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Abstract—Optimization techniques based on graph cuts have become a standard

tool for many vision applications. These techniques allow to minimize efficiently

certain energy functions corresponding to pairwise Markov Random Fields (MRFs).

Currently, there is an accepted view within the computer vision community that

graph cuts can only be used for optimizing a limited class of MRF energies (e.g.,

submodular functions). In this survey, we review some results that show that graph

cuts can be applied to a much larger class of energy functions (in particular,

nonsubmodular functions). While these results are well-known in the optimization

community, to our knowledge they were not used in the context of computer vision

and MRF optimization. We demonstrate the relevance of these results to vision on

the problem of binary texture restoration.

Index Terms—Energy minimization, Markov Random Fields, quadratic pseudo-

Boolean optimization, min cut/max flow, texture restoration.

Ç

1 INTRODUCTION

MANY early vision problems can be naturally formulated in terms
of energy minimization, where the energy function has the
following form:

EðxÞ ¼ �const þ
X
p2V

�pðxpÞ þ
X
ðp;qÞ2E

�pqðxp; xqÞ: ð1Þ

Here,G ¼ ðV; EÞ is an undirected graph. SetV usually corresponds to
pixels; xp denotes the label of pixel p 2 V which must belong to a
finite set of integers f0; 1; . . . ;K � 1g. For motion or stereo, the labels
are disparities, while, for image restoration, they represent
intensities. The constant term of the energy is �const, the unary terms
�pð�Þ encode data penalty functions, and the pairwise terms �pqð�; �Þ
are interaction potentials. This energy is often derived in the context
of Markov Random Fields [6], [15]: A minimum ofE corresponds to
a maximum a posteriori (MAP) labeling x.

Minimizing energy (1) is a difficult problem (in general, it is
NP-hard). Many approximate optimization methods have been
developed, such as the augmenting DAG algorithm [25], [36],
simulated annealing [21], iterated conditional modes [7], belief
propagation [31], tree-reweighted message passing [35], or
Swendsen-Wang Cuts [5]. We will focus on a particular branch
of algorithms that are based on graph cuts or the s� t min cut/max
flow technique. They were introduced into computer vision in the
late 1980s [17] and reintroduced in the 1990s [12], [20], [24]. Graph
cuts proved to be very successful for many vision applications
such as small baseline stereo, volumetric multiview reconstruction,
image segmentation, image synthesis, and others (see, for example,
[11] and references therein).

In this survey, we review some graph cut-based algorithms for
minimizing energy (1). We consider only the case when the variables
are binary: xp 2 f0; 1g. Note, however, that this case is highly
relevant for vision problems involving nonbinary variables. Indeed,

one of the most successful MRF minimization algorithms, namely,

the expansion move method of Boykov et al. [12], reduces the

problem with multivalued variables to a sequence of minimization

subproblems with binary variables.1 There are also other ways to

reduce the problem to a sequence of binary subproblems, e.g., swap

move and jump move algorithms [12], [33].

1.1 Minimizing Functions of Binary Variables via Graph
Cuts

There is an accepted view within the computer vision community,

popularized by [24], that graph cuts can only be used for

minimizing submodular energy functions, i.e., functions whose

pairwise terms satisfy

�pqð0; 0Þ þ �pqð1; 1Þ � �pqð0; 1Þ þ �pqð1; 0Þ:

For functions of multivalued variables and the expansion move

algorithm, the corresponding condition is �pqð�; �Þ þ �pqð�; �Þ
� �pqð�; �Þ þ �pqð�; �Þ, which must hold for all labels �; �; � 2
f0; . . . ; K � 1g.2 While many important energy functions in vision

(e.g., Potts) do satisfy these conditions, in some situations, we

get functions which are not submodular. For example, they may

arise when parameters of the energy function are learned from

training data.
Rother et al. [32] suggested dealing with nonsubmodular terms

by “truncating” them, i.e., replacing a function with a submodular

approximation and minimizing the latter. For multivalued vari-

ables and certain truncation schemes, the energy is guaranteed not

to increase during one �-expansion [32]. For the application of

image stitching [1], [28], [32], this technique gives reasonable

results, maybe because the number of nonsubmodular terms is

very small (see details in Section 3). For some other problems,

however, the number of nonsubmodular terms is much higher and

truncation may not be appropriate. An example is binary texture

restoration as done by Cremers and Grady [14]. They propose

ignoring nonsubmodular terms during MRF learning in order to

achieve efficient inference via graph cuts. We show in Section 3

that ignoring such terms decreases the performance. It is therefore

desirable to have a method which explicitly takes into account non-

submodular terms instead of throwing them away.
In this paper, we will review the algorithm in [10], [19] for

