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C H A P T E R 1

Notation and conventions

A dataset as a collection of d-tuples (a d-tuple is an ordered list of d elements).
Tuples differ from vectors, because we can always add and subtract vectors, but
we cannot necessarily add or subtract tuples. There are always N items in any
dataset. There are always d elements in each tuple in a dataset. The number of
elements will be the same for every tuple in any given tuple. Sometimes we may
not know the value of some elements in some tuples.

We use the same notation for a tuple and for a vector. Most of our data will
be vectors. We write a vector in bold, so x could represent a vector or a tuple (the
context will make it obvious which is intended).

The entire data set is {x}. When we need to refer to the i’th data item, we
write xi. Assume we have N data items, and we wish to make a new dataset out of
them; we write the dataset made out of these items as {xi} (the i is to suggest you
are taking a set of items and making a dataset out of them). If we need to refer

to the j’th component of a vector xi, we will write x
(j)
i (notice this isn’t in bold,

because it is a component not a vector, and the j is in parentheses because it isn’t
a power). Vectors are always column vectors.
Terms:

• mean ({x}) is the mean of the dataset {x} (definition 2.1, page 12).

• std (x) is the standard deviation of the dataset {x} (definition 2.2, page 13).

• var ({x}) is the standard deviation of the dataset {x} (definition 2.3, page 17).

• median ({x}) is the standard deviation of the dataset {x} (definition 2.4,
page 18).

• percentile({x}, k) is the k% percentile of the dataset {x} (definition 2.5, page 20).

• iqr{x} is the interquartile range of the dataset {x} (definition 2.7, page 20).

• {x̂} is the dataset {x}, transformed to standard coordinates (definition 2.8,
page 25).

• Standard normal data is defined in definition 2.9, (page 26).

• Normal data is defined in definition 2.10, (page 27).

• corr ({(x, y)}) is the correlation between two components x and y of a dataset
(definition 4.1, page 62).

• ∅ is the empty set.

• Ω is the set of all possible outcomes of an experiment.
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Section 1.1 Some Useful Mathematical Facts 8

• Sets are written as A.

• Ac is the complement of the set A (i.e. Ω−A).

• E is an event (page 358).

• P ({E}) is the probability of event E (page 358).

• P ({E}|{F}) is the probability of event E , conditioned on event F (page 358).

• p(x) is the probability that random variable X will take the value x; also
written P ({X = x}) (page 358).

• p(x, y) is the probability that random variable X will take the value x and
random variable Y will take the value y; also written P ({X = x} ∩ {Y = y})
(page 358).

• argmax
x

f(x) means the value of x that maximises f(x).

• argmin
x

f(x) means the value of x that minimises f(x).

• maxi(f(xi)) means the largest value that f takes on the different elements of
the dataset {xi}.

• θ̂ is an estimated value of a parameter θ.

Background information:

• Cards: A standard deck of playing cards contains 52 cards. These cards are
divided into four suits. The suits are: spades and clubs (which are black);
and hearts and diamonds (which are red). Each suit contains 13 cards: Ace,
2, 3, 4, 5, 6, 7, 8, 9, 10, Jack (sometimes called Knave), Queen and King. It
is common to call Jack, Queen and King court cards.

• Dice: If you look hard enough, you can obtain dice with many different
numbers of sides (though I’ve never seen a three sided die). We adopt the
convention that the sides of an N sided die are labeled with the numbers
1 . . .N , and that no number is used twice. Most dice are like this.

• Fairness: Each face of a fair coin or die has the same probability of landing
upmost in a flip or roll.

1.1 SOME USEFUL MATHEMATICAL FACTS

The gamma function Γ(x) is defined by a series of steps. First, we have that for n
an integer,

Γ(n) = (n− 1)!

and then for z a complex number with positive real part (which includes positive
real numbers), we have

Γ(z) =

∫ ∞

0

tz
e−t

t
dt.
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By doing this, we get a function on positive real numbers that is a smooth inter-
polate of the factorial function. We won’t do any real work with this function, so
won’t expand on this definition. In practice, we’ll either look up a value in tables
or require a software environment to produce it.
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— Your Name Here —



C H A P T E R 2

First Tools for Looking at Data

The single most important question for a working scientist — perhaps the
single most useful question anyone can ask— is: “what’s going on here?” Answering
this question requires creative use of different ways to make pictures of datasets,
to summarize them, and to expose whatever structure might be there. This is an
activity that is sometimes known as “Descriptive Statistics”. There isn’t any fixed
recipe for understanding a dataset, but there is a rich variety of tools we can use
to get insights.

2.1 DATASETS

A dataset is a collection of descriptions of different instances of the same phe-
nomenon. These descriptions could take a variety of forms, but it is important that
they are descriptions of the same thing. For example, my grandfather collected
the daily rainfall in his garden for many years; we could collect the height of each
person in a room; or the number of children in each family on a block; or whether
10 classmates would prefer to be “rich” or “famous”. There could be more than
one description recorded for each item. For example, when he recorded the con-
tents of the rain gauge each morning, my grandfather could have recorded (say)
the temperature and barometric pressure. As another example, one might record
the height, weight, blood pressure and body temperature of every patient visiting
a doctor’s office.

The descriptions in a dataset can take a variety of forms. A description could
be categorical, meaning that each data item can take a small set of prescribed
values. For example, we might record whether each of 100 passers-by preferred to
be “Rich” or “Famous”. As another example, we could record whether the passers-
by are “Male” or “Female”. Categorical data could be ordinal, meaning that we
can tell whether one data item is larger than another. For example, a dataset giving
the number of children in a family for some set of families is categorical, because it
uses only non-negative integers, but it is also ordinal, because we can tell whether
one family is larger than another.

Some ordinal categorical data appears not to be numerical, but can be as-
signed a number in a reasonably sensible fashion. For example, many readers will
recall being asked by a doctor to rate their pain on a scale of 1 to 10 — a question
that is usually relatively easy to answer, but is quite strange when you think about
it carefully. As another example, we could ask a set of users to rate the usability
of an interface in a range from “very bad” to “very good”, and then record that
using -2 for “very bad”, -1 for “bad”, 0 for “neutral”, 1 for “good”, and 2 for “very
good”.

Many interesting datasets involve continuous variables (like, for example,
height or weight or body temperature) when you could reasonably expect to en-
counter any value in a particular range. For example, we might have the heights of

10
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all people in a particular room; or the rainfall at a particular place for each day of
the year; or the number of children in each family on a list.

You should think of a dataset as a collection of d-tuples (a d-tuple is an
ordered list of d elements). Tuples differ from vectors, because we can always add
and subtract vectors, but we cannot necessarily add or subtract tuples. We will
always write N for the number of tuples in the dataset, and d for the number of
elements in each tuple. The number of elements will be the same for every tuple,
though sometimes we may not know the value of some elements in some tuples
(which means we must figure out how to predict their values, which we will do
much later).

Index net worth
1 100, 360
2 109, 770
3 96, 860
4 97, 860
5 108, 930
6 124, 330
7 101, 300
8 112, 710
9 106, 740
10 120, 170

Index Taste score Index Taste score
1 12.3 11 34.9
2 20.9 12 57.2
3 39 13 0.7
4 47.9 14 25.9
5 5.6 15 54.9
6 25.9 16 40.9
7 37.3 17 15.9
8 21.9 18 6.4
9 18.1 19 18
10 21 20 38.9

TABLE 2.1: On the left, net worths of people you meet in a bar, in US $; I made
this data up, using some information from the US Census. The index column,
which tells you which data item is being referred to, is usually not displayed in
a table because you can usually assume that the first line is the first item, and
so on. On the right, the taste score (I’m not making this up; higher is better)
for 20 different cheeses. This data is real (i.e. not made up), and it comes from
http:// lib.stat. cmu. edu/DASL/ Datafiles/Cheese.html .

