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AbstractÐMany tasks in computer vision involve assigning a label (such as disparity) to every pixel. A common constraint is that the

labels should vary smoothly almost everywhere while preserving sharp discontinuities that may exist, e.g., at object boundaries. These

tasks are naturally stated in terms of energy minimization. In this paper, we consider a wide class of energies with various smoothness

constraints. Global minimization of these energy functions is NP-hard even in the simplest discontinuity-preserving case. Therefore,

our focus is on efficient approximation algorithms. We present two algorithms based on graph cuts that efficiently find a local minimum

with respect to two types of large moves, namely expansion moves and swap moves. These moves can simultaneously change the

labels of arbitrarily large sets of pixels. In contrast, many standard algorithms (including simulated annealing) use small moves where

only one pixel changes its label at a time. Our expansion algorithm finds a labeling within a known factor of the global minimum, while

our swap algorithm handles more general energy functions. Both of these algorithms allow important cases of discontinuity preserving

energies. We experimentally demonstrate the effectiveness of our approach for image restoration, stereo and motion. On real data with

ground truth, we achieve 98 percent accuracy.

Index TermsÐEnergy minimization, early vision, graph algorithms, minimum cut, maximum flow, stereo, motion, image restoration,

Markov Random Fields, Potts model, multiway cut.
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1 ENERGY MINIMIZATION IN EARLY VISION

MANY early vision problems require estimating some
spatially varying quantity (such as intensity or

disparity) from noisy measurements. Such quantities tend
to be piecewise smooth; they vary smoothly on the surface
of an object, but change dramatically at object boundaries.
Every pixel p 2 P must be assigned a label in some finite set
L. For motion or stereo, the labels are disparities, while for
image restoration they represent intensities. The goal is to
find a labeling f that assigns each pixel p 2 P a label fp 2 L,
where f is both piecewise smooth and consistent with the
observed data.

These vision problems can be naturally formulated in
terms of energy minimization. In this framework, one seeks
the labeling f that minimizes the energy

E�f� � Esmooth�f� � Edata�f�:
Here, Esmooth measures the extent to which f is not
piecewise smooth, while Edata measures the disagreement
between f and the observed data. Many different energy
functions have been proposed in the literature. The form of
Edata is typically

Edata�f� �
X
p2P

Dp�fp�;

where Dp measures how well label fp fits pixel p given the
observed data. In image restoration, for example, Dp�fp� is
normally fp ÿ Ip

ÿ �2
, where Ip is the observed intensity of p.

The choice of Esmooth is a critical issue and many different
functions have been proposed. For example, in some
regularization-based approaches [22], [34], Esmooth makes f
smooth everywhere. This leads to poor results at object
boundaries. Energy functions that do not have this problem
are called discontinuity preserving. A large number of
discontinuity preserving energy functions have been
proposed (see, for example, [21], [29], [42]).

The major difficulty with energy minimization lies in the
enormous computational costs. Typically, these energy
functions have many local minima (i.e., they are non-
convex). Worse still, the space of possible labelings has
dimension jPj, which is many thousands.

The energy functions that we consider in this paper arise
in a variety of different contexts, including the Bayesian
labeling of first-order Markov Random Fields (see [30] for
details). We consider energies of the form

E�f� �
X
fp;qg2N

Vp;q�fp; fq� �
X
p2P

Dp�fp�; �1�

where N is the set of interacting pairs of pixels. Typically,
N consists of adjacent pixels, but it can be arbitrary. We
allow Dp to be nonnegative but otherwise arbitrary. In our
choice of Esmooth, only pairs of pixels interact directly.1 Note
that each pair of pixels fp; qg can have its own distinct
penalty Vp;q. This turns out to be important in many
applications, as shown in Section 8.2. However, to simplify
the notation, we will frequently write V instead of Vp;q.
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1. Pairwise interactions Vp;q introduce (long range) dependence between
all image pixels. This is a dramatic improvement over models assuming
pixel independence. Higher order direct interactions (e.g., between triples
of pixels) can potentially yield even better models but have largely been
ignored due to tractability issues.
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We develop algorithms that approximately minimize the
energy E�f� for an arbitrary finite set of labels L under two
fairly general classes of interaction penalty V : metric and
semimetric. V is called a metric on the space of labels L if it
satisfies

V ��; �� � 0 , � � �; �2�
V ��; �� � V ��; �� � 0; �3�
V ��; �� � V ��; 
� � V �
; ��; �4�

for any labels �; �; 
 2 L. If V satisfies only (2) and (3), it is
called a semimetric.2

Note that both semimetrics and metrics include impor-
tant cases of discontinuity preserving interaction penalties.
Informally, a discontinuity preserving interaction term
should have a bound on the largest possible penalty. This
avoids overpenalizing sharp jumps between the labels of
neighboring pixels; see [46], [30], and our experimental
results in Section 8.6. Examples of discontinuity preserving
interaction penalties for a one-dimensional label set L
include the truncated quadratic V ��; �� � min�K; j�ÿ �j2�
(a semimetric) and the truncated absolute distance
V ��; �� � min�K; j�ÿ �j� (a metric), where K is some
constant. If L is multidimensional, we can replace j � j by
any norm, e.g., jj � jjL2

. These models encourage labelings
consisting of several regions where pixels in the same
region have similar labels and, therefore, we informally call
them piecewise smooth models.

Another important discontinuity preserving function is
given by the Potts model V ��; �� � K � T �� 6� �� (a metric),
where T ��� is 1 if its argument is true, and otherwise 0. This
model encourages labelings consisting of several regions
where pixels in the same region have equal labels and,
therefore, we informally call it a piecewise constant model.

We begin with a review of previous work on energy
minimization in early vision. In Section 3, we give an
overview of our energy minimization algorithms. Our first
algorithm, described in Section 4, is based on �-�-swap
moves and works for any semimetric V . Our second
algorithm, described in Section 4, is based on the more
interesting �-expansion moves but requires V to be a metric.
Optimality properties of our algorithms are discussed in
Section 6. For example, we show that our expansion
algorithm produces a solution within a known factor of
the global minimum of E. In Section 7, we describe an
important special case of our energy which arises from the
Potts interaction penalty. This is a very simple type of
discontinuity preserving smoothness penalty, yet we prove
that computing the global minimum is NP-hard. Experi-
mental data is presented in Section 8.

2 RELATED WORK

The energy functions that we are interested in, given in (1),
arise quite naturally in early vision. Energy-based methods
attempt to model some global image properties that cannot
be captured, for example, by local correlation techniques. The
main problem, however, is that interesting energies are often
difficult to minimize. We show in the Appendix that one of
the simplest discontinuity preserving cases of our energy

function minimization is NP-hard; therefore, it is impossible
to rapidly compute the global minimum unless P=NP.

Due to the inefficiency of computing the global minimum,
many authors have opted for a local minimum. However, in
general, a local minimum can be arbitrarily far from the
optimum. Thus, it may not convey any of the global image
properties that were encoded in the energy function. In such
cases, it is difficult to determine the cause of an algorithm's
failures. When an algorithm gives unsatisfactory results, it
may be due either to a poor choice of the energy function, or to
the fact that the answer is far from the global minimum. There
is no obvious way to tell which of these is the problem.3

Another common issue is that local minimization techniques
are naturally sensitive to the initial estimate.

In general, a labeling f is a local minimum of the energy
E if

E�f� � E�f 0� for any f 0 }near to}f: �5�
In the case of discrete labeling, the labelings near to f are those
that lie within a single move of f . Many local optimization
techniques use what we will call standard moves, where only
one pixel can change its label at a time (see Fig. 2b). For
standard moves, (5) can be read as follows: If you are at a local
minimum, with respect to standard moves, then you cannot
decrease the energy by changing a single pixel's label. In fact,
this is a very weak condition. As a result, optimization
schemes using standard moves frequently generate low
quality solutions. For instance, consider the local minimum
with respect to standard moves shown in Fig. 1c.

An example of a local method using standard moves is
Iterated Conditional Modes (ICM), which is a greedy
technique introduced in [4]. For each pixel, the label which
gives the largest decrease of the energy function is chosen,
until convergence to a local minimum.

