v)=(-s/t, -h/t)

Plane z=-h

Encoder Network L Decoder Network

/ / / ;/; 4
/ / /
§ &1 L %
|
\
2048xH/6xW/6 x4
(K*L)xH/2xW/2
' Lane Marker Map
Convolution BatchNorm spose Relu Pooling
layer layer volution |ayer layer
yer

(b)
Figure 2. (a) The figure shows the architecture of the lane bound-
ary marker network. (b) The sampled keypoints from the ground

truth lane line are shown here.

Key point: it’s easier to
impose a geometric model on
keypoints in rectified frame.

3 welghted
averaggf\hg

BN W

Figure 5. Detecting missing lane boundries. (a) Rectified view.
Lane boundaries are predicted in red using ¢, from section 3.3.2.
(b) Filtered lane boundaries after weighted averaging (c) Recov-
ered perspective view with all the four lane boundaries.

Geometric model

® | ane markers lie on

® a quadratic curve OR a straight line (in rectified frame)
® fitted using a version of RANSAC
® lane boundaries are parallel
® lines - easy
® curves - look at tangents
® (Q: why not use a (latent) center curve?

® Search:

® There are four boundaries (three lanes)
® or three
® Ortwo

Night ~ Crowded
Figure 1. Sample results of our algorithm on examples from four
different classes of CULane dataset [33] are shown here. Cyan
lines are the detected lane boundaries, green region represents the
ego lane and magenta line displays the estimated horizon. In the
No Line class, there is actually no line markings on the road but
the ground truth carries the lines shown.

Khan 20: Notice

® Current SOA on many datasets
® for list of datasets, see Khan 20 - v. good on this
o Q:
® what about less structured drivable regions?
® can this be learned with less data? or none?
® need data to learn keypoint finder
® can rectification estimate be improved
® better horizon finders out there - see Jacobs papers on website
o Q:

® could Tabelini be improved by a horizon estimate?

Estimating the camera

Height
® from car (calibrated and known)

Roll and pitch

® f{rom horizon

® 1oll is why horizon isn’t parallel to image plane
® pitch is why it isn’t centerline

horizon (v=0)

/
y/
/F/

(s, t, -h)
(u, v)=(-s/t, -h/t)

Plane z=-h

Issues

You have to do it fast

You have to do it right
Paint detection problems
Geometric model problems

Curvy road No paint

Regression

® We must make image-like things from images

® Running example:
® depth map from image

® A depth map has the depth to closest surface at every pixel

® it is the same size as the image

Recall feature construction

® Apply “pattern detector” to image
another to the result

another to the result

etc

occasionally reducing the spatial size of the block of data representing
patterns to control redundancy

® The resulting block of data is spatially small

® cg¢in the (very simple) CIFAR network,
° %2x32x3—> 4x4x64

!

number of features

y size

X size

We could now predict an image by..

® Take pattern detector results and decode into pattern
® ‘“‘pattern producer”

® Apply pattern producer to feature block
® another to result
® another to result
® occasionally upsampling as required

® Pattern producer is itself a convolution

a feature location detects a particular pattern

scale that pattern by the strength of the response, and place down
sum at overlap

=> convolution (sometimes called transpose convolution, inverse
convolution)

cCc o4d1>D

VvOc>0—>S+—=0C

Decoders

C va4D

VOc>0—>S+—=0C

(o'l D R }

VO cCc>0—S>S+—=0C

Decoder

Regression

Skip connections

Encoder Decoder Encoder Decoder

Sometimes known as a U-net

Regression

® Train with pairs (1mage, depth)
® [oss
® Squared error +abs value of error+other terms as required

® Very powerful general recipe
® depth from image
® normal from image
® superresolution
® ctc.
® Variants
® more sophisticated encoder

Open problems

® Equivariance

® two different crops of the same image should yield compatible results
® [ighting

® change scene lighting; depth, normals shouldn’t change
® Data

® what if it is extremely hard to get data?
® cg albedo

Equivariance problems

Image Crops Depth Surface Normal

:."::]

Lighting problems

Depth (omnimap, current best depth est) Normal (omnimap, current best normal est)