minimizing functions with both submodular and nonsubmodular

terms.3 We refer to it as the QPBO method (“quadratic pseudo-

Boolean optimization”).4 Its output is a partial labeling x. In other

words, xp 2 f0; 1; ;g for pixels p 2 V; the value ; is interpreted as

“unknown.” The algorithm has a number of properties reviewed

below. (All of them were given in [19].)
Properties of the QPBO method [19]. Perhaps the most

important one is the following:
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1. Recall that the expansion move algorithm [12] iteratively applies
�-expansion operations for labels � 2 f0; . . . ; K � 1g in a certain order,
starting with some initial configuration. If x is the current configuration,
then during an �-expansion each pixel is allowed either to keep its old
label xp or to switch to the new label �. Since each pixel makes a binary
decision, computing an optimal �-expansion move (i.e., a move with the
smallest energy) is equivalent to minimizing a function of binary
variables: 0 corresponds to keeping the old label and 1 corresponds to
the new label �. Upon convergence, the algorithm produces a local
minimum whose energy is within a known approximation factor from
the global minimum (for metric interactions) [12].

2. There is one exception to this rule: It is also possible to include hard
constraints Hpqðxp; xqÞ taking values in f0;þ1g as long as Hpqð�; �Þ ¼ 0 for
all labels � [32].

3. Algorithms in [19] and [10] compute the same answer, but the latter is
more efficient.

4. Energy (1) can be written as a quadratic polynomial: EðxÞ ¼
constþ

P
p �pxp þ

P
ðp;qÞ �p;qxpxq , hence the word quadratic. E is called

pseudo-Boolean since it maps Boolean variables to IR rather than to {0, 1}.
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½P1� (Persistency). Let y be a complete labeling and let z be the “fusion”

of x and y: zp ¼ xp if xp 2 f0; 1g and zp ¼ yp otherwise. Then,

EðzÞ � EðyÞ.
We can take y to be a global minimum, then we get that x is a

part of some optimal solution:

½P2� (Partial optimality). There exists global minimum x� of energy (1)
such that xp ¼ x�p for all labeled pixels p (i.e., pixels with xp 2 f0; 1g).
Clearly, the usefulness of the algorithm depends on how many

pixels are labeled. In general, we cannot expect that the method
will label all nodes since minimizing energy (1) is an NP-hard
problem. It is a question of experimentation with how the
algorithm performs for a particular application, such as binary
texture restoration as discussed in Section 3.

In some special cases, however, the method is guaranteed to
give a complete labeling:

½P3�. If all terms of the energy are submodular, then the algorithm will
label all nodes.

½P4�. The algorithm is invariant with respect to “flipping” a subset of
pixels U � V, i.e., swapping the meaning of 0 and 1 for pixels p 2 U.
(This flipping transforms submodular terms between U and V n U into
nonsubmodular, and vice versa).

½P3� and ½P4� imply that, if there exists a flipping such that all
terms become submodular, then the QPBO method will label all
nodes [19]. This holds, in particular, for trees.

There remains a question of what to do with unlabeled pixels.
This is a difficult question which probably does not have a single
answer. In the context of the expansion move algorithm, one
possibility is to keep the old label for all such pixels. The
persistency property then implies that the energy never goes up.

Energy minimization methods and partial optimality. It is

known [23] that the tree-reweighted message algorithm [35] also

gives a part of an optimal solution when applied to functions of

binary variables. (This is not surprising: It solves the same linear

programming relaxation of the energy as the QPBO method.) A

different principle for obtaining partially optimal solutions for

MAP-MRF problems is given by Kovtun [26].