Another example of an algorithm using standard moves
is simulated annealing, which was popularized in computer
vision by [19]. Annealing is popular because it is easy to
implement and it can optimize an arbitrary energy function.
Unfortunately, minimizing an arbitrary energy function
requires exponential time and as a consequence simulated
annealing is very slow. Theoretically, simulated annealing
should eventually find the global minimum if run for long
enough. As a practical matter, it is necessary to decrease the
algorithm's temperature parameter faster than required by
the theoretically optimal schedule. Once annealing's tem-
perature parameter is sufficiently low, the algorithm will
converge to a local minimum with respect to standard
moves. In fact, [20] demonstrate that practical implementa-
tions of simulated annealing give results that are very far
from the global optimum even in the relatively simple case
of binary labelings.

Trying to improve the rate of convergence of simulated
annealing [39], [3] developed sampling algorithms for the
Potts model that can make larger moves similar to our
�-�-swaps. The main difference is that we find the best move
among all possible �-�-swaps, while [39], [3] randomly select
connected subsets of pixels that change their label from� to�.
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2. In fact, we only assume V ��; �� � V ��; �� in order to simplify the
presentation. We can easily generalize all results in this paper to allow
V ��; �� 6� V ��; ��. This generalization requires the use of directed graphs.

3. In special cases where the global minimum can be rapidly computed,
it is possible to separate these issues. For example, [20] points out that the
global minimum of a special case of Ising energy function is not necessarily
the desired solution for image restoration. Blake [9], and Greig et al. [20]
analyze the performance of simulated annealing in cases with a known
global minimum.



Like simulated annealing, these algorithms have only
convergence ªat infinityº optimality properties. The quality
of the solutions that these algorithms produce, in practice,
under realistic cooling schedules is not clear.

If the energy minimization problem is phrased in
continuous terms, variational methods can be applied.
These methods were popularized by [22]. Variational
techniques use the Euler equations, which are guaranteed
to hold at a local minimum.4 To apply these algorithms to
actual imagery, of course, requires discretization.

Another alternative is to use discrete relaxation labeling
methods; this has been done by many authors, including
[12], [36], [41]. In relaxation labeling, combinatorial optimi-
zation is converted into continuous optimization with linear
constraints. Then, some form of gradient descent which
gives the solution satisfying the constraints is used.
Relaxation labeling techniques are actually more general
than energy minimization methods, see [23] and [32].

There are also methods that have optimality guarantees in
certain cases. Continuation methods, such as graduated
nonconvexity [8], are an example. These methods involve
approximating an intractable (nonconvex) energy function
by a sequence of energy functions, beginning with a tractable
(convex) approximation. There are circumstances where
these methods are known to compute the optimal solution
(see [8] for details). Continuation methods can be applied to a
large number of energy functions, but except for these special
cases nothing is known about the quality of their output.

Mean field annealing is another popular minimization
approach. It is based on estimating the partition function
from which the minimum of the energy can be deduced.
However, computing the partition function is computation-
ally intractable, and saddle point approximations [31] are
used. There is also and interesting connection between
mean field approximation and other minimization methods
like graduated nonconvexity [17].

There are a few interesting energy functions where the
global minimum can be rapidly computed via dynamic
programming [2]. However, dynamic programming is
restricted essentially to energy functions in one-dimen-
sional settings. This includes some important cases, such
as snakes [26]. In general, the two-dimensional energy
functions that arise in early vision cannot be solved
efficiently via dynamic programming.

Graph cut techniques from combinatorial optimization5

can be used to find the global minimum for some multi-
dimensional energy functions. When there are only two
labels, (1) is a special case of the Ising model. Greig et al. [20]
showed how to find the global minimum, in this case, by a
single graph cut computation. Note that the Potts model we
discuss in Section 7 is a natural generalization of the Ising
model to the case of more than two labels. A method
optimal to within a factor of two for the Potts model was
developed in [14]; however, their energy data term is very
restrictive. Recently, [37], [24], [11] used graph cuts to find
the exact global minimum of a certain type of energy
functions. However, these methods apply only if the labels
are one-dimensional. Most importantly, they require V to be
convex [25] and, hence, their energies are not discontinuity
preserving, see Section 8.6.

Note that graph cuts have also been used for segmentation
based on clustering [47], [16], [44]. Unlike clustering, we
assume that there is a natural set of labels (e.g., intensities or
disparities), and a data penalty function Dp��� which makes
some pixel-label assignments more likely than others.

The main contribution of this paper are two new
algorithms for multidimensional energy minimization that
use graph cuts iteratively. We generalize the previous
results by allowing arbitrary label sets, arbitrary data terms
Dp and a very wide class of pairwise interactions V
that includes discontinuity preserving cases. We achieve
approximate solutions to this NP-hard minimization pro-
blem with guaranteed optimality bounds.

3 OVERVIEW oF OUR ALGORITHMS

The NP-hardness result given in the Appendix effectively
forces us to compute an approximate solution. Our methods
generate a local minimum with respect to very large moves.
We show that this approach overcomes many of the
problems associated with local minima.

The algorithms introduced in this section generate a
labeling that is a local minimum of the energy in (1) with
resepct to two types of large moves: �-expansion and
�-�-swap. In contrast to the standard moves described in
Section 2, these moves allow a large number of pixels to
change their labels simultaneously. This makes the set of

1224 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 23, NO. 11, NOVEMBER 2001

4. Note that in continuous cases, the labels near to f in (5) are normally
defined as jjf ÿ f 0 jj � �, where � is a positive constant and jj � jj is a norm,
e.g., L2, over some appropriate functional space.

5. Throughout this paper, we informally use graph cuts to refer to the
min-cut/max-flow algorithms that are standard in combinatorial optimiza-
tion [1]. See Section 3.3 for more details on graph cuts.

Fig. 1. Comparison of local minima with respect to standard and large moves for image restoration. (a) Original image. (b) Observed noisy image.

(c) Local minimum with respect to standard moves. (d) Local minimum with respect to expansion moves. We use the energy from equation (1) with

quadratic data terms penalizing deviations from the observed intensities (b). The smoothness term is truncated L2 metric. Both local minima in

(c) and (d) were obtained using labeling (b) as an initial solution.



labelings within a single move of a locally optimal f
exponentially large, and the condition in (5) very demand-
ing. For example, �-expansion moves are so strong that we
are able to prove that any labeling locally optimal with
respect to these moves is within a known factor of the global
minimum (see Section 6). Fig. 1 compares local minima for
standard moves (Fig. 1c) and for �-expansion moves (Fig. 1d)
obtained from the same initial solution (Fig. 1b). This and
other experiments also show that, in practice, our solutions
do not change significantly by varying the initial labelings.
In most cases, starting from a constant labeling (where all
pixels have the same label) is good enough.

In Section 3.1, we discuss the moves we allow which are
best described in terms of partitions. In Section 3.2, we
sketch the algorithms and list their basic properties. The
main computational step of our algorithms is based on
graph cut techniques from combinatorial optimization,
which we summarize in Section 3.3.

3.1 Partitions and Move Spaces

Any labeling f can be uniquely represented by a partition of
image pixels P � fPl j l 2 Lg, where Pl � fp 2 P j fp � lg is
a subset of pixels assigned label l. Since there is an obvious
one to one correspondence between labelings f and
partitions P, we can use these notions interchangingly.

Given a pair of labels �; �, a move from a partition P
(labeling f) to a new partition P0 (labeling f 0) is called an
�-�-swap if Pl � P0l for any label l 6� �; �. This means that
the only difference between P and P0 is that some pixels
that were labeled � in P are now labeled � in P0, and some
pixels that were labeled � in P are now labeled � in P0. A
special case of an �-�-swap is a move that gives the label �
to some set of pixels previously labeled �. One example of
an �-�-swap move is shown in Fig. 2c.

Given a label �, a move from a partition P (labeling f) to
a new partition P0 (labeling f 0) is called an �-expansion if
P� � P0� and P0l � Pl for any label l 6� �. In other words, an
�-expansion move allows any set of image pixels to change
their labels to �. An example of an �-expansion move is
shown in Fig. 2d.

Recall that ICM and annealing use standard moves
allowing only one pixel to change its intensity. An example
of a standard move is given in Fig. 2b. Note that a move which
assigns a given label� to a single pixel is both an�-�-swap and
an �-expansion. As a consequence, a standard move is a
special case of both a �-�-swap and an �-expansion.