Each element of a tuple has its own type. Some elements might be categorical.
For example, one dataset we shall see several times records entries for Gender;
Grade; Age; Race; Urban/Rural; School; Goals; Grades; Sports; Looks; and Money
for 478 children, so d = 11 and N = 478. In this dataset, each entry is categorical
data. Clearly, these tuples are not vectors because one cannot add or subtract (say)
Genders.

Most of our data will be vectors. We use the same notation for a tuple and
for a vector. We write a vector in bold, so x could represent a vector or a tuple
(the context will make it obvious which is intended).

The entire data set is {x}. When we need to refer to the i’th data item, we
write xi. Assume we have N data items, and we wish to make a new dataset out
of them; we write the dataset made out of these items as {xi} (the i is to suggest
you are taking a set of items and making a dataset out of them).

In this chapter, we will work mainly with continuous data. We will see a
variety of methods for plotting and summarizing 1-tuples. We can build these
plots from a dataset of d-tuples by extracting the r’th element of each d-tuple.
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Mostly, we will deal with continuous data. All through the book, we will see many
datasets downloaded from various web sources, because people are so generous
about publishing interesting datasets on the web. In the next chapter, we will look
at 2-dimensional data, and we look at high dimensional data in chapter 11.

2.2 WHAT’S HAPPENING? - PLOTTING DATA

The very simplest way to present or visualize a dataset is to produce a table. Tables
can be helpful, but aren’t much use for large datasets, because it is difficult to get
any sense of what the data means from a table. As a continuous example, table 2.1
gives a table of the net worth of a set of people you might meet in a bar (I made
this data up). You can scan the table and have a rough sense of what is going on;
net worths are quite close to $ 100, 000, and there aren’t any very big or very small
numbers. This sort of information might be useful, for example, in choosing a bar.

People would like to measure, record, and reason about an extraordinary
variety of phenomena. Apparently, one can score the goodness of the flavor of
cheese with a number (bigger is better); table 2.1 gives a score for each of thirty
cheeses (I did not make up this data, but downloaded it from http://lib.stat.

cmu.edu/DASL/Datafiles/Cheese.html). You should notice that a few cheeses
have very high scores, and most have moderate scores. It’s difficult to draw more
significant conclusions from the table, though.

Gender Goal Gender Goal
boy Sports girl Sports
boy Popular girl Grades
girl Popular boy Popular
girl Popular boy Popular
girl Popular boy Popular
girl Popular girl Grades
girl Popular girl Sports
girl Grades girl Popular
girl Sports girl Grades
girl Sports girl Sports

TABLE 2.2: Chase and Dunner (?) collected data on what students thought made
other students popular. As part of this effort, they collected information on (a) the
gender and (b) the goal of students. This table gives the gender (“boy” or “girl”)
and the goal (to make good grades —“Grades”; to be popular — “Popular”; or
to be good at sports — “Sports”). The table gives this information for the first
20 of 478 students; the rest can be found at http:// lib.stat. cmu.edu/ DASL/
Datafiles/PopularKids.html . This data is clearly categorical, and not ordinal.

Table 2.2 shows a table for a set of categorical data. Psychologists collected
data from students in grades 4-6 in three school districts to understand what fac-
tors students thought made other students popular. This fascinating data set
can be found at http://lib.stat.cmu.edu/DASL/Datafiles/PopularKids.html,
and was prepared by Chase and Dunner (?). Among other things, for each student
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they asked whether the student’s goal was to make good grades (“Grades”, for
short); to be popular (“Popular”); or to be good at sports (“Sports”). They have
this information for 478 students, so a table would be very hard to read. Table 2.2
shows the gender and the goal for the first 20 students in this group. It’s rather
harder to draw any serious conclusion from this data, because the full table would
be so big. We need a more effective tool than eyeballing the table.

boy girl
0
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250

300
Number of children of each gender

Sports Grades Popular
0

50

100

150

200

250
Number of children choosing each goal

FIGURE 2.1: On the left, a bar chart of the number of children of each gender in
the Chase and Dunner study (). Notice that there are about the same number of
boys and girls (the bars are about the same height). On the right, a bar chart of
the number of children selecting each of three goals. You can tell, at a glance, that
different goals are more or less popular by looking at the height of the bars.

2.2.1 Bar Charts

A bar chart is a set of bars, one per category, where the height of each bar is
proportional to the number of items in that category. A glance at a bar chart often
exposes important structure in data, for example, which categories are common, and
which are rare. Bar charts are particularly useful for categorical data. Figure 2.1
shows such bar charts for the genders and the goals in the student dataset of Chase
and Dunner (). You can see at a glance that there are about as many boys as girls,
and that there are more students who think grades are important than students
who think sports or popularity is important. You couldn’t draw either conclusion
from Table 2.2, because I showed only the first 20 items; but a 478 item table is
very difficult to read.

2.2.2 Histograms

Data is continuous when a data item could take any value in some range or set of
ranges. In turn, this means that we can reasonably expect a continuous dataset
contains few or no pairs of items that have exactly the same value. Drawing a bar
chart in the obvious way — one bar per value — produces a mess of unit height
bars, and seldom leads to a good plot. Instead, we would like to have fewer bars,
each representing more data items. We need a procedure to decide which data
items count in which bar.
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FIGURE 2.2: On the left, a histogram of net worths from the dataset described in the
text and shown in table 2.1. On the right, a histogram of cheese goodness scores
from the dataset described in the text and shown in table 2.1.

A simple generalization of a bar chart is a histogram. We divide the range
of the data into intervals, which do not need to be equal in length. We think of
each interval as having an associated pigeonhole, and choose one pigeonhole for
each data item. We then build a set of boxes, one per interval. Each box sits on its
interval on the horizontal axis, and its height is determined by the number of data
items in the corresponding pigeonhole. In the simplest histogram, the intervals that
form the bases of the boxes are equally sized. In this case, the height of the box is
given by the number of data items in the box.

Figure 2.2 shows a histogram of the data in table 2.1. There are five bars —
by my choice; I could have plotted ten bars — and the height of each bar gives the
number of data items that fall into its interval. For example, there is one net worth
in the range between $102, 500 and $107, 500. Notice that one bar is invisible,
because there is no data in that range. This picture suggests conclusions consistent
with the ones we had from eyeballing the table — the net worths tend to be quite
similar, and around $100, 000.

Figure 2.2 shows a histogram of the data in table 2.1. There are six bars
(0-10, 10-20, and so on), and the height of each bar gives the number of data items
that fall into its interval — so that, for example, there are 9 cheeses in this dataset
whose score is greater than or equal to 10 and less than 20. You can also use the
bars to estimate other properties. So, for example, there are 14 cheeses whose score
is less than 20, and 3 cheeses with a score of 50 or greater. This picture is much
more helpful than the table; you can see at a glance that quite a lot of cheeses have
relatively low scores, and few have high scores.

2.2.3 How to Make Histograms

Usually, one makes a histogram by finding the appropriate command or routine in
your programming environment. I use Matlab, and chapter 3 sketches some useful
Matlab commands. However, it is useful to understand the procedures used.
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FIGURE 2.3: On top, a histogram of body temperatures, from the dataset published
at http: // www2.stetson.edu/~ jrasp/data. htm . These seem to be clustered
fairly tightly around one value. The bottom row shows histograms for each gender
(I don’t know which is which). It looks as though one gender runs slightly cooler
than the other.

Histograms with Even Intervals: The easiest histogram to build uses
equally sized intervals. Write xi for the i’th number in the dataset, xmin for the
smallest value, and xmax for the largest value. We divide the range between the
smallest and largest values into n intervals of even width (xmax−xmin)/n. In this
case, the height of each box is given by the number of items in that interval. We
could represent the histogram with an n-dimensional vector of counts. Each entry
represents the count of the number of data items that lie in that interval. Notice
we need to be careful to ensure that each point in the range of values is claimed by
exactly one interval. For example, we could have intervals of [0− 1) and [1− 2), or
we could have intervals of (0− 1] and (1− 2]. We could not have intervals of [0− 1]
and [1− 2], because then a data item with the value 1 would appear in two boxes.
Similarly, we could not have intervals of (0 − 1) and (1 − 2), because then a data
item with the value 1 would not appear in any box.