2 QPBO ALGORITHM FOR FUNCTIONS OF BINARY

VARIABLES

We will describe the algorithm using the notion of reparameteriza-

tion. This concept is discussed in Section 2.1. After that, we will

review the QPBO method for minimizing functions of (1). For

completeness, we first consider the simpler case when all terms of

the energy are submodular (Section 2.2). Then, in Section 2.3, we

will review the QPBO method for arbitrary functions of the form

(1). For both cases, the algorithm consists of the following three

steps: 1) construct the graph, 2) compute the maximum flow and

minimum cut, and 3) assign labels based on the minimum cut.

2.1 Reparameterization

The term repameterization was introduced in the machine learning

community [13], [34] (an alternative term for this is equivalent

transformations [25], [36]). It is a very useful tool for analyzing MRF

inference algorithms such as belief propagation [34] and tree-

reweighted message passing [35]. Reparameterization is also a

convenient interpretation of maxflow-based algorithms (see Sec-

tions 2.2 and 2.3).
Let us introduce the following notation: The energy of (1) is

specified by the constant term �const, unary terms �pðiÞ, and
pairwise terms �pqði; jÞ ði; j 2 f0; 1g). It will be convenient to denote
the last two terms as �p;i and �pq;ij, respectively. We can concatenate
all of these values into a single vector � ¼ f��j� 2 Ig, where the
index set I is

I ¼ fconstg [ fðp; iÞg [ fðpq; ijÞg:

Note that ðpq; ijÞ � ðqp; jiÞ, so �pq;ij and �qp;ji are the same element.
We will use the notation �p to denote a vector of size 2 and �pq to
denote a vector of size 4.

The energy in (1) is therefore completely specified by parameter
vector �. In cases when the parameter vector of an energy is not
clear from the context, we will write it explicitly as Eðx; �Þ. We will
display parameters of the energy as shown in Fig. 1a.

Definition 2.1. If two parameter vectors � and �0 define the same energy
function (i.e., Eðxj�Þ ¼ Eðxj�0Þ for all configurations x), then � is
called a reparameterization of �0 and the relation is denoted by � � �0.
As a particular example, we can subtract some constant from

vectors �p or �pq and add the same constant to �const. Another
possible transformation involves directed edge ðp! qÞ 2 E and
label j 2 f0; 1g: We can subtract a constant from components �pq;ij
for all i 2 f0; 1g and add the same constant to �p;j (Fig. 1b). It is easy
to see that the cost of any configuration x stays the same.

Normal form. We will say that the vector � is in a normal form if
it satisfies the following:

1. minf�p;0; �p;1g ¼ 0 for all pixels p.
2. minf�pq;0j; �pq;1jg ¼ 0 for all directed edges ðp! qÞ and

labels j 2 f0; 1g.
Note that these conditions imply that all components of vector � are
nonnegative (except maybe for the constant term �const). The normal
form is not unique, i.e., many reparameterizations of the same
energy function may satisfy Conditions 1 and 2.

We will need this definition when we describe the algorithms in
Sections 2.2 and 2.3. The first step for both algorithms is to convert
vector � into a normal form. This can be done in two phases as
follows:

1. While there is edge ðp! qÞ and label j violating Condition 2,
do the following: Compute � ¼ minf�pq;0j; �pq;1jg; set
�pq;0j :¼ �pq;0j � �, �pq;1j :¼ �pq;1j � �, �q;j :¼ �q;j þ �.

2. For every pixel p compute � ¼ minf�p;0; �p;1g and set
�p;0 :¼ �p;0 � �, �p;1 :¼ �p;1 � �, �const :¼ �const þ �.
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Fig. 1. (a) Convention for displaying parameters �p, �pq, �q . (b) Example of a reparameterization operation. (c) Normal form. Dotted lines denote links with zero cost. The

first term is submodular, the second is supermodular. Unary parameters must satisfy minfa; a0g ¼ minfb; b0g ¼ minfc; c0g ¼ 0.



Note that every operation above is a reparameterization. Further-
more, each operation in the first phase decreases the number of
elements violating Condition 2; therefore, we are guaranteed to
terminate in a finite number of steps (which is, in fact, linear in
jVj þ jEj).

Upon termination, for each edge ðp; qÞ, we will have either
�pq;00 ¼ �pq;11 ¼ 0 or �pq;01 ¼ �pq;10 ¼ 0 (Fig. 1c). In the former case,
the corresponding term is submodular and, in the latter, it is
supermodular.