3.2 Algorithms and Properties

We have developed two minimization algorithms. The

swap algorithm finds a local minimum when swap moves

are allowed and the expansion algorithm finds a local

minimum when expansion moves are allowed. Finding

such a local minimum is not a trivial task. Given a labeling

f , there is an exponential number of swap and expansion

moves. Therefore, even checking for a local minimum

requires exponential time if performed naõÈvely. In contrast,

checking for a local minimum when only the standard

moves are allowed is easy since there is only a linear

number of standard moves given any labeling f .
We have developed efficient graph-based methods to

find the optimal �-�-swap or �-expansion given a labeling f

(see Sections 4 and 5). This is the key step in our algorithms.

Once these methods are available, it is easy to design

variants of the ªfastest descentº technique that can

efficiently find the corresponding local minima. Our

algorithms are summarized in Fig. 3.
The two algorithms are quite similar in their structure.

We will call a single execution of Steps 3.1-3.2 an iteration,

and an execution of Steps 2, 3, and 4 a cycle. In each cycle,

the algorithm performs an iteration for every label (expan-

sion algorithm) or for every pair of labels (swap algorithm),

in a certain order that can be fixed or random. A cycle is

successful if a strictly better labeling is found at any

iteration. The algorithms stop after the first unsuccessful

cycle since no further improvement is possible. Obviously, a

cycle in the swap algorithm takes jLj2 iterations, and a cycle

in the expansion algorithm takes jLj iterations.
These algorithms are guaranteed to terminate in a finite

number of cycles. In fact, under the assumptions that V and

Dp in (1) are constants independent of the image size P, we

can easily prove termination inO�jPj� cycles [43]. In practice,

these assumptions are quite reasonable. However, in the

experiments we report in Section 8, the algorithm stops after a

few cycles and most of the improvements occur during the

first cycle.
We use graph cuts to efficiently find f̂ for the key part of

each algorithm in Step 3.1. Step 3.1 uses a single graph cut

computation. At each iteration, the corresponding graph

has O�jPj� pixels. The exact number of pixels, topology of

the graph, and its edge weights vary from iteration to
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Fig. 2. Examples of standard and large moves from a given initial labeling (a). The number of labels is jLj � 3. A standard move, (a)! (b), changes
the label of a single pixel (in the circled area). Strong moves, �-�-swap (a)! (c) and �-expansion (a)! (d), allow large number of pixels to change
their labels simultaneously.



iteration. The details of the graph are quite different for the

swap and the expansion algorithms and are described in

details in Sections 4 and 5.

3.3 Graph Cuts

Before describing the key Step 3.1 of the swap and the
expansion algorithms, we will review graph cuts. Let
G � hV; Ei be a weighted graph with two distinguished
vertices called the terminals. A cut C � E is a set of edges such
that the terminals are separated in the induced graph
G�C� � hV; E ÿ Ci. In addition, no proper subset of C separates
the terminals in G�C�. The cost of the cut C, denoted jCj, equals
the sum of its edge weights. The minimum cut problem is to
find the cheapest cut among all cuts separating the terminals.
Note that we use standard terminology from the combina-
torial optimization community.6

Sections 4 and 5 show that Step 3.1 in Fig. 3 is equivalent
to solving the minimum cut problem on an appropriately
defined two-terminal graph. Minimum cuts can be effi-
ciently found by standard combinatorial algorithms with
different low-order polynomial complexities [1]. For exam-
ple, a minimum cut can be found by computing the
maximum flow between the terminals, according to a
theorem due to Ford and Fulkerson [15]. Our experimental
results make use of a new max-flow algorithm that has the
best speed on our graphs over many modern algorithms
[10]. The running time is nearly linear in practice.

4 FINDING THE OPTIMAL SWAP MOVE

Given an input labeling f (partition P) and a pair of labels
�; �, we wish to find a labeling f̂ that minimizes E over all
labelings within one �-� swap of f . This is the critical step

in the swap move algorithm given at the top of Fig. 3. Our
technique is based on computing a labeling corresponding
to a minimum cut on a graph G�� � hV��; E��i. The
structure of this graph is dynamically determined by the
current partition P and by the labels �; �.

This section is organized as follows: First, we describe the
construction of G�� for a given f (or P�. We show that cuts C
on G�� correspond in a natural way to labelings fC which are
within one �-� swap move of f . Theorem 4.4 shows that the
cost of a cut is jCj � E�fC� plus a constant. A corollary from
this theorem states our main result that the desired labeling f̂
equals fC, where C is a minimum cut on G��.

The structure of the graph is illustrated in Fig. 4. For

legibility, this figure shows the case of a 1D image. For any

image, thestructureofG�� willbeas follows:Theset ofvertices

includes the two terminals�and�, as well as image pixelsp in

the sets P� and P� (that is fp 2 f�; �g). Thus, the set of

vertices V�� consists of �, �, and P�� � P� [ P�. Each pixel

p 2 P�� isconnectedtotheterminals�and�byedgest�p andt�p ,

respectively. For brevity, we will refer to these edges as t-links
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Fig. 3. Our swap algorithm (top) and expansion algorithm (bottom).

6. To avoid confusion, we would like to mention that some clustering-
based segmentation techniques in vision use different graph cut terminol-
ogy. For example, [47] computes a globally minimum cut. The minimum is
computed among all cuts that sever the graph into two nonempty parts. The
terminals need not be specified. Recently, [38] introduced normalized cuts by
proposing a new definition of the cut cost. Although normalized cuts are
formulated as a graph partitioning problem, the actual approximate
optimization is performed via noncombinatorial methods.

Fig. 4. An example of the graph G�� for a 1D image. The set of pixels in

the image is P�� � P� [ P�, where P� � fp; r; sg and P� � fq; . . . ; wg.



(terminal links). Each pair of pixels fp; qg � P�� which are

neighbors(i.e.,fp; qg 2 N ) isconnectedbyanedgeefp;qgwhich

we will call ann-link (neighbor link). The set of edges,E��, thus

consists of
S
p2P��ft�p ; t�pg (the t-links� and

S
fp;qg2 N
p;q2P��

efp;qg (the

n-links�. The weights assigned to the edges are

Any cut C on G�� must sever (include) exactly one t-link for

any pixel p 2 P��: if neither t-link were in C, there would be

a path between the terminals; while if both t-links were cut,

then a proper subset of C would be a cut. Thus, any cut

leaves each pixel in P�� with exactly one t-link. This defines

a natural labeling fC corresponding to a cut C on G��,

fCp �
� if t�p 2 C for p 2 P��
� if t�p 2 C for p 2 P��
fp for p 2 P; p =2 P��:

8<: �6�

In other words, if the pixel p is in P��, then p is assigned

label � when the cut C separates p from the terminal �;

similarly, p is assigned label � when C separates p from the

terminal �. If p is not in P��, then we keep its initial label fp.

This implies the following.

Lemma 4.1. A labeling fC corresponding to a cut C on G�� is one

�-� swap away from the initial labeling f .

It is easy to show that a cut C severs an n-link efp;qg between
neighboring pixels on G�� if and only if C leaves the pixels p
and q connected to different terminals. Formally,

Property 4.2. For any cut C and for any n-link efp;qg:

�a� If t�p ; t
�
q 2 C then efp;qg 62 C:

�b� If t�p ; t
�
q 2 C then efp;qg 62 C:

�c� If t�p ; t
�
q 2 C then efp;qg 2 C:

�d� If t�p ; t
�
q 2 C then efp;qg 2 C:

Properties (a) and (b) follow from the requirement that
no proper subset of C should separate the terminals.

Properties (c) and (d) also use the fact that a cut has to
separate the terminals. These properties are illustrated in
Fig. 5. The next lemma is a consequence of Property 4.2
and (6).

Lemma 4.3. For any cut C and for any n-link efp;qg

C \ efp;qg
�� �� � V fCp ; f

C
q

� �
:

Proof. There are four cases with similar structure; we will
illustrate the case where t�p ; t

�
q 2 C. In this case, efp;qg 2 C

and, therefore, jC \ efp;qgj � jefp;qgj � V ��; ��. As follows
from (6), fCp � � and fCq � �. tu

Note that this proof assumes that V is a semimetric, i.e., that
(2) and (3) hold. Lemmas 4.1 and 4.3 plus Property 4.2 yield

Theorem 4.4. There is a one to one correspondence between cuts
C on G�� and labelings that are one �-� swap from f .
Moreover, the cost of a cut C on G�� is jCj � E�fC� plus a
constant.