Histograms with Uneven Intervals: For a histogram with even intervals,
it is natural that the height of each box is the number of data items in that box.
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But a histogram with even intervals can have empty boxes (see figure 2.2). In
this case, it can be more informative to have some larger intervals to ensure that
each interval has some data items in it. But how high should we plot the box?
Imagine taking two consecutive intervals in a histogram with even intervals, and
fusing them. It is natural that the height of the fused box should be the average
height of the two boxes. This observation gives us a rule.

Write dx for the width of the intervals; n1 for the height of the box over the
first interval (which is the number of elements in the first box); and n2 for the
height of the box over the second interval. The height of the fused box will be
(n1 + n2)/2. Now the area of the first box is n1dx; of the second box is n2dx; and
of the fused box is (n1 + n2)dx. For each of these boxes, the area of the box is
proportional to the number of elements in the box. This gives the correct rule: plot
boxes such that the area of the box is proportional to the number of elements in
the box.

2.2.4 Conditional Histograms

Most people believe that normal body temperature is 98.4o in Fahrenheit. If you
take other people’s temperatures often (for example, you might have children),
you know that some individuals tend to run a little warmer or a little cooler than
this number. I found data giving the body temperature of a set of individuals at
http://www2.stetson.edu/~jrasp/data.htm. As you can see from the histogram
(figure 2.3), the body temperatures cluster around a small set of numbers. But what
causes the variation?

One possibility is gender. We can investigate this possibility by compar-
ing a histogram of temperatures for males with histogram of temperatures for fe-
males. Such histograms are sometimes called conditional histograms or class-
conditional histograms, because each histogram is conditioned on something (in
this case, the histogram uses only data that comes from gender).

The dataset gives genders (as 1 or 2 - I don’t know which is male and which
female). Figure 2.3 gives the class conditional histograms. It does seem like indi-
viduals of one gender run a little cooler than individuals of the other, although we
don’t yet have mechanisms to test this possibility in detail (chapter 14.1).

2.3 SUMMARIZING 1D DATA

For the rest of this chapter, we will assume that data items take values that are
continuous real numbers. Furthermore, we will assume that values can be added,
subtracted, and multiplied by constants in a meaningful way. Human heights are
one example of such data; you can add two heights, and interpret the result as a
height (perhaps one person is standing on the head of the other). You can subtract
one height from another, and the result is meaningful. You can multiply a height
by a constant — say, 1/2 — and interpret the result (A is half as high as B). Not
all data is like this. Categorical data is often not like this. For example, you could
not add “Grades” to “Popular” in any useful way.
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2.3.1 The Mean

One simple and effective summary of a set of data is its mean. This is sometimes
known as the average of the data.

Definition: 2.1 Mean

Assume we have a dataset {x} of N data items, x1, . . . , xN . Their mean
is

mean ({x}) = 1

N

i=N
∑

i=1

xi.

For example, assume you’re in a bar, in a group of ten people who like to talk
about money. They’re average people, and their net worth is given in table 2.1 (you
can choose who you want to be in this story). The mean of this data is $107, 903.

An important interpretation of the mean is that it is the best guess of the
value of a new data item, given no information at all. In the bar example, if a new
person walked into this bar, and you had to guess that person’s net worth, you
should choose $107, 903.

Properties of the Mean The mean has several important properties you
should remember:

• Scaling data scales the mean: or mean ({kxi}) = kmean ({xi}).

• Translating data translates the mean: or mean ({xi + c}) = mean ({xi}) + c.

• The sum of signed differences from the mean is zero. This means that

N
∑

i=1

(xi −mean ({xi})) = 0.

• Choose the number µ such that the sum of squared distances of data points
to µ is minimized. That number is the mean. In notation

arg min
µ

∑

i

(xi − µ)2 = mean ({xi})

These properties are easy to prove (and so easy to remember). All but one proof
is relegated to the exercises.
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Proposition:
arg min

µ

∑

i(xi − µ)2 = mean ({x})

Proof: Choose the number µ such that the sum of squared distances of data
points to µ is minimized. That number is the mean. In notation:

arg min
µ

∑

i

(xi − µ)2 = mean ({x})

We can show this by actually minimizing the expression. We must have that the
derivative of the expression we are minimizing is zero at the value of µ we are
seeking. So we have

d

dµ

N
∑

i=1

(xi − µ)2 =

N
∑

i=1

2(xi − µ)

= 2

N
∑

i=1

(xi − µ)

= 0

so that 2Nmean ({x})− 2Nµ = 0, which means that µ = mean ({x}).
Property 2.1: The Average Squared Distance to the Mean is Minimized

2.3.2 Standard Deviation and Variance

We would also like to know the extent to which data items are close to the mean.
This information is given by the standard deviation, which is the root mean
square of the offsets of data from the mean.

Definition: 2.2 Standard deviation

Assume we have a dataset {x} of N data items, x1, . . . , xN . The stan-
dard deviation of this dataset is is:

std (xi) =

√

√

√

√

1

N

i=N
∑

i−1

(xi −mean ({x}))2 =
√

mean ({(xi −mean ({x}))2}).

You should think of the standard deviation as a scale. It measures the size of
the average deviation from the mean for a dataset. When the standard deviation
of a dataset is large, there are many items with values much larger than, or much
smaller than, the mean. When the standard deviation is small, most data items
have values close to the mean. This means it is helpful to talk about how many
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standard devations away from the mean a particular data item is. Saying that data
item xj is “within k standard deviations from the mean” means that

abs (xj −mean ({x})) ≤ kstd (xi).

Similarly, saying that data item xj is “more than k standard deviations from the
mean” means that

abs (xi −mean ({x})) > kstd (x).

As I will show below, there must be some data at least one standard deviation
away from the mean, and there can be very few data items that are many standard
deviations away from the mean.

Properties of the Standard Deviation Standard deviation has very im-
portant properties:

• Translating data does not change the standard deviation, i.e. std (xi + c) =
std (xi).

• Scaling data scales the standard deviation, i.e. std (kxi) = kstd (xi).

• For any dataset, there can be only a few items that are many standard devi-
ations away from the mean. In particular, assume we have N data items, xi,
whose standard deviation is σ. Then there are at most 1

k2 data points lying
k or more standard deviations away from the mean.

• For any dataset, there must be at least one data item that is at least one
standard deviation away from the mean.

The first two properties are easy to prove, and are relegated to the exercises.
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Proposition: Assume we have a dataset {x} of N data items, x1, . . . , xN .
Assume the standard deviation of this dataset is std (x) = σ. Then there are at
most 1

k2 data points lying k or more standard deviations away from the mean.

Proof: Assume the mean is zero. There is no loss of generality here, because
translating data translates the mean, but doesn’t change the standard deviation.
The way to prove this is to construct a dataset with the largest possible fraction
r of data points lying k or more standard deviations from the mean. To achieve
this, our data should have N(1 − r) data points each with the value 0, because
these contribute 0 to the standard deviation. It should have Nr data points with
the value kσ; if they are further from zero than this, each will contribute more
to the standard deviation, so the fraction of such points will be fewer. Because

std (x) = σ =

√

∑

i x
2
i

N

we have that, for this rather specially constructed dataset,

σ =

√

Nrk2σ2

N

so that

r =
1

k2
.

We constructed the dataset so that r would be as large as possible, so

r ≤ 1

k2

for any kind of data at all.

Property 2.2: For any dataset, it is hard for data items to get many standard
deviations away from the mean.