2.2 Algorithm for Submodular Functions

First, we will review an algorithm for the case when all terms of

energy (1) are submodular. The method (reduction to min cut/max

flow) has been known for at least 40 years [18].
The first step is to convert the energy to a normal form

(Section 2.1). Then, a directed weighted graph G ¼ ðV ;A; cÞ is
created whose nodes correspond to pixels in V. In addition, there
are two special nodes—source s and sink t; they are called the
terminals. Thus, V ¼ V [ fs; tg. For every nonzero component of �,
an edge is added to A according to the following rules:

component of � corresponding edge a 2 A capacity ca

�p;0 ðp! tÞ �p;0

�p;1 ðs! pÞ �p;1

�pq;01 ðp! qÞ �pq;01

�pq;10 ðq! pÞ �pq;10

(For example, if �p;0 > 0, then we add edge ðp! tÞ with weight
�p;0). Note that the constant term �const is ignored in this
construction. These rules are illustrated in Fig. 2a. After construct-
ing the graph, we compute a minimum s -t cut ðS; T Þ by
computing maximum flow from the source to the sink [2]. This
cut defines configuration x as follows:

xp ¼
0 if p 2 S
1 if p 2 T:

�

It can be seen that the cost of any cut is equal to the energy of
the corresponding configuration plus the constant term �const.

Therefore, a minimum s-t cut in G yields a global minimum of
the energy E.

It is worth noting that the maxflow algorithm can be regarded
as performing a reparameterization of the energy function. Indeed,
pushing flow updates residual capacities cuv for edges ðu! vÞ 2 A
(last column of the table above). This, in turn, corresponds to
modifying components of vector �. The constant term of the energy
changes as well: If we push the flow of value C from the source to
the sink, then we need to set �const :¼ �const þ C.

2.3 Algorithm for Arbitrary Functions: QPBO Method

We now review the network model of [10] for solving the problem
formulated in [19]. It computes a part of an optimal solution for an
arbitrary function of (1). Similar to the previous case, the problem
is reduced to the computation of a minimum s-t cut in a certain
graph G ¼ ðV ;A; cÞ. However, the size of the graph is now
doubled. For each pixel p 2 V, there will be two nodes p and �p;
therefore, V ¼ fp; �p j p 2 Vg [ fs; tg. For every nonzero element of
�, two edges are added to A according to the following rules
(Fig. 2b):

component of � corresponding edges a;�a 2 A capacity ca ¼ c�a

�p;0 ðp! tÞ; ðs! �pÞ 1
2 �p;0

�p;1 ðs! pÞ; ð�p! tÞ 1
2 �p;1

�pq;01 ðp! qÞ; ð�q! �pÞ 1
2 �pq;01

�pq;10 ðq! pÞ; ð�p! �qÞ 1
2 �pq;10

�pq;00 ðp! �qÞ; ðq! �pÞ 1
2 �pq;00

�pq;11 ð�q! pÞ; ð�p! qÞ 1
2 �pq;11

After computing a minimum s-t cut ðS; T Þ the partial labeling x is
determined as follows:

xp ¼
0 if p 2 S; �p 2 T
1 if p 2 T; �p 2 S
; otherwise:

8<
:

This labeling x has the persistency property described in Section 1
(see [9], [22, Appendix]).

The graph construction can be motivated as follows [9]: Node �p
can be associated with variable x�p, which ideally should be the
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Fig. 2. Graph construction. Left: input energy function (in a normal form) with three nodes and two edges. Right: corresponding graph G. Note that, in the example in

(b), graph G consists of two disjoint subgraphs. This is because we can “flip” a subset of pixels so that the energy becomes submodular (properties ½P3;P4�). Such

flipping can always be done if graph G is a tree. (a) Construction for submodular functions. (b) Construction for arbitrary functions (QPBO method).



negation of xp : x�p ¼ 1� xp. Then, the graph represents energyEðxÞ
expressed as a function of old variables fxpg and new variables
fx�p ¼ 1� xpg. Indeed, consider, for example, component �pq;11,
which contributes term �pq;11xpxq to the energy. The term can be
rewritten as 1

2 �pq;11ðxp�x�q þ �x�pxqÞ, which corresponds to edges
ð�q! pÞ, ð�p! qÞ added to the graph. An important observation is
that the new energy of variables fxp; x�pg is submodular and, thus,
can be minimized in polynomial time. If, in addition, we could
enforce constraints x�p ¼ 1� xp during minimization (i.e., enforcing
that nodes p and �p belong to different sets of the cut), then we would
obtain a global minimum of the energy. Without these constraints,
only a part of an optimal solution is found.