Proof. The first part follows from the fact that the severed
t-links uniquely determine the labels assigned to pixels p
and the n-links that must be cut. We now compute the
cost of a cut C, which is

jCj �
X
p2P��

C \ t�p ; t
�
p

n o��� ���� X
fp;qg2N
fp;qg�P��

C \ efp;qg
�� ��: �7�

Note that for p 2 P��, we have

C \ t�p ; t
�
p

n o��� ��� � jt�p j if t�p 2 C
jt�p j if t�p 2 C

�
� Dp

ÿ
fCp
��X

q2N p
q 62P��

V �fCp ; fq�:

Lemma 4.3 gives the second term in (7). Thus, the total
cost of a cut C is

jCj �
X
p2P��

Dp

ÿ
fCp
�� X

p2P��

X
q2N p
q 62P��

V
ÿ
fCp ; fq

�� X
fp;qg2N
fp;qg�P��

V
ÿ
fCp ; f

C
q

�
�
X
p2P��

Dp

ÿ
fCp
�� X

fp;qg2N
p or q 2P��

V
ÿ
fCp ; f

C
q

�
:

This can be rewritten as jCj � E�fC� ÿK, where

K �
X
p 62P��

Dp�fp� �
X
fp;qg2N

fp;qg\P���;

V �fp; fq�

is the same constant for all cuts C. tu

Corollary 4.5. The lowest energy labeling within a single�-� swap
move from f is f̂ � fC, where C is the minimum cut on G��.

5 FINDING THE OPTIMAL EXPANSION MOVE

Given an input labeling f (partition P) and a label �, we
would like to find a labeling f̂ that minimizes E over all
labelings within one �-expansion of f . This is the critical
step in the expansion move algorithm given at the bottom of
Fig. 3. In this section, we describe a technique that solves
the problem assuming that (each) V is a metric and, thus,
satisfies the triangle inequality (4). Our technique is based
on computing a labeling corresponding to a minimum cut
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Fig. 5. Properties of a cut C on G�� for two pixels p; q 2 N connected by

an n-link efp;qg. Dotted lines show the edges cut by C and solid lines

show the edges remaining in the induced graph G�C� � hV; E ÿ Ci.



on a graph G� � hV�; E�i. The structure of this graph is
determined by the current partition P and by the label �. As
before, the graph dynamically changes after each iteration.

This section is organized as follows: First, we describe
the construction of G� for a given f (or P) and �. We show
that cuts C on G� correspond in a natural way to labelings fC

which are within one �-expansion move of f . Then, based
on a number of simple properties, we define a class of
elementary cuts. Theorem 4.5 shows that elementary cuts are
in one to one correspondence with those labelings that are
within one �-expansion of f and, also, that the cost of an
elementary cut is jCj � E�fC�. A corollary from this theorem
states our main result that the desired labeling f̂ is fC,
where C is a minimum cut on G�.

The structure of the graph is illustrated in Fig. 6. For
legibility, this figure shows the case of a 1D image. The set
of vertices includes the two terminals � and ��, as well as all
image pixels p 2 P. In addition, for each pair of neighboring
pixels fp; qg 2 N separated in the current partition (i.e.,
such that fp 6� fq), we create an auxiliary node afp;qg.
Auxiliary nodes are introduced at the boundaries between
partition sets Pl for l 2 L. Thus, the set of vertices is

V� �
(
�; ��; P;

[
fp;qg2N
fp 6� fq

afpqg

)
:

Each pixel p 2 P is connected to the terminals � and �� by
t-links t�p and t��

p , respectively. Each pair of neighboring pixels
fp; qg 2 N which are not separated by the partition P (i.e.,
such that fp � fq) is connected by ann-link efp;qg. For each pair
of neighboring pixels fp; qg 2 N such that fp 6� fq, we create a
triplet of edges Efp;qg � efp;ag; efa;qg; t��

a

� 	
, where a � afp;qg is

the corresponding auxiliary node. The edges efp;ag and efa;qg
connect pixels p and q to afp;qg and the t-link t��

a connects the
auxiliary node afp;qg to the terminal ��. So, we can write the set
of all edges as

E� �
( [

p2P

�
t�p ; t

��
p

	
;
[
fp;qg2N
fp 6�fq

Efp;qg ;
[
fp;qg2N
fp�fq

efp;qg

)
:

The weights assigned to the edges are

As in Section 4, any cut C on G� must sever (include)

exactly one t-link for any pixel p 2 P. This defines a natural

labeling fC corresponding to a cut C on G�. Formally,

fCp �
� if t�p 2 C

fp if t��
p 2 C

8<: 8p 2 P: �8�

In other words, a pixel p is assigned label � if the cut C
separates p from the terminal �, while p is assigned its old

label fp if C separates p from ��. Note that, for p 62 P�, the

terminal �� represents labels assigned to pixels in the initial

labeling f . Clearly, we have the following.

Lemma 5.1. A labeling fC corresponding to a cut C on G� is one
�-expansion away from the initial labeling f .

Also, it is easy to show that a cut C severs an n-link efp;qg
between neighboring pixels fp; qg 2 N such that fp � fq if
and only if C leaves the pixels p and q connected to different
terminals. In other words, Property 4.2 holds when we
substitute ª��º for ª�º. We will refer to this as Property 4.2 (��).
Analogously, we can show that Property 4.2 and (8) establish
Lemma 4.3 for the n-links efp;qg in G�.

Now, consider the set of edges Efp;qg corresponding to a
pair of neighboring pixels fp; qg 2 N such that fp 6� fq. In
this case, there are several different ways to cut these edges
even when the pair of severed t-links at p and q is fixed.
However, a minimum cut C on G� is guaranteed to sever the
edges in Efp;qg depending on what t-links are cut at the
pixels p and q. The rule for this case is described in Property
5.2 below. Assume that a � afp;qg is an auxiliary node
between the corresponding pair of neighboring pixels.

Property 5.2. If fp; qg 2 N and fp 6� fq, then a minimum cut C
on G� satisfies:

�a� If t�p ; t
�
q 2 C then C \ Efp;qg � ;:

�b� If t��
p ; t

��
q 2 C then C \ Efp;qg � t��

a :

�c� If t��
p ; t

�
q 2 C then C \ Efp;qg � efp;ag:

�d� If t�p ; t
��
q 2 C then C \ Efp;qg � efa;qg:

Property (a) results from the fact that no subset of C is a cut.
The others follow from the minimality of jCj and the fact
that jefp;agj, jefa;qgj, and jt��

a j satisfy the triangle inequality so
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Fig. 6. An example of G� for a 1D image. The set of pixels in the image is
P � fp; q; r; sg and the current partition is P � fP1;P2;P�g, where
P1 � fpg, P2 � fq; rg, and P� � fsg. Two auxiliary nodes a � afp;qg, b �
afr;sg are introduced between neighboring pixels separated in the current
partition. Auxiliary nodes are added at the boundary of sets Pl.



that cutting any one of them is cheaper than cutting the
other two together. These properties are illustrated in Fig. 7.

Lemma 5.3. If fp; qg 2 N and fp 6� fq, then the minimum cut C
on G� satisfies

jC \ Efp;qgj � V
ÿ
fCp ; f

C
q

�
:

Proof. The equation follows from Property 5.2, (8), and
the edge weights. For example, if t��

p ; t
��
q 2 C, then

jC \ Efp;qgj � jt��
a j � V �fp; fq�. At the same time, (8) im-

plies that fCp � fp and fCq � fq. Note that the right penalty
V is imposed whenever fCp 6� fCq , due to the auxiliary
node construction. tu

Property 4.2(��) holds for any cut, and Property 5.2 holds
for a minimum cut. However, there can be other cuts
besides the minimum cut that satisfy both properties. We
will define an elementary cut on G� to be a cut that
satisfies Properties 4.2(��) and 5.2.

Theorem 5.4. Let G� be constructed as above given f and �. Then,
there is a one to one correspondence between elementary cuts on
G� and labelings within one �-expansion of f . Moreover, for
any elementary cut C, we have jCj � E�fC�.