The bound of box 2.3.2 is true for any kind of data. This bound implies that,
for example, at most 100% of any dataset could be one standard deviation away
from the mean, 25% of any dataset is 2 standard deviations away from the mean
and at most 11% of any dataset could be 3 standard deviations away from the
mean. But the configuration of data that achieves this bound is very unusual. This
means the bound tends to wildly overstate how much data is far from the mean
for most practical datasets. Most data has more random structure, meaning that
we expect to see very much less data far from the mean than the bound predicts.
For example, much data can reasonably be modelled as coming from a normal
distribution (a topic we’ll go into later). For such data, we expect that about
68% of the data is within one standard deviation of the mean, 95% is within two
standard deviations of the mean, and 99.7% is within three standard deviations
of the mean, and the percentage of data that is within ten standard deviations of
the mean is essentially indistinguishable from 100%. This kind of behavior is quite
common; the crucial point about the standard deviation is that you won’t see much
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data that lies many standard deviations from the mean, because you can’t.

Proposition:
(std (x))2 ≤ max

i
(xi −mean ({x}))2.

Proof: You can see this by looking at the expression for standard deviation.
We have

std (x) =

√

√

√

√

1

N

i=N
∑

i−1

(xi −mean ({x}))2.

Now, this means that

N(std (x))2 =
i=N
∑

i−1

(xi −mean ({x}))2.

But
i=N
∑

i−1

(xi −mean ({x}))2 ≤ N max
i

(xi −mean ({x}))2

so
(std (x))2 ≤ max

i
(xi −mean ({x}))2.

Property 2.3: For any dataset, there must be at least one data item that is at
least one standard deviation away from the mean.

Boxes 2.3.2 and 2.3.2 mean that the standard deviation is quite informative.
Very little data is many standard deviations away from the mean; similarly, at least
some of the data should be one or more standard deviations away from the mean.
So the standard deviation tells us how data points are scattered about the mean.
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Potential point of confusion: There is an ambiguity that comes up
often here because two (very slightly) different numbers are called the stan-
dard deviation of a dataset.

What is going on here: One — the one we use in this chapter — is
an estimate of the scale of the data, as we describe it. The other differs
from our expression very slightly; one computes

√

∑

i(xi −mean ({x}))2
N − 1

(notice the N − 1 for our N). If N is large, this number is basically
the same as the number we compute, but for smaller N there is a
difference that can be significant. Irritatingly, this number is also called
the standard deviation; even more irritatingly, we will have to deal with
it, but not yet. I mention it now because you may look up terms I
have used, find this definition, and wonder whether I know what I’m
talking about. The confusion arises because sometimes the datasets
we see are actually samples of larger datasets. For example, in some
circumstances you could think of the net worth dataset as a sample of
all the net worths in the USA. In such cases, we are often interested
in the standard deviation of the dataset that was sampled. The second
number is a slightly better way to estimate this standard deviation than
the definition we have been working with. Don’t worry - the N in our
expressions is the right thing to use for what we’re doing.

2.3.3 Variance

It turns out that thinking in terms of the square of the standard deviation, which
is known as the variance, will allow us to generalize our summaries to apply to
higher dimensional data.

Definition: 2.3 Variance

Assume we have a dataset {x} of N data items, x1, . . . , xN . where
N > 1. Their variance is:

var ({x}) = 1

N

(

i=N
∑

i−1

(xi −mean ({x}))2
)

= mean
({

(xi −mean ({x}))2
})

.

One good way to think of the variance is as the mean-square error you would
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incur if you replaced each data item with the mean. Another is that it is the square
of the standard deviation.

Properties of the Variance The properties of the variance follow from
the fact that it is the square of the standard deviation. We have that:

• Translating data does not change the variance, i.e. var ({x+ c}) = var ({x}).
• Scaling data scales the variance by a square of the scale, i.e. var ({kx}) =
k2var ({x}).

While one could restate the other two properties of the standard deviation in terms
of the variance, it isn’t really natural to do so. The standard deviation is in the
same units as the original data, and should be thought of as a scale. Because the
variance is the square of the standard deviation, it isn’t a natural scale (unless you
take its square root!).

2.3.4 The Median

One problem with the mean is that it can be affected strongly by extreme values.
Go back to the bar example, of section 2.3.1. Now Warren Buffett (or Bill Gates,
or your favorite billionaire) walks in. What happened to the average net worth?

Assume your billionaire has net worth $ 1, 000, 000, 000. Then the mean net
worth suddenly has become

10× $107, 903+ $1, 000, 000, 000

11
= $91, 007, 184

But this mean isn’t a very helpful summary of the people in the bar. It is prob-
ably more useful to think of the net worth data as ten people together with one
billionaire. The billionaire is known as an outlier.

One way to get outliers is that a small number of data items are very dif-
ferent, due to minor effects you don’t want to model. Another is that the data
was misrecorded, or mistranscribed. Another possibility is that there is just too
much variation in the data to summarize it well. For example, a small number
of extremely wealthy people could change the average net worth of US residents
dramatically, as the example shows. An alternative to using a mean is to use a
median.

Definition: 2.4 Median

The median of a set of data points is obtained by sorting the data
points, and finding the point halfway along the list. If the list is of
even length, it’s usual to average the two numbers on either side of the
middle. We write

median ({xi})
for the operator that returns the median.
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For example,
median ({3, 5, 7}) = 5,

median ({3, 4, 5, 6, 7}) = 5,

and
median ({3, 4, 5, 6}) = 4.5.

For much, but not all, data, you can expect that roughly half the data is smaller
than the median, and roughly half is larger than the median. Sometimes this
property fails. For example,

median ({1, 2, 2, 2, 2, 2, 2, 2, 3}) = 2.

With this definition, the median of our list of net worths is $107, 835. If we insert
the billionaire, the median becomes $108, 930. Notice by how little the number has
changed — it remains an effective summary of the data.

Properties of the median You can think of the median of a dataset as
giving the “middle” or “center” value. This means it is rather like the mean, which
also gives a (slightly differently defined) “middle” or “center” value. The mean has
the important properties that if you translate the dataset, the mean translates, and
if you scale the dataset, the mean scales. The median has these properties, too:

• Translating data translates the median, i.e. median ({x+ c}) = median ({x})+
c.

• Scaling data scales the median by the same scale, i.e. median ({kx}) =
kmedian ({x}).

Each is easily proved, and proofs are relegated to the exercises.

2.3.5 Interquartile Range

Outliers are a nuisance in all sorts of ways. Plotting the histogram of the net worth
data with the billionaire included will be tricky. Either you leave the billionaire out
of the plot, or all the histogram bars are tiny. Visualizing this plot shows outliers
can affect standard deviations severely, too. For our net worth data, the standard
deviation without the billionaire is $9265, but if we put the billionaire in there, it
is $3.014 × 108. When the billionaire is in the dataset, the mean is about 91M$
and the standard deviation is about 300M$ — so all but one of the data items lie
about a third of a standard deviation away from the mean on the small side. The
other data item (the billionaire) is about three standard deviations away from the
mean on the large side. In this case, the standard deviation has done its work of
informing us that there are huge changes in the data, but isn’t really helpful as a
description of the data.

The problem is this: describing the net worth data with billionaire as a having
a mean of $9.101×107 with a standard deviation of $3.014×108 really isn’t terribly
helpful. Instead, the data really should be seen as a clump of values that are
near $100, 000 and moderately close to one another, and one massive number (the
billionaire outlier).
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One thing we could do is simply remove the billionaire and compute mean
and standard deviation. This isn’t always easy to do, because it’s often less obvious
which points are outliers. An alternative is to follow the strategy we did when we
used the median. Find a summary that describes scale, but is less affected by
outliers than the standard deviation. This is the interquartile range; to define
it, we need to define percentiles and quartiles, which are useful anyway.