As in the previous case, pushing flow through graph G can be
regarded as a reparameterization of energy Eðx j �Þ. More
precisely, the residual capacities c in G define the parameter
vector � as follows: If component �� corresponds to edges a; �a 2 A,
then �� ¼ ca þ c�a.

Efficient implementation. Computation of maximum flow in
graph G can be speeded up using the following heuristics: First,
consider only edges in G corresponding to submodular terms.
These edges form two independent networks such that one is the
“reversed” copy of the other, i.e., the source and the sink are
swapped and direction of all the edges is reversed. Instead of
solving the same problem twice, we can compute a maximum flow
in one network and then copy the result to the other network. After
that, we can add the remaining edges corresponding to
nonsubmodular terms and compute the maximum flow in G,
starting from the flow obtained in the first step. An advantage of
this heuristics is that, if all edges are submodular, then the
algorithm has exactly the same running time as the method
described in Section 2.2, except for a linear time overhead.

Involution property. It will be convenient to introduce the
following notation: Each node u in graph G has a corresponding
node denoted as �u. (In particular, source and sink correspond to each
other, so �s ¼ t and �t ¼ s.) It follows from the definition that mapping
� : V ! V is an involution, i.e., ��u ¼ u for all nodes u. An important
property of this involution is that, for any edge a ¼ ðu! vÞ 2 A,
there is a corresponding edge �a ¼ ð�v! �uÞ 2 A with the same initial
capacity. We will assume without loss of generality that the residual
capacities of a and �a are also the same.5

Choosing a minimum cut. We stated in the beginning that, if all
terms are submodular, then the algorithm will label all nodes
(Property ½P3�). This holds, however, only if we pick a particular
minimum cut ðS; T Þ. (Recall that a graph may have many
minimum cuts of the same cost.) We now discuss how to choose
a minimum cut that labels as many pixels as possible. This is done
by analyzing the residual graph G ¼ ðV ;A; cÞ obtained after
pushing the maximum flow (and restoring the involution prop-
erty). We assume that A contains only edges with positive residual
capacities and there are no edges to the source or from the sink.

Consider pixel p 2 V and suppose that there exist paths in
graph G from p to �p and from �p to p (i.e., p to �p belong to the same
strongly connected component). Then, by the Ford-Fulkerson
theorem, there is no minimum cut ðS; T Þ that separates these nodes.
Therefore, node p cannot be labeled. Let U0 � V be the set of all other
pixels (i.e., pixels p such that p and �p belong to different strongly
connected components). It turns out that there exists a minimum cut
that labels all pixels in U0 [4]. This cut and corresponding labeling
can be found, for example, by the following algorithm:

. Add edge ðt! sÞ to A.

. Compute strongly connected components in G, contract
them to single nodes.

. Run the topological sort algorithm on the obtained
directed acyclic graph. The result is an ordering of nodes
� : V ! ZZ such that, for all edges ðu! vÞ 2 A, there holds
�ðuÞ < �ðvÞ (unless u and v belong to the same strongly
connected component, in which case, �ðuÞ ¼ �ðvÞ).

. Set cut ðS; T Þ as follows: If �ðuÞ 	 �ð�uÞ, then u 2 S,
otherwise u 2 T . The corresponding partial labeling x is
determined as follows: 1) If �ðpÞ > �ð�pÞ, then xp ¼ 0. 2) If
�ðpÞ < �ð�pÞ, then xp ¼ 1. 3) If �ðpÞ ¼ �ð�pÞ, then xp ¼ ;.

Note that adding edge ðt! sÞ does not affect strongly connected
components of G since there is no path from s to t. The presence of
this edge ensures that s 2 S and t 2 T .

Decomposition into strongly connected components. Let us
consider a strongly connected component U 
 V such that u; �u 2 U
for some node u. The involution property then implies that, for any
node v 2 U , there holds �v 2 U . Therefore, strongly connected
components of G partition the set of pixels V n U0 into disjoint
regions U1; . . . ;Uk.