Proof. We first show that an elementary cut C is uniquely
determined by the corresponding labeling fC. The
label fCp at the pixel p determines which of the t-links to
p is in C. Property 4.2(��) shows which n-links efp;qg
between pairs of neighboring pixels fp; qg such that fp �
fq should be severed. Similarly, Property 5.2 determines
which of the links in Efp;qg corresponding to fp; qg 2 N
such that fp 6� fq should be cut.

The cost of an elementary cut C is

jCj �
X
p2P
C \ t�p ; t

��
p

n o��� ���� X
fp;qg2N
fp�fq

C \ efp;qg
�� ��� X

fp;qg2N
fp 6�fq

C \ Efp;qg
�� ��:

�9�
It is easy to show that, for any pixel p 2 P, we have
jC \ ft�p ; t��

pgj � Dp�fCp �. Lemmas 4.3 and 5.3 hold for
elementary cuts since they were based on Properties
4.2 and 5.2. Thus, the total cost of a elementary cut C is

jCj �
X
p2P

Dp fCp
� �

�
X
fp;qg2N

V fCp ; f
C
q

� �
� E fC

ÿ �
:

Therefore, jCj � E�fC�. tu
Our main result is a simple consequence of this theorem
since the minimum cut is an elementary cut.

Corollary 5.5. The lowest energy labeling within a single �
expansion move from f is f̂ � fC, where C is the minimum cut
on G�.

6 OPTIMALITY PROPERTIES

Here, we discuss optimality properties of our algorithms. In
Section 6.1, we show that any local minimum generated by
our expansion moves algorithm is within a known factor of
the global optimum. This algorithm works in case of metricV .
The swap move algorithm can be applied to a wider class of
semimetric V s but, unfortunately, it does not have any
(similar) guaranteed optimality properties. In Section 6.2, we
show that a provably good solution can be obtained even for
semimetric V by approximating such V s with a simple
Potts metric.

6.1 The Expansion Move Algorithm

We now prove that a local minimum when expansion moves
are allowed is within a known factor of the global minimum.
This factor, which can be as small as 2, will depend on V .
Specifically, let

c � max�6��2L V ��; ��
min�6��2L V ��; ��

be the ratio of the largest nonzero value of V to the smallest
nonzero value of V . Note that c is well-defined since
V ��; �� 6� 0 for � 6� � according to the property in (2). If
Vp;qs are different for neighboring pairs p; q, then

c � max
p;q 2 N

max�6��2L V ��; ��
min� 6��2L V ��; ��

� �
:

Theorem 6.1. Let f̂ be a local minimum when the expansion

moves are allowed and f� be the globally optimal solution.

Then, E�f̂� � 2cE�f��.
Proof. Let us fix some � 2 L and let

P� � p 2 P j f�p � �
n o

: �10�

We can produce a labeling f� within one �-expansion
move from f̂ as follows:

f�p �
� if p 2 P�
f̂p otherwise:

�
�11�

The key observation is that since f̂ is a local minimum if
expansion moves are allowed,

E�f̂� � E�f��: �12�
Let S be a set consisting of any number of pixels in P

and any number of pairs of neighboring pixels in N . We
define E�f jS� to be a restriction of the energy of labeling
f to the set S:

E�fjS� �
X
p2S

Dp�fp� �
X
fp;qg2S

V �fp; fq�:
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Fig. 7. Properties of a minimum cut C on G� for two pixel p; q 2 N such

that fp 6� fq. Dotted lines show the edges cut by C and solid lines show

the edges in the induced graph G�C� � hV; E ÿ Ci.



Let I� be the set of pixels and pairs of neighboring pixels
contained inside P�. Also, let B� be the set of pairs of
neighboring pixels on the boundary of P� and O� be the
set of pixels and pairs of neighboring pixels contained
outside of P�. Formally,

I� � P� [ �fp; qg 2 N : p 2 P�; q 2 P�
	
;

B� � �fp; qg 2 N : p 2 P�; q 62 P�
	
;

O� � P ÿ P�� � [ �fp; qg 2 N : p 62 P�; q 62 P�
	
:

The following three facts hold:

E�f�jO�� � E�f̂ jO��; �13�
E�f�jI�� � E�f�jI��; �14�
E�f�jB�� � cE�f�jB��: �15�

Equations (13) and (14) are obvious from the defini-
tions in (11) and (10). Equation (15) holds because, for
any fp; qg 2 B�, we have V �f�p ; f�q � � cV �f�p ; f�q � 6� 0.

Since I� [B� [O� includes all pixels in P and all
neighboring pairs of pixels in N , we can expand both
sides of (12) to get:

E�f̂ jI�� �E�f̂ jB�� �E�f̂ jO��
� E�f�jI�� � E�f�jB�� � E�f�jO��:

Using (13), (14), and (15), we get from the equation above:

E�f̂ jI�� �E�f̂ jB�� � E�f�jI�� � cE�f�jB��: �16�
To get the bound on the total energy, we need to sum
(16) over all labels � 2 L:X
�2L

E�f̂ jI�� �E�f̂ jB��
� �

�
X
�2L

�
E�f�jI�� � cE�f�jB��

�
:

�17�
LetB � S�2LB

�. Observe that, for every fp; qg 2 B, the

term V �f̂p; f̂q� � E�f̂ jfp; qg� appears twice on the left side

of (17), once inE�f̂ jB�� for� � f�p , and once inE�f̂ jB�� for

� � f�q . Similarly, every V �f�p ; f�q � � E�f�jfp; qg� appears

2c times on the right side of (17). Therefore, (17) can be

rewritten to get the bound of 2c:

E�f̂� � E�f̂ jB� � E�f�� � �2cÿ 1�EB�f�� � 2cE�f��:
tu

Note that Kleinberg and Tardos [27] develop an algorithm
for minimizing E which also has optimality properties. For

the Potts model V discussed in the next section, their
algorithm has a bound of 2. This is the same bound as we
obtain in Theorem 6.1 for the Potts model.7 For a general
metric V , they have a bound of O�log k log log k�, where k is
the number of labels. However, their algorithm uses linear
programming, which is impractical for the large number of
variables occurring in early vision.

6.2 Approximating a Semimetric

A local minimum when swap moves are allowed can be
arbitrarily far from the global minimum. This is illustrated
by an example in Fig. 8.

In fact, we can use the expansion algorithm to get an
answer within a factor of 2c from the optimum of energy (1)
even when V is a semimetric. Here, c is the same as in
Theorem 6.1. This c is still well-defined for a semimetric.
Suppose that penalty V inside the definition of energy E in
(1) is a semimetric. Let r be any real number in the interval
�m;M�, where

m � min
�6��2L

V ��; �� and M � max
�6��2L

V ��; ��:

Define a new energy based on the Potts interaction model

EP �f� �
X
p2P

Dp�fp� �
X
fp;qg2N

r � T �fp 6� fq�:

Theorem 6.2. If f̂ is a local minimum of EP given the expansion
moves and f� is the global minimum of E�f�, then
E�f̂� � 2cE�f��.

Proof. Suppose fo is the global minimum of EP . Then,

r

M
E�f̂� � EP �f̂� � 2EP �fo� � 2EP �f�� � 2

r

m
E�f��;

where the second inequality follows from Theorem 6.1.
Note that c �M=m. tu
Thus, to find an answer within a fixed factor from the

global minimum for a semimetric V , one can take a local
minimum f̂ given the expansion moves for EP , as defined
above. Note that such an f̂ is not a local minimum of E�f�
given the expansion moves. In practice, however, we find that
local minimum given the swap moves gives empirically
better results than using f̂ . In fact, the estimate f̂ can be used
as a good starting point for the swap algorithm. In this case,
the swap move algorithm will also generate a local minimum
whose energy is within a known factor from the global
minimum.

7 THE POTTS MODEL

An interesting special case of the energy in (1) arises when
V is given by the Potts model [35]

EP �f� �
X
fp;qg2N

ufp;qg � T �fp 6� fq� �
X
p2P

Dp�fp�: �18�

Geman et al. [18] were the first to use this model in computer
vision. In this case, discontinuities between any pair of labels
are penalized equally. This is, in some sense, the simplest
discontinuity preserving model and it is especially useful
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7. In fact, it can be shown that any algorithm that is within a factor of two
for the Potts model is within a factor of 2c for an arbitrary metric V .