Definition: 2.5 Percentile

The k’th percentile is the value such that k% of the data is less than or
equal to that value. We write percentile({x}, k) for the k’th percentile
of dataset {x}.

Definition: 2.6 Quartiles

The first quartile of the data is the value such that 25% of the data is less
than or equal to that value (i.e. percentile({x}, 25)). The second quar-
tile of the data is the value such that 50% of the data is less than or equal
to that value, which is usually the median (i.e. percentile({x}, 50)). The
third quartile of the data is the value such that 75% of the data is less
than or equal to that value (i.e. percentile({x}, 75)).

Definition: 2.7 Interquartile Range

The interquartile range of a dataset {x} is iqr{x} = percentile({x}, 75)−
percentile({x}, 25).

Like the standard deviation, the interquartile range gives an estimate of how
widely the data is spread out. But it is quite well-behaved in the presence of
outliers. For our net worth data without the billionaire, the interquartile range is
$12350; with the billionaire, it is $17710.

Properties of the interquartile range You can think of the interquartile
range of a dataset as giving an estimate of the scale of the difference from the mean.
This means it is rather like the standard deviation, which also gives a (slightly
differently defined) scale. The standard deviation has the important properties
that if you translate the dataset, the standard deviation translates, and if you
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scale the dataset, the standard deviation scales. The interquartile range has these
properties, too:

• Translating data does not change the interquartile range, i.e. iqr{x+ c} =
iqr{x}.

• Scaling data scales the interquartile range by the same scale, i.e. iqr{kx} =
k2iqr{x}.

Each is easily proved, and proofs are relegated to the exercises.

2.3.6 Using Summaries Sensibly

One should be careful how one summarizes data. For example, the statement
that “the average US family has 2.6 children” invites mockery (the example is from
Andrew Vickers’ bookWhat is a p-value anyway?), because you can’t have fractions
of a child — no family has 2.6 children. A more accurate way to say things might
be “the average of the number of children in a US family is 2.6”, but this is clumsy.
What is going wrong here is the 2.6 is a mean, but the number of children in a
family is a categorical variable. Reporting the mean of a categorical variable is
often a bad idea, because you may never encounter this value (the 2.6 children).
For a categorical variable, giving the median value and perhaps the interquartile
range often makes much more sense than reporting the mean.

For continuous variables, reporting the mean is reasonable because you could
expect to encounter a data item with this value, even if you haven’t seen one in
the particular data set you have. It is sensible to look at both mean and median;
if they’re significantly different, then there is probably something going on that is
worth understanding. You’d want to plot the data using the methods of the next
section before you decided what to report.

You should also be careful about how precisely numbers are reported (equiv-
alently, the number of significant figures). Numerical and statistical software will
produce very large numbers of digits freely, but not all are always useful. This is a
particular nuisance in the case of the mean, because you might add many numbers,
then divide by a large number; in this case, you will get many digits, but some
might not be meaningful. For example, Vickers (ibid) describes a paper reporting
the mean length of pregnancy as 32.833 weeks. That fifth digit suggests we know
the mean length of pregnancy to about 0.001 weeks, or roughly 10 minutes. Neither
medical interviewing nor people’s memory for past events is that detailed. Further-
more, when you interview them about embarrassing topics, people quite often lie.
There is no prospect of knowing this number with this precision.

People regularly report silly numbers of digits because it is easy to miss the
harm caused by doing so. But the harm is there: you are implying to other people,
and to yourself, that you know something more accurately than you do. At some
point, someone will suffer for it.

2.4 PLOTS AND SUMMARIES

Knowing the mean, standard deviation, median and interquartile range of a dataset
gives us some information about what its histogram might look like. In fact, the



Section 2.4 Plots and Summaries 27

mode

modes

Population 1 Population 2

Bimodal

modes

Population 1 Population 2

Multimodal

Population 3

FIGURE 2.4: Many histograms are unimodal, like the example on the top; there is
one peak, or mode. Some are bimodal (two peaks; bottom left) or even multimodal
(two or more peaks; bottom right). One common reason (but not the only reason)
is that there are actually two populations being conflated in the histograms. For
example, measuring adult heights might result in a bimodal histogram, if male and
female heights were slightly different. As another example, measuring the weight
of dogs might result in a multimodal histogram if you did not distinguish between
breeds (eg chihauhau, terrier, german shepherd, pyranean mountain dog, etc.).

summaries give us a language in which to describe a variety of characteristic proper-
ties of histograms that are worth knowing about (Section 2.4.1). Quite remarkably,
many different datasets have the same shape of histogram (Section 2.4.2). For such
data, we know roughly what percentage of data items are how far from the mean.

Complex datasets can be difficult to interpret with histograms alone, because
it is hard to compare many histograms by eye. Section 2.4.3 describes a clever plot
of various summaries of datasets that makes it easier to compare many cases.

2.4.1 Some Properties of Histograms

The tails of a histogram are the relatively uncommon values that are significantly
larger (resp. smaller) than the value at the peak (which is sometimes called the
mode). A histogram is unimodal if there is only one peak; if there are more than
one, it is multimodal, with the special term bimodal sometimes being used for
the case where there are two peaks (Figure 2.4). The histograms we have seen
have been relatively symmetric, where the left and right tails are about as long as
one another. Another way to think about this is that values a lot larger than the
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FIGURE 2.5: On the top, an example of a symmetric histogram, showing its tails
(relatively uncommon values that are significantly larger or smaller than the peak
or mode). Lower left, a sketch of a left-skewed histogram. Here there are few
large values, but some very small values that occur with significant frequency. We
say the left tail is “long”, and that the histogram is left skewed. You may find
this confusing, because the main bump is to the right — one way to remember this
is that the left tail has been stretched. Lower right, a sketch of a right-skewed
histogram. Here there are few small values, but some very large values that occur
with significant frequency. We say the right tail is “long”, and that the histogram
is right skewed.

mean are about as common as values a lot smaller than the mean. Not all data is
symmetric. In some datasets, one or another tail is longer (figure 2.5). This effect
is called skew.

Skew appears often in real data. SOCR (the Statistics Online Computa-
tional Resource) publishes a number of datasets. Here we discuss a dataset of
citations to faculty publications. For each of five UCLA faculty members, SOCR
collected the number of times each of the papers they had authored had been
cited by other authors (data at http://wiki.stat.ucla.edu/socr/index.php/

SOCR_Data_Dinov_072108_H_Index_Pubs). Generally, a small number of papers
get many citations, and many papers get few citations. We see this pattern in the
histograms of citation numbers (figure 2.6). These are very different from (say) the
body temperature pictures. In the citation histograms, there are many data items
that have very few citations, and few that have many citations. This means that
the right tail of the histogram is longer, so the histogram is skewed to the right.

One way to check for skewness is to look at the histogram; another is to
compare mean and median (though this is not foolproof). For the first citation
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FIGURE 2.6: On the left, a histogram of citations for a faculty member, from
data at http:// wiki.stat. ucla.edu/ socr/index.php/ SOCR_Data_ Dinov_

072108_H_ Index_Pubs . Very few publications have many citations, and many
publications have few. This means the histogram is strongly right-skewed. On the
right, a histogram of birth weights for 44 babies borne in Brisbane in 1997. This
histogram looks slightly left-skewed.

histogram, the mean is 24.7 and the median is 7.5; for the second, the mean is 24.4,
and the median is 11. In each case, the mean is a lot bigger than the median. Recall
the definition of the median (form a ranked list of the data points, and find the
point halfway along the list). For much data, the result is larger than about half
of the data set and smaller than about half the dataset. So if the median is quite
small compared to the mean, then there are many small data items and a small
number of data items that are large — the right tail is longer, so the histogram is
skewed to the right.

Left-skewed data also occurs; figure 2.6 shows a histogram of the birth weights
of 44 babies born in Brisbane, in 1997 (from http://www.amstat.org/publications/

jse/jse_data_archive.htm). This data appears to be somewhat left-skewed, as
birth weights can be a lot smaller than the mean, but tend not to be much larger
than the mean.