Recall that the QPBO algorithm does not label pixels in
U1 [ . . . [ Uk. If the number of unlabeled pixels is small, then we
could try to use some other algorithm for the remaining pixels, e.g.,
exhaustive search. This can be speeded up by the method in [8]
reviewed below.

For each region Ur, consider the part of the energy Eðx j �Þ that
involves only pixels and edges inside Ur. (We assume that � is the
reparameterization computed from the residual graph, not the
original parameter vector.) Suppose that somehow we computed a
global minimum xr of this part of the energy (note that computing
such a minimum is an NP-hard problem). Billionnet and Jaumard
[8] showed that solutions x1; . . . ;xk can be combined in linear time
to obtain a complete optimal solution x� for the full energy E. The
first step is to modify the vector � as follows: For each edge ðp; qÞ
inside region Ur, set �pqðxrp; xrqÞ :¼ 0. After that, we can run the
algorithm described earlier (“Choosing a minimum cut”). It will
label all nodes and produce a global minimum of EðxÞ.6

3 EXPERIMENTAL RESULTS

So far, vision researchers have used only the standard graph cuts
method for minimizing the submodular functions described in
Section 2.2. (We will refer to it as the SGC method—“submodular
graph cuts.”) To ensure that the function is submodular, two
techniques were employed: 1) enforce submodularity constraint
while learning parameters of the energy [3], [14], [27]. 2) “Truncate”
nonsubmodular terms during inference [32]. A natural idea is to use
the QPBO method instead, which means, in the first case, that we
allow arbitrary terms during learning. Here, we consider two
application areas with nonsubmodular energies: texture restoration
and image stitching. The main conclusion we can draw is that if a
substantial number of pairwise terms are nonsubmodular, the QPBO
method outperforms SGC, as for texture restoration. If only a small
fraction of the terms are nonsubmodular, both methods produce
close to identical results, as for the application of image stitching.

Texture restoration. The field of texture restoration and texture
modeling has received considerable attention in the past. We refer
to [29] for a survey of several MRF models of texture such as auto-
binomial, autonormal, multilevel logistics. Gimel’farb [16] and Zhu
et al. [37], [38] proposed nonparametric MRF models and methods
for their learning. Cremers and Grady [14] focused on efficient
learning and inference via graph cuts for binary texture restoration.
In this paper, we closely follow [14]. We tested MRFs with pairwise

terms only. This rather simple texture model is probably not the
best, but it serves as a good testbed for QPBO (see [14], [37], [38] for
texture models with higher-order cliques). Note that QPBO can
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5. The involution property can be restored as follows: Given the residual
graph with capacities c, we compute the corresponding reparameterization �
and then construct a new graph G ¼ ðV ;A; ~cÞ for this reparameterization.
This is equivalent to setting ~ca ¼ ~c�a :¼ 1

2 ðca þ c�aÞ for all pairs of correspond-
ing edges a; �a.

6. Note that this “stitching” of solutions can be applied even if xr are
approximate rather than global minima for regions Ur.



potentially be extended to more sophisticated models: Gray-scale
textures can potentially be handled via �-expansion [12] and any
higher-order clique can be reduced to pairwise terms [9], although
the complexity grows exponentially with the clique size.

We binarized 10 Brodatz textures,7 where Fig. 3 shows an
example. Each texture image was split into three equal size
subimages which were used later for training, validation, and
testing. The same amount of noise was added to all three (60 percent
salt-and pepper noise, i.e., 60 percent of the pixels are replaced by a
random value). We utilized the following MRF from [14]. The unary
potentials are defined as