Fig. 8. The image consists of three pixels P � f1; 2; 3g. There are two

pairs of neighbors N � ff1; 2g; f2; 3gg. The set of labels is L � fa; b; cg.
The values of Dp are shown in (c). V �a; b� � V �b; c� � K

2 and

V �a; c� � K. It is easy to see that the configuration in (a) is a local

minimum with respect to swap moves. Its energy is K, while the optimal

configuration shown in (b) has energy 4.



when the labels are unordered or the number of labels is
small. The Potts interaction penalty Vp;q � ufp;qg � T �fp 6� fq�
is a metric; in this case, c � 1 and our expansion algorithm
gives a solution that is within a factor of two of the global
minimum. Note that by definition c � 1, so this is the energy
function with the best bound.

Interestingly, the Potts model energy minimization
problem is closely related to a known combinatorial
optimization problem called the multiway cut problem. In
this section, we investigate this relationship and its
consequences. We will first show (Section 7.1) that the
Potts model energy minimization problem can be reduced
to the multiway cut problem. More precisely, we prove that
the global minimum of the Potts model energy EP can be
computed by finding the minimum cost multiway cut on an
appropriately constructed graph. We prove (in the Appen-
dix) that if we could efficiently compute the global
minimum of EP we could also solve a certain class of
multiway cut problems that are known to be NP-hard. This
in turn, implies that minimizing EP is NP-hard and, so, is
minimizing the energy in (1).

The multiway cut problem is defined on a graph G �
hV; Ei with nonnegative edge weights, with a set of terminal
vertices L � V. A subset of the edges C � E is called a
multiway cut if the terminals are completely separated in the
induced graph G�C� � hV; E ÿ Ci. We will also require that no
proper subset of C separates the terminals in G�C�. The cost of
the multiway cut C is denoted by jCj and equals the sum of its
edge weights. The multiway cut problem is to find the
minimum cost multiway cut [13]. In [13], they also show
that the multiway cut problem is NP-complete. Note that the
multiway cut problem is a generalization of the standard
two-terminal graph cut problem described in Section 3.3.

7.1 The Potts Model and the Multiway Cut Problem

Wenowshowthat theproblemofminimizingthePottsenergy
EP �f� can be solved by computing a minimum cost multiway
cut on a certain graph. We take V � P [ L. This means that G

contains twotypesofvertices:p-vertices (pixels)and l-vertices
(labels). Note that l-vertices will serve as terminals for our
multiway cut problem. Two p-vertices are connected by an
edge if and only if the corresponding pixels are neighbors in
the neighborhood systemN . The set EN consists of the edges
between p-vertices, which we will call n-links. Each n-link
fp; qg 2 EN is assigned a weightwfp;qg � ufp;qg.

Each p-vertex is connected by an edge to each l-vertex.
An edge fp; lg that connects a p-vertex with a terminal (an
l-vertex) will be called a t-link and the set of all such edges
will be denoted by ET . Each t-link fp; lg 2 ET is assigned a
weight wfp;lg � Kp ÿDp�l�, where Kp > maxl Dp�l� is a
constant that is large enough to make the weights positive.
The edges of the graph are E � EN [ ET . Fig. 9a shows the
structure of the graph G.

It is easy to see that there is a one-to-one correspondence
between multiway cuts and labelings. A multiway cut C
corresponds to the labeling fC which assigns the label l to all
pixels p which are t-linked to the l-vertex in G�C�. An
example of a multiway cut and the corresponding image
partition (labeling) is given in Fig. 9b.

Theorem 7.1. If C is a multiway cut on G, then jCj � EP �fC�
plus a constant.

The proof of Theorem 7.1 is given in [11].

Corollary 7.2. If C is a minimum cost multiway cut on G, then fC

minimizes EP .

While the multiway cut problem is known to be

NP-complete if there are more than two terminals, there is a

fast approximation algorithm [13]. This algorithm works as

follows: First, for each terminal l 2 L, it finds an isolating two-

way minimum cut C�l� that separates l from all other

terminals. This is just the standard graph cut problem. Then,

the algorithm generates a multiway cut C � [l6�lmaxC�l�, where

lmax � arg maxl2L jC�l�j is the terminal with the largest cost
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Fig. 9. (a) Example of the graph G � hV; Ei with multiple terminals L � f1; . . . ; kg. (b) A multiway cut on G. The pixels p 2 P are shown as white
squares. Each pixel has an n-link to its four neighbors. Each pixel is also connected to all terminals by t-links (some of the t-links are omitted from
the drawing for legibility). The set of vertices V � P [ L includes all pixels and terminals. The set of edges E � EN [ ET consists of all n-links and
t-links. In (b), we show the induced graph G�C� � hV; E ÿ Ci corresponding to some multiway cut C. A multiway cut corresponds to a unique partition
(labeling) of image pixels.



isolating cut. This ªisolation heuristicº algorithm produces a

cut which is optimal to within a factor of 2ÿ 2
jLj . However, the

isolation heuristic algorithm suffers from two problems that

limits its applicability to our energy minimization problem.

. The algorithm will assign many pixels a label that is
chosen essentially arbitrarily. Note that the union of all
isolating cuts [l2LC�l� may leave some vertices
disconnected from any terminal. The multiway cut
C � [l6�lmaxC�l� connects all those vertices to the
terminal lmax.

. While the multiway cut C produced is close to
optimal, this does not imply that the resulting
labeling fC is close to optimal. Formally, let
us write Theorem 7.1 as jCj � EP �C� �K (the
constant K results from the Kp's, as described in
[11]). The isolation heuristic gives a solution Ĉ such
that jĈj � 2jC�j, where C� is the minimum cost
multiway cut. Thus, EP �Ĉ� �K � 2�EP �C�� �K�,
so EP �Ĉ� � 2EP �C�� �K. As a result, the isolation
heuristic algorithm does not produce a labeling
whose energy is within a constant factor of
optimal. Note that the K used in the construction
given in [11] is so large that this bound is nearly
meaningless.

8 EXPERIMENTAL RESULTS

In this section, we present experimental results on visual

correspondence for stereo, motion, and image restoration.

In image restoration, we observe an image corrupted by

noise. The task is to restore the original image. Thus, the

labels are all possible intensities or colors. The restored

intensity is assumed to lie around the observed one and the

intensities are expected to vary smoothly everywhere

except at object boundaries.
In visual correspondence, we have two images taken at

the same time from different view points for stereo and at

different times for motion. For most pixels in the first image

there is a corresponding pixel in the second image which is

a projection along the line of sight of the same real-world

scene element. The difference in the coordinates of the

corresponding points is called the disparity. In stereo, the

disparity is usually one-dimensional because corresponding

points lie along epipolar lines. In motion, the disparity is

usually two-dimensional. Thus, for correspondence the

label set is a discretized set of all possible disparities and

the task is to estimate the disparity label for each pixel in the

first image.8 Note that here P contains the pixels of the first

image. The disparity varies smoothly everywhere except at

object boundaries and corresponding points are expected to

have similar intensities.
We can formulate the image restoration (Section 8.6) and

correspondence problems (Sections 8.3, 8.4, and 8.5) as
energy minimization problem of the type in (1). We describe

our data terms Dp�fp� in Section 8.1. We use different
interactions Vp;q�fp; fq� and we state them for each example.
Section 8.2 explains static cues that help to set Vp;qs.

The corresponding energies are minimized using our

swap and expansion algorithms given in Fig. 3. Optimal

swap and expansion moves (Step 3.1 in Fig. 3) are found by

computing minimum cost cuts on graphs designed in

Sections 4 and 5. Our implementation computes minimum

cuts using a new max-flow algorithm [10]. Running times

presented below were obtained on a 333MHz Pentium III.

8.1 Data Term

For image restoration, our data term is straightforward.

Suppose I is the observed image and Ip is the intensity

observed at pixel p 2 P. Then,Dp�fp� � min�jfp ÿ Ipj2; const�,
which says that the restored intensity label fp should be close

to the observed intensity Ip. We set parameter const � 20 and

it is used to make the data penalty more robust against

outliers, i.e., pixels which do not obey the assumed noise

model. The algorithm is very stable with respect to const

which simply helps to smooth out the few outlying pixels. For

example, if we set const to infinity, the results are mostly the

same except they become speckled by a few noisy pixels.
Now, we turn to the data term for the stereo correspon-

dence problem. Suppose the first image is I and the second is
I 0. If the pixels p and q correspond, they are assumed to have
similar intensities Ip and I 0q. However, there are special
circumstances when corresponding pixels have very differ-
ent intensities due to the effects of image sampling. Suppose
that the true disparity is not an integer and the disparity
range is discretized to one pixel accuracy, as we do here. If a
pixel overlaps a scene patch with high intensity gradient,
then the corresponding pixels may have significantly
different intensities.