Skewed data is often, but not always, the result of constraints. For example,
good obstetrical practice tries to ensure that very large birth weights are rare (birth
is typically induced before the baby gets too heavy), but it may be quite hard to
avoid some small birth weights. This could could skew birth weights to the left
(because large babies will get born, but will not be as heavy as they could be if
obstetricians had not interfered). Similarly, income data can be skewed to the right
by the fact that income is always positive. Test mark data is often skewed —
whether to right or left depends on the circumstances — by the fact that there is
a largest possible mark and a smallest possible mark.

2.4.2 Standard Coordinates and Normal Data

It is useful to look at lots of histograms, because it is often possible to get some
useful insights about data. However, in their current form, histograms are hard to
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compare. This is because each is in a different set of units. A histogram for length
data will consist of boxes whose horizontal units are, say, metres; a histogram
for mass data will consist of boxes whose horizontal units are in, say, kilograms.
Furthermore, these histograms typically span different ranges.

We can make histograms comparable by (a) estimating the “location” of the
plot on the horizontal axis and (b) estimating the “scale” of the plot. The location
is given by the mean, and the scale by the standard deviation. We could then
normalize the data by subtracting the location (mean) and dividing by the standard
deviation (scale). The resulting values are unitless, and have zero mean. They are
often known as standard coordinates.

Definition: 2.8 Standard coordinates

Assume we have a dataset {x} of N data items, x1, . . . , xN . We repre-
sent these data items in standard coordinates by computing

x̂i =
(xi −mean ({x}))

std (x)
.

We write {x̂} for a dataset that happens to be in standard coordinates.

Standard coordinates have some important properties. Assume we have N
data items. Write xi for the i’th data item, and x̂i for the i’th data item in standard
coordinates (I sometimes refer to these as “normalized data items”). Then we have

mean ({x̂}) = 0.

We also have that
std (x̂) = 1.

An extremely important fact about data is that, for many kinds of data,
histograms of these standard coordinates look the same. Many completely different
datasets produce a histogram that, in standard coordinates, has a very specific
appearance. It is symmetric, unimodal; it looks like a narrow bump. If there were
enough data points and the histogram boxes were small enough, the curve would
look like the curve in figure 2.7. This phenomenon is so important that data of this
form has a special name.
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FIGURE 2.7: Data is standard normal data when its histogram takes a stylized,
bell-shaped form, plotted above. One usually requires a lot of data and very small
histogram boxes for this form to be reproduced closely. Nonetheless, the histogram
for normal data is unimodal (has a single bump) and is symmetric; the tails fall
off fairly fast, and there are few data items that are many standard deviations from
the mean. Many quite different data sets have histograms that are similar to the
normal curve; I show three such datasets here.

Definition: 2.9 Standard normal data

Data is standard normal data if, when we have a great deal of data,
the histogram is a close approximation to the standard normal curve.
This curve is given by

y(x) =
1√
2pi

e(−x2/2)

(which is shown in figure 2.7).
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Definition: 2.10 Normal data

Data is normal data if, when we subtract the mean and divide by
the standard deviation (i.e. compute standard coordinates), it becomes
standard normal data.

It is not always easy to tell whether data is normal or not, and there are
a variety of tests one can use, which we discuss later. However, there are many
examples of normal data. Figure 2.7 shows a diverse variety of data sets, plotted
as histograms in standard coordinates. These include: the volumes of 30 oysters
(from http://www.amstat.org/publications/jse/jse_data_archive.htm; look
for 30oysters.dat.txt); human heights (from http://www2.stetson.edu/~jrasp/

data.htm; look for bodyfat.xls, with two outliers removed); and human weights
(from http://www2.stetson.edu/~jrasp/data.htm; look for bodyfat.xls, with
two outliers removed).

Properties of normal data For the moment, assume we know that a
dataset is normal. Then we expect it to have the following properties:

• If we normalize it, its histogram will be close to the standard normal curve.
This means, among other things, that the data is not significantly skewed.

• About 68% of the data lie within one standard deviation of the mean. We
will prove this later.

• About 95% of the data lie within two standard deviations of the mean. We
will prove this later.

• About 99% of the data lie within three standard deviations of the mean. We
will prove this later.

In turn, these properties imply that data that contains outliers (points many stan-
dard deviations away from the mean) is not normal. This is usually a very safe
assumption. It is quite common to model a dataset by excluding a small number
of outliers, then modelling the remaining data as normal. For example, if I exclude
two outliers from the height and weight data from http://www2.stetson.edu/

~jrasp/data.htm, the data looks pretty close to normal.

2.4.3 Boxplots

It is usually hard to compare multiple histograms by eye. One problem with com-
paring histograms is the amount of space they take up on a plot, because each
histogram involves multiple vertical bars. This means it is hard to plot multiple
overlapping histograms cleanly. If you plot each one on a separate figure, you have
to handle a large number of separate figures; either you print them too small to see
enough detail, or you have to keep flipping over pages.
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FIGURE 2.8: A boxplot showing the box, the median, the whiskers and two outliers.
Notice that we can compare the two datasets rather easily; the next section explains
the comparison.

A boxplot is a way to plot data that simplifies comparison. A boxplot dis-
plays a dataset as a vertical picture. There is a vertical box whose height corre-
sponds to the interquartile range of the data (the width is just to make the figure
easy to interpret). Then there is a horizontal line for the median; and the behavior
of the rest of the data is indicated with whiskers and/or outlier markers. This
means that each dataset makes is represented by a vertical structure, making it
easy to show multiple datasets on one plot and interpret the plot (Figure 2.8).

To build a boxplot, we first plot a box that runs from the first to the third
quartile. We then show the median with a horizontal line. We then decide which
data items should be outliers. A variety of rules are possible; for the plots I show, I
used the rule that data items that are larger than q3 + 1.5(q3 − q1) or smaller than
q1 − 1.5(q3 − q1), are outliers. This criterion looks for data items that are more
than one and a half interquartile ranges above the third quartile, or more than one
and a half interquartile ranges below the first quartile.

Once we have identified outliers, we plot these with a special symbol (crosses
in the plots I show). We then plot whiskers, which show the range of non-outlier
data. We draw a whisker from q1 to the smallest data item that is not an outlier,
and from q3 to the largest data item that is not an outlier. While all this sounds
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FIGURE 2.9: A histogram of pizza diameters from the dataset described in the text.
Notice that there seem to be two populations.

complicated, any reasonable programming environment will have a function that
will do it for you. Figure 2.8 shows an example boxplot. Notice that the rich
graphical structure means it is quite straightforward to compare two histograms.

2.5 WHOSE IS BIGGER? INVESTIGATING AUSTRALIAN PIZZAS

At http://www.amstat.org/publications/jse/jse_data_archive.htm), you will
find a dataset giving the diameter of pizzas, measured in Australia (search for the
word “pizza”). This website also gives the backstory for this dataset. Apparently,
EagleBoys pizza claims that their pizzas are always bigger than Dominos pizzas,
and published a set of measurements to support this claim (the measurements were
available at http://www.eagleboys.com.au/realsizepizza as of Feb 2012, but
seem not to be there anymore).

Whose pizzas are bigger? and why? A histogram of all the pizza sizes appears
in figure 2.9. We would not expect every pizza produced by a restaurant to have
exactly the same diameter, but the diameters are probably pretty close to one
another, and pretty close to some standard value. This would suggest that we’d
expect to see a histogram which looks like a single, rather narrow, bump about a
mean. This is not what we see in figure 2.9 — instead, there are two bumps, which
suggests two populations of pizzas. This isn’t particularly surprising, because we
know that some pizzas come from EagleBoys and some from Dominos.