P
p2V

��
1þjIp�xp j , where Ip is the color of

pixel p and xp is the binary output label of pixel p. The value � trades
off the importance of the unary versus pairwise potentials and has to
be learned for each texture individually, as described later. The
pairwise potentials for an edge with shift ðsx; syÞ were learned by
computing the joint histograms of all pixel pairs with the same shift
from the training data: �pqðxp; xqÞ ¼ � logPrðxp; xqÞ. We considered
only edges with maxfjsxj; jsyjg � w. The neighborhood size w has to
be large enough to capture the repetitive structure of the pattern and
was set by hand for each texture. In order to avoid overfitting, we
learned a subset of pairwise potentials which gave the lowest error
rate on a validation image, which has the same noise statistic as a
potential test image. As error rate, we used the number of
misclassified pixels, where unlabeled pixels of the QPBO method
are counted as misclassified. The learning is a greedy search: The
optimal subset is built by picking sequentially the best pairwise
terms, among all terms, where for each potential term, a full search
over � 2 ½0; 100� with step size 0.5 was conducted. Since SGC can
only deal with submodular terms, we ran the learning procedure
twice: 1) over all pairwise terms and 2) all submodular terms only.
This brute-force learning approach took 12 hours per texture on a
3 GHz machine and alternative MRF learning approaches could
be considered, which is however beyond the scope of this paper. The
learning yielded, on average, 6.8 pairwise potentials when restricted
to submodular terms only and 10.1 pairwise potentials without
restriction where 34.7 percent of the terms are nonsubmodular.

The error rate on the validation set over all textures was
18.28 percent for SGC and 17.24 percent for QPBO and, on the test
set 19.96 percent for SGC and 19.18 percent for QPBO. (For each
texture in the test set, we generated 20 instances of random noise).
Figs. 3c and 3d shows one example (all results available online). It is
worth mentioning that the optimal setting for QPBO was often close
to a “critical” setting, i.e., reducing � by a small amount results in

many unlabeled pixels on the validation image. It happened, for
three textures, that QPBO reconstructed test images with many
unlabeled pixels. We used an automated procedure which increased
� by a small amount until most pixels of the test images were fully
labeled.

To summarize, for texture restoration, it is important to model
nonsubmodular terms and QPBO can handle these terms to a
certain extent. A further observation is that an MRF with only
submodular terms has a bias toward a solution with uniform labels,
i.e., a black or white image. In the absence of unary terms, the
optimal solution is a uniform labeling. In terms of runtime, the
QPBO method was, on average, about 8 times slower (e.g.,
1.8 seconds SGC versus 14.3 seconds QPBO on a 3 GHz machine).
Also, as expected, the runtime of QPBO is close to identical to SGC
if only submodular terms are provided.

Image stitching. The problem of image stitching is to merge a
set of input images into one output image, e.g., a panoramic view.
Several methods [1], [28], [32] have approached this task as a
labeling problem, where each pixel in the output image is assigned
a label which corresponds to an input image. Several of the
proposed energies (depending on the application) contain non-
submodular terms. Since these methods utilize SGC, we pose the
question of whether QPBO will improve the results. We have tested
the energy defined in [28] (5) for five different scenarios of merging
20 images into one output image (similar to [32, Fig. 6]). When
running SGC, the energy is made submodular by truncating the
terms �pqð0; 0Þ (see details in [32]). The percentage of nonsubmod-
ular terms was, on average, 0.004 percent for one alpha-expansion
move. The number of differently labeled pixels was between
0 percent (four examples) and 6.5 percent (one example) and the
minimum energy was also close to identical. We may conclude that
SGC and QPBO perform very similarly when the percentage of
nonsubmodular terms is small.

4 CONCLUSIONS AND FUTURE WORK

In this survey, we reviewed the method in [10], [19] for minimizing

functions of binary variables with unary and pairwise terms. We

believe that this algorithm can make a significant impact for certain

vision applications. We demonstrated that the QPBO method

improves the results for the binary texture restoration problem. We

hope that this positive result will encourage research in other areas

such as recognition, e.g., [27], or super resolution, e.g., [30], to

exploit energies with nonsubmodular terms and utilize the QPBO

method for inference. (In the past, such terms were either

1278 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 29, NO. 7, JULY 2007

Fig. 3. The task is to restore a noisy test image (b) of a binarized Brodatz texture (D21) (a). The result of submodular graph cuts (c) is worse than QPBO (d), where

learning gave six submodular terms for SGC and three submodular and nine nonsubmodular for QPBO. (a) Test image (no noise). (b) Test image (60 percent noise).

(c) Submodular graph cuts (error 18:1). (d) QPBO (error 16:0).

7. http://research.microsoft.com/vision/cambridge/i3l/segmentation/
DATA/TextureRestoration.zip.



disallowed during learning or “truncated” during the inference via

graph cuts.) It is also interesting to incorporate higher-order

cliques of binary variables, as in [14]: It is known that any such

clique can be reduced to pairwise terms [9], however, the number

of terms grows exponentially with the clique size.
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