For stereo, we use the technique of [6] to develop aDp that
is insensitive to image sampling. First, we measure how wellp
fits into the real valued range of disparities �dÿ 1

2 ; d� 1
2� by

Cfwd�p; d� � min
dÿ1

2�x�d�1
2

jIp ÿ I 0p�xj:

We get fractional values I 0p�x by linear interpolation
between discrete pixel values. For symmetry, we also
measure

Crev�p; d� � min
pÿ1

2�x�p�1
2

jIx ÿ I 0p�dj:

Cfwd�p; d� and Crev�p; d� can be computed with just a few
comparisons. The final measure is

C�p; d� � min Cfwd�p; d�; Crev�p; d�; const
� 	ÿ �2

:

We set const � 20 for all experiments and its purpose and
effect is the same as those described for the image restoration.

For motion, we developed Dp�fp� similar to stereo,
except interpolation is done in two dimensions since labels
are now two-dimensional. Details are given in [43].

8.2 Static Cues

In the visual correspondence, there is contextual informa-

tion which we can take advantage of. For simplicity,

we will consider the case of the Potts model, i.e.,
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8. This simple approach does not treat the images symmetrically and
allows inconsistent disparities. For example, two pixels in the first image
may be assigned to one pixel in the second image. Occlusions are also
ignored. [28] presents a stereo algorithm based on expansion moves that
addresses these problems.



Vp;q � ufp;qg � T �fp 6� fq�. The intensities of pixels in the first

image contain information that can significantly influence

our assessment of disparities without even considering the

second image. For example, two neighboring pixels p and

q are much more likely to have the same disparity if we

know that I�p� � I�q�. Most methods for computing

correspondence do not make use of this kind of contextual

information. Some exceptions include [5], [33], [45].
We can easily incorporate contextual information into

our framework by allowing ufp;qg to vary depending on the
intensities Ip and Iq. Let

ufp;qg � U�jIp ÿ Iqj�: �19�
Each ufp;qg represents a penalty for assigning different

disparities to neighboring pixels p and q. The value of the

penalty ufp;qg should be smaller for pairs fp; qg with larger

intensity differences jIp ÿ Iqj. In practice, we found the

following simple function to work well:

U�jIp ÿ Iqj� � 2K if jIp ÿ Iqj � 5
K if jIp ÿ Iqj > 5:

�
�20�

Here, K is the Potts model parameter. Note that instead of

(19), we could also set the coefficients ufp;qg according to an

output of an edge detector on the first image. For example,

ufp;qg can be made small for pairs fp; qg, where an intensity

edge was detected and large otherwise. Segmentation

results can also be used.

The following example shows the importance of con-

textual information. Consider the pair of synthetic images

below, with a uniformly white rectangle in front of a black

background.

There is a one pixel horizontal shift in the location of the
rectangle and there is no noise. Without noise, the problem
of estimating f is reduced to minimizing the smoothness
term Esmooth�f� under the constraint that pixel p can be
assigned disparity d only if Ip � I 0p�d.

If ufp;qg is the same for all pairs of neighbors fp; qg, then
Esmooth�f� is minimized at one of the labeling shown in the
figure below. Exactly which labeling minimizes Esmooth�f�
depends on the relationship between the height of the
square and the height of the background.

Suppose now that the penalty ufp;qg is much smaller if Ip 6� Iq
than it is if Ip � Iq. In this case, the minimum of Esmooth�f� is

achieved at the disparity configuration shown in the figure

below. This result is much closer to human perception.

Static cues help mostly in areas of low texture. Application

on real images show that the static cues give improvement,

but not as extreme as the example above. See Section 8.3 for

the improvements that the static cues give on real images.

8.3 Real Stereo Imagery with Ground Truth

In Fig. 10, we show results from a real stereo pair with
known ground truth, provided by Dr. Y. Ohta and Dr. Y.
Nakamura from the University of Tsukuba. The left image
is in Fig. 10a and the ground truth is in Fig. 10b. The
maximum disparity for this stereo pair is 14, so our
disparity label set is f0; 1; . . . ; 14g. The ground truth image
actually has only seven distinct disparities. The objects in
this scene are fronto-parallel to the camera, so the Potts
model, i.e., Vp;q�fp; fq� � ufp;qg � T �fp 6� fq� works well. Since
there are textureless regions in the scene, the static cues
help, and the coefficients ufp;qg are given by (19) and (20).

We compared our results against annealing and normal-
ized correlation. For normalized correlation, we chose
parameters which give the best statistics. We implemented
several different annealing variants and used the one that
gave the best performance. This was the Metropolis sampler
with a linearly decreasing temperature schedule. To give it
a good starting point, simulated annealing was initialized
with the results from normalized correlation. In contrast, for
our algorithms, the starting point is unimportant. The
results differ by less than 1 percent of image pixels from any
starting point that we have tried. Also, we run 100 tests with
randomly generated initial labelings. Final solutions pro-
duced by our expansion and swap algorithms had the
average energy of 252; 157 and 252; 108, correspondingly,
while the standard deviations were only 1,308 and 459.

Figs. 10c and 10d show the results of the swap and
expansion algorithms for K � 20, where K is the parameter
in (20). Figs. 10e and 10f show the results of normalized
correlation and simulated annealing. Comparisons with
other algorithms can be found in [40]. Note, however, that
[40] confirms that for this imagery the best previous
algorithm is simulated annealing, which outperforms
(among others) correlation, robust estimation, scanline-
based dynamic programming, and mean-field techniques.

Fig. 12 summarizes the errors made by the algorithms. In
approximately 20 minutes, simulated annealing reduces the
total errors normalized correlation makes by about one fifth
and it cuts the number of�1 errors in half. It makes very little
additional progress in the rest of four hours. Our expansion
and swap algorithms make approximately five times fewer
�1 errors and approximately three times fewer total errors
compared to normalized correlation.

The expansion and swap algorithms perform similarly to
each other. The observed difference in errors is insignif-
icant, less than 1 percent. At each cycle, the order of labels
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to iterate over is chosen randomly. Another run of the
algorithm might give slightly different results, and on
average about 1 percent of pixels change their labels
between different runs. On average, the expansion algo-
rithm converges 1.4 times faster than the swap algorithm.

Fig. 11 shows the graph ofEsmooth versus time (in seconds)

for our algorithms and simulated annealing. Note that the

time axis is on a logarithmic scale. We do not show the graph

for Edata because the difference in the Edata among all

algorithms is insignificant, as expected from the following

argument. Most pixels in real images have nearby pixels with

similar intensities. Thus, for most pixels p, there are several

disparities d for which Dp�d� is approximately the same and

small. For the rest of d's,Dp�d� is quite large. This latter group

of disparities is essentially excluded from consideration by

energy minimizing algorithms. The remaining choices of d

are more or less equally likely. Thus, the Edata term of the

energy function has very similar values for our methods and

simulated annealing. Our methods quickly reduce the

smoothness energy to around 160; 000, while the best

simulated annealing can produce in four hours is around

330; 000, which is twice as bad. The expansion algorithm gives

a convergence curve significantly steeper than the other

curves. In fact, the expansion algorithm makes 99 percent of

the progress in the first iteration which takes eight seconds.

Final energies are given in Fig. 13.
Static cues help in the upper right textureless corner of

the image. Without the static cues, a corner of size

approximately 800 pixels gets broken off and is assigned
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Fig. 10. Real imagery with ground truth. (a) Left image: 384x288, 15 labels. (b) Ground truth. (c) Swap algorithm. (d) Expansion algorithm.

(e) Normalized correlation. (f) Simulated annealing.



to the wrong disparity. This is reflected in the error count

shown in Fig. 12, which worsens without the static cues.