If you look more closely at the data in the dataset, you will notice that each
data item is tagged with the company it comes from. We can now easily plot
conditional histograms, conditioning on the company that the pizza came from.
These appear in figure 2.10. Notice that EagleBoys pizzas seem to follow the pattern
we expect — the diameters are clustered tightly around one value — but Dominos
pizzas do not seem to be like that. This is reflected in a boxplot (figure 2.11), which
shows the range of Dominos pizza sizes is surprisingly large, and that EagleBoys
pizza sizes have several large outliers. There is more to understand about this data.
The dataset contains labels for the type of crust and the type of topping — perhaps
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FIGURE 2.10: On the left, the class-conditional histogram of Dominos pizza di-
ameters from the pizza data set; on the right, the class-conditional histogram of
EagleBoys pizza diameters. Notice that EagleBoys pizzas seem to follow the pat-
tern we expect — the diameters are clustered tightly around a mean, and there is a
small standard deviation — but Dominos pizzas do not seem to be like that. There
is more to understand about this data.
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FIGURE 2.11: Boxplots of the pizza data, comparing EagleBoys and Dominos pizza.
There are several curiosities here: why is the range for Dominos so large (25.5-29)?
EagleBoys has a smaller range, but has several substantial outliers; why? One would
expect pizza manufacturers to try and control diameter fairly closely, because pizzas
that are too small present risks (annoying customers; publicity; hostile advertising)
and pizzas that are too large should affect profits.

these properties affect the size of the pizza?
EagleBoys produces DeepPan, MidCrust and ThinCrust pizzas, and Dominos

produces DeepPan, ClassicCrust and ThinNCrispy pizzas. This may have some-
thing to do with the observed patterns, but comparing six histograms by eye is
unattractive. A boxplot is the right way to compare these cases (figure 2.12). The
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FIGURE 2.12: Boxplots for the pizza data, broken out by type (thin crust, etc.).

boxplot gives some more insight into the data. Dominos thin crust appear to have a
narrow range of diameters (with several outliers), where the median pizza is rather
larger than either the deep pan or the classic crust pizza. EagleBoys pizzas all have
a range of diameters that is (a) rather similar across the types and (b) rather a lot
like the Dominos thin crust. There are outliers, but few for each type.

Another possibility is that the variation in size is explained by the topping.
We can compare types and toppings by producing a set of conditional boxplots (i.e.
the diameters for each type and each topping). This leads to rather a lot of boxes
(figure 2.13), but they’re still easy to compare by eye. The main difficulty is that
the labels on the plot have to be shortened. I made labels using the first letter
from the manufacturer (“D” or “E”); the first letter from the crust type (previous
paragraph); and the first and last letter of the topping. Toppings for Dominos are:
Hawaiian; Supreme; BBQMeatlovers. For EagleBoys, toppings are: Hawaiian; Su-
perSupremo; and BBQMeatlovers. This gives the labels: ’DCBs’; (Dominos; Clas-
sicCrust; BBQMeatlovers); ’DCHn’; ’DCSe’; ’DDBs’; ’DDHn’; ’DDSe’; ’DTBs’;
’DTHn’; ’DTSe’; ’EDBs’; ’EDHn’; ’EDSo’; ’EMBs’; ’EMHn’; ’EMSo’; ’ETBs’;
’ETHn’; ’ETSo’. Figure 2.13 suggests that the topping isn’t what is important, but
the crust (group the boxplots by eye).
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FIGURE 2.13: The pizzas are now broken up by topping as well as crust type (look at
the source for the meaning of the names). I have separated Dominos from Eagleboys
with a vertical line, and grouped each crust type with a box. It looks as though the
issue is not the type of topping, but the crust. Eagleboys seems to have tighter
control over the size of the final pizza.

What could be going on here? One possible explanation is that Eagleboys
have tighter control over the size of the final pizza. One way this could happen is
that all EagleBoys pizzas start the same size and shrink the same amount in baking,
whereas all Dominos pizzas start a standard diameter, but different Dominos crusts
shrink differently in baking. Another way is that Dominos makes different size
crusts for different types, but that the cooks sometimes get confused. Yet another
possibility is that Dominos controls portions by the mass of dough (so thin crust
diameters tend to be larger), but Eagleboys controls by the diameter of the crust.

You should notice that this is more than just a fun story. If you were a manager
at a pizza firm, you’d need to make choices about how to control costs. Labor costs,
rent, and portion control (i.e. how much pizza, topping, etc. a customer gets for
their money) are the main thing to worry about. If the same kind of pizza has a
wide range of diameters, you have a problem, because some customers are getting
too much (which affects your profit) or too little (which means they might call
someone else). But making more regular pizzas might require more skilled (and so
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more expensive) labor. The fact that Dominos and EagleBoys seem to be following
different strategies successfully suggests that more than one strategy might work.
But you can’t choose if you don’t know what’s happening. As I said at the start,
“what’s going on here?” is perhaps the single most useful question anyone can ask.

2.6 WHAT YOU MUST REMEMBER

You should be able to:

• Plot a bar chart for a dataset.

• Plot a histogram for a dataset.

• Tell whether the histogram is skewed or not, and in which direction.

• Plot a box plot for one or several datasets.

• Interpret a box plot.

You should remember:

• The definition and properties of the mean.

• The definition and properties of the standard deviation.

• The definition and properties of the variance.

• The definition and properties of the median.

• The definition and properties of the interquartile range.

PROBLEMS

2.1. Show that mean ({kx}) = kmean ({x}) by substituting into the definition.
2.2. Show that mean ({x+ c}) = mean ({x})+ c by substituting into the definition.

2.3. Show that
∑N

i=1(xi −mean ({x})) = 0 by substituting into the definition.
2.4. Show that std (x+ c) = std (x) by substituting into the definition (you’ll need

to recall the properties of the mean to do this).
2.5. Show that std (kx) = kstd (x) by substituting into the definition (you’ll need

to recall the properties of the mean to do this).
2.6. Show that median ({x+ c}) = median ({x})+ c by substituting into the defini-

tion.
2.7. Show that median ({kx}) = kmedian ({x}) by substituting into the definition.
2.8. Show that iqr{x+ c} = iqr{x} by substituting into the definition.
2.9. Show that iqr{kx} = kiqr{x} by substituting into the definition.

PROGRAMMING EXERCISES

2.10. You can find a data set showing the number of barrels of oil produced, per
year for the years 1880-1984 at http://lib.stat.cmu.edu/DASL/Datafiles/
Oilproduction.html. Is a mean a useful summary of this dataset? Why?
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2.11. You can find a dataset giving the cost (in 1976 US dollars), number of megawatts,
and year of construction of a set of nuclear power plants at http://lib.stat.
cmu.edu/DASL/Datafiles/NuclearPlants.html.
(a) Are there outliers in this data?
(b) What is the mean cost of a power plant? What is the standard deviation?
(c) What is the mean cost per megawatt? What is the standard deviation?
(d) Plot a histogram of the cost per megawatt. Is it skewed? Why?

2.12. You can find a dataset giving the sodium content and calorie content of three
types of hot dog at http://lib.stat.cmu.edu/DASL/Datafiles/Hotdogs.html.
The types are Beef, Poultry, and Meat (a rather disturbingly vague label). Use
class-conditional histograms to compare these three types of hot dog with re-
spect to sodium content and calories.