The percentage improvement may not seem too significant,

however, visually it is very noticeable since without the

static cues a large block of pixels is misplaced. We omit the

actual image due to space constraints.
The only parameter of the this energy function is K in

(20). The algorithms appear stable in the choice of K. The
table in Fig. 14 gives the errors made by the expansion
algorithm for different Ks. For small K, there are many
errors because the data term is overemphasized and for
large K, there are many errors because the smoothness term
is overemphasized. However, for a large interval of
K values, the results are good.

Another important test is to increase the number of

labels and evaluate the effects on the running time and the

accuracy of our algorithms. Fig. 15 summarizes the test

results for the expansion algorithm (those for the swap

algorithm are similar). The first column shows the number

of integer disparities that we use. The second and third

columns show the time it took to complete one iteration and

to converge, correspondingly. The last two columns give

the error counts at convergence. The second and third

columns confirm that the running time is linear on average.

Note that the number of cycles to convergence varies,

explaining higher variability in the third column. The last

two columns show that the accuracy worsens slightly with

the increase in the number of labels.

8.4 SRI Tree Stereo Pair

In the SRI stereo pair whose left image is shown in Fig. 16a, the

ground is a slanted surface and, therefore, a piecewise

constant model (Potts model) does not work as well. For this

image pair, we choose Vp;q�fp; fq� � 15 �min�3; jfp ÿ fqj�,
which is a piecewise smooth model. It is a metric and, so,

we use the expansion algorithm for minimization. This scene

is well-textured, so static cues are not used. Fig. 16b and

Fig. 16c compare the results of minimizing with the Potts and

piecewise smooth model. The running times to convergence

are 94 seconds and 79 seconds, respectively. Notice that there

are fewer disparities found in Fig. 16b since the Potts model

tends to produce large regions with the same disparity.
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Fig. 11. Energy versus time (in seconds) of expansion, swap, and simulated annealing algorithms for the problem in Fig. 10a. The starting energy is

the same for all algorithms.

Fig. 12. Comparison of accuracy and running times.

Fig. 13. Energies at convergence for our algorithms and simulated

annealing.



8.5 Motion

Fig. 17 shows the output from the well-known flower garden

sequence. Since the camera motion is nearly horizontal, we

have simply displayed the camera motion. The motion in this

sequence is large, with the foreground tree moving six pixels

in the horizontal direction. We used the Potts model in this

example because the number of labels is small. This image

sequence is relatively noisy, so we tookK � 80. Determining

the motion of the sky is a very hard problem in this sequence.

Even static cues do not help, so we didn't use them. The

running time is 15 seconds to convergence.
Fig. 18a shows one image of a motion sequence where a

cat moves against moving background. The motion is large,

with maximum horizontal displacement of four pixels and

maximum vertical displacement of two pixels. We used

eight horizontal and five vertical displacements, thus the

label set has size 40. This is a difficult sequence because the

cat's motion is nonrigid. The scene is well-textured, so

the static cues are not used. In this case, we chose

Vp;q�fp; fq� � 40 �min�8; �fhp ÿ fhq �2 � �fvp ÿ fvq �2�, where fhp
and fvp are horizontal and vertical components of the label

fp (recall that the labels have two dimensions for motion).

This is not a metric, so we used the swap algorithm for

minimization. Figs. 18b and 18c show the horizontal and

vertical motions detected with our swap algorithm. Notice

that the cat has been accurately localized. Even the tail and

parts of the legs are clearly separated from the background

motion. The running time was 24 seconds to convergence.

8.6 Image Restoration

In this section, we illustrate the importance of discontinuity

preserving energy functions on the task of image restoration.

Fig. 19 shows image consisting of several regions with

constant intensities after it was corrupted byN�0; 100� noise.

Fig. 19b shows our image restoration results for the truncated

absolute difference model V �fp; fq� � 80 �min�3; jfp ÿ fqj�,
which is discontinuity preserving. Since it is a metric,

we used the expansion algorithm. For comparison,

Fig. 19c shows the result for the absolute difference

model V �fp; fq� � 15 � jfp ÿ fqj, which is not discontinuity

preserving. For the absolute difference model, we can find the

exact solution using the graph-cut method in [37], [24], [11].

For both models, we chose parameters which minimize the

average absolute error from the original image intensities.

These average errors were 0.34 for the truncated and 1.8 for

the absolute difference model, and the running times were 38

and 237 seconds, respectively. The results in Figs. 19b and 19c

were histogram equalized to reveal oversmoothing in Fig. 19c,

which does not happen in Fig. 19b. Similar oversmoothing for

the absolute difference model occurs in stereo, see [43], [7].
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Fig. 14. Table of errors for the expansion algorithm for different values of the regularization parameter K.

Fig. 15. Dependence of the running time and accuracy on different number of labels (disparities) for the expansion algorithm. Error percentages are

given at convergence.

Fig. 16. Tree stereo pair. (a) Left image: 256x233, 29 labels. (b) Piecewise constant model. (c) Piecewise smooth model.



9 CONCLUSIONS

We consider a wide class of energy functions with various

discontinuity preserving smoothness constraints. While it is

NP-hard to compute the exact minimum, we developed

two algorithms based on graph cuts that efficiently find a

local minimum with respect to two large moves, namely,

�-expansion moves and �-�-swap moves. Our �-expansion

algorithm finds a labeling within a known factor of the global

minimum, while our �-�-swap algorithm handles more

general energy functions. Empirically, our algorithms per-

forms well on a variety of computer vision problems such as

image restoration, stereo, and motion. We believe that

combinatorial optimization techniques, such as graph cuts,

will prove to be powerful tools for solving many computer

vision problems.

APPENDIX

MINIMIZING THE POTTS ENERGY IS NP-HARD

In Section 7, we showed that the problem of minimizing the
energy in (18) over all possible labelings f can be solved by
computing a minimum multiway cut on a certain graph.
Now, we make the reduction in the opposite direction. Let
EP �f� denote the energy in (18). For an arbitrary fixed graph
G � hV; Ei, we will construct an instance of minimizingEP �f�,
where the optimal labeling f� determines a minimum
multiway cut on G. This will prove that a polynomial-time
method for finding f� would provide a polynomial-time
algorithm for finding the minimum cost multiway cut, which
is known to be NP-hard [13]. This NP-hardness proof is based
on a construction due to Jon Kleinberg.

The energy minimization problem we address takes as
input a set of pixels P, a neighborhood relation N , and a
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Fig. 17. Flower garden sequence. (a) First image, 352x240, 8 labels. (b) Horizontal movement.

Fig. 18. Moving cat. (a) First image: 256x223, 40 labels. (b) Horizontal movement. (c) Vertical movement.

Fig. 19. Image restoration. (a) Noisy image. (b) Truncated absolute difference model. (c) Absolute difference model. The results in (b) and (c) are

histogram equalized to reveal oversmoothing in (c), which does not happen in (b).



label set L, as well as a set of weights ufp;qg and a function

Dp�l�. The problem is to find the labeling f� that minimizes

the energy EP �f� given in (18).
Let G � hV; Ei be an arbitrary weighted graph with

terminal vertices ft1; . . . ; tkg � V and edge weights wfp;qg.
We will do the energy minimization using P � V, N � E,

and ufp;qg � wfp;qg. The label set will be L � f1; . . . ; kg. Let K

be a constant such that K > EP �f��; for example, we can

select K to be the sum of all wfp;qg. Our function Dp�l� will

force f��tj� � j; if p � tj is a terminal vertex,

Dp�l� � 0 l � j;
K otherwise:

�
For a nonterminal vertex p, we setDp�l� � 0 for all l, which

means all labels are equally good. We define a labeling f to be

feasible if the set of pixels labeled j by f forms a connected

component that includes tj. Feasible labelings obviously

correspond one-to-one with multiway cuts.

Theorem A.1. The labeling f� is feasible, and the cost of a feasible

labeling is the cost of the corresponding multiway cut.

Proof. To prove that f� is feasible, suppose that there were a

set S of pixels that f� labeled j which were not part of the

component containing tj. We could then obtain a labeling

with lower energy by switching this set to the label of some

pixel on the boundary of S. The energy of a feasible

labeling f is
P
fp;qg2N ufp;qg � T �f�p� 6� f�q��, which is the

cost of the multiway cut corresponding to f . tu

This shows that minimizing the Potts model energyEP �f�
on an arbitrary P andN is intractable. It is possible to extend

this proof to the case when P is a planar grid, see [43].
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