2.13. You will find a dataset giving (among other things) the number of 3 or more
syllable words in advertising copy appearing in magazines at http://lib.

stat.cmu.edu/DASL/Datafiles/magadsdat.html. The magazines are grouped
by the education level of their readers; the groups are 1, 2, and 3 (the variable
is called GRP in the data).
(a) Use a boxplot to compare the number of three or more syllable words for

the ads in magazines in these three groups. What do you see?
(b) Use a boxplot to compare the number of sentences appearing in the ads

in magazines in these three groups. What do you see?
2.14. You can find a dataset giving various properties of public colleges ranked by

Kiplingers at http://www.kiplinger.com/tool/college/T014-S001-kiplinger-s-best-values-in-public
index.php. To obtain the data, just select the area on your web browser and
paste it into an editor window. I had to then do a little fooling around to re-
move commas in long numbers, get rid of $ signs and the like, but then I had a
comma separated list. Similar data for private colleges can be found at http://
www.kiplinger.com/tool/college/T014-S001-kiplinger-s-best-values-in-private-colleges/

index.php. You should look at the R code fragment 3.12 to get started.
(a) If you run that fragment on your files, then look at the figures, they should

suggest that there isn’t much difference in student debt between top, mid
and bottom third public colleges. But there is for private colleges. What
happens if you subdivide the top third into smaller pieces? What do you
think is going on here?

(b) If you run that fragment on your files, then look at the figures, they should
suggest that there isn’t much difference in faculty per student between top,
mid and bottom third public colleges. But there is for private colleges.
What happens if you subdivide the top third into smaller pieces? What
do you think is going on here?

(c) Use a set of box plots to come to conclusions about how cost varies with
quality for the private colleges.

(d) Use a set of box plots to come to conclusions about how cost varies with
quality for the public colleges.
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Intermezzo - Programming Tools

This book is not really about how to program. While I’m assuming you know
a bit about how to program, quite a lot of what we’ll do is use various tricks to
avoid programming. We could: use packages; exploit other people’s programs; or
bolt together a bunch of different programs with scripts, etc. Generally, it’s quite
useful to know a programming environment that has lots of useful code that other
people have written and published that you can use. The environment should have
lots of code available to: read datasets in a variety of formats; manipulate them
a bit (for example, drop items with missing values); compute useful properties of
data; and produce a wide variety of graphs and plots. It should be relatively easy
to learn, with lots of tutorials and books available.

You should not feel the need to become an expert in using this programming
environment. You just need to be able to cook up strategies to make it do what
you want to do. There are two environments that I use regularly, and advocate for
use with this book. That said, I’m not going to give you extensive instruction in
how to use these environments. Instead, there is some information, some sample
code, and a lot of pointers to tutorials, etc.

3.1 MATLAB

Matlab is a programming environment widely used in numerical analysis and com-
puter vision circles, among other. I will use Matlab in examples here, because
I’m fairly fluent in Matlab, and give some guidelines. Many universities, includ-
ing UIUC, have free student licenses for Matlab, and there are numerous reference
books and tutorials you can look at for details of syntax, etc. Matlab’s focuses on
representations of vectors and matrices. The syntax is rather like Fortran, except
that there are some special matrix and vector operations. Fluent Matlab program-
mers replace iterations with these operations to get faster code; some people are
very good at this sort of trick.

An alternative widely used in statistical circles is R, which is an open-source
language rather like S (a paid license statistics package). I didn’t know much R at
start of writing, and haven’t managed to pick up the kind of fluency required to
prepare figures in it, so I won’t show R code here. But you should be aware of it
as an alternative.

If you want to know what a Matlab command does, you can use help or doc.
For example, you could type doc sum. In this chapter, I’ll show code I used to
make some of the figures and examples in chapter one, to give you some examples
for Matlab code.

Listing 3.1 shows how I made the cheese histogram of figure 2.2. Notice I
couldn’t be bothered to write a reader for this dataset. Instead, I downloaded the
text file, then used an editor to cut out the numbers and make them into a constant

40
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Listing 3.1: Matlab code used to make the cheese histogram in figure 2.2

chee s e s =[12 .3 , 20 . 9 , 39 , 47 . 9 , 5 . 6 , 25 . 9 , . . .
3 7 . 3 , 21 . 9 , 18 . 1 , 21 , 34 . 9 , 57 . 2 , 0 . 7 , . . .
2 5 . 9 , 54 . 9 , 40 .9 , 15 . 9 , 6 . 4 , 18 , 38 . 9 , . . .
14 , 15 . 2 , 32 , 56 . 7 , 16 . 8 , 11 . 6 , 26 . 5 , . . .
0 . 7 , 13 .4 , 5 . 5 ] ;

figure ( 1 ) ;
hist ( cheeses , [ 5 , 15 , 25 , 35 , 45 , 5 5 ] )
figure ( 1 ) ;
axis ( [ 0 , 70 , 0 , 1 5 ] )
ylabel ( ’Number o f data items ’ ) ;
xlabel ( ’ Cheese goodness , in cheese goodness un i t s ’ ) ;
t i t l e ( ’ Histogram o f cheese goodness s co r e f o r 30 chee s e s ’ ) ;
set (gca , ’ XTick ’ , [ 0 : 7 ] ∗ 1 0 ) ;
set (gca , ’ YTick ’ , [ 0 : 2 : 1 5 ] ) ;
figure ( 1 ) ;

vector. This isn’t the best approach for a big file or a general problem, but if you
want to take a quick look at something small it might be a sensible thing to do. I
then used figure to make a window to draw into. The ’(1)’ argument allows me
to keep track of the figure and add things to it; if I hadn’t called figure, Matlab
would have produced a window, but I’d have to do some work if I wanted to add
to it. The command hist produces a histogram of a vector (you can look at the
doc for an explanation of the argument), and then I added labels and a title.

I have listed useful commands for computing summaries below. To give you
an example of normalizing data, there is listing 3.2. Notice how I changed the fonts
for the axes. I did this to give me a figure I could print, but you may not need to
do this.

Matlab will do boxplots, too. In listing 3.3, I show the Matlab code I used to
make Figure 2.11.

Boxplots can get pretty elaborate, and putting the right marker in the right
place gets interesting. I show the code I used to make Figure 2.13, which required
a certain amount of fooling around with strings to get the right marker and put it
in the right place.

Listing 3.5 shows how I made the bar chart of genders in Figure 2.1. There
are some points to notice here. I cut-and-pasted the data from the web page
(http://lib.stat.cmu.edu/DASL/Datafiles/PopularKids.html), put the result
into a spreadsheet to make a .xls file, saved that, then read it into Matlab using
xlsread. I did this because it meant I didn’t have to write any kind of file reader.
You can learn more about xlsread by doing doc xlsread. It isn’t perfect — or,
at least, the one on my Mac isn’t — because it doesn’t like some kinds of format,
and it seems not to like very long files. It was enough for this purpose. It produces
a cell array (doc cell) for the text fields, and an ordinary array for the numeric
fields. The cell array is an array whose entries can contain objects like strings,
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Listing 3.2: Matlab code used to make the normalized oyster volume histogram in
figure 2.7

% Change d e f a u l t t e x t f on t s f o r a c lean f i g u r e .
% You may not r e a l l y need to do t h i s .
set (0 , ’ DefaultAxesFontName ’ , ’ Times New Roman ’ )
set (0 , ’ DefaultAxesFontSize ’ , 28)
set (0 , ’ DefaultTextFontname ’ , ’ Times New Roman ’ )
set (0 , ’ DefaultTextFontS ize ’ , 28)

cd ( ’ ˜/Current/Courses /Probcourse/SomeData/DataSets / ’ ) ;
% This i s where I keep the f i l e
[ num2 , txt , raw]= x l s r e ad ( ’ 30 oy s t e r sda ta . x l s ’ ) ;
% This data i s s t ored as :
% index weight volume something someth inge l s e
wdat=num2 ( : , 4 ) ;
% the volume f i e l d turns up here
wm=mean(wdat ) ;
wsd=std (wdat ) ;
figure ( 1 ) ;
hist ( ( wdat−wm)/wsd ) ;
figure (1 )
axis ([−6 6 0 5 ] )
% se t s the axes o f the p l o t
t i t l e ( ’ Volumes o f oy s t e r s , standard coo rd ina te s ’ ) ;
% Now put t h i s f i g u r e in a f i l e
print −depsc2 noys t e r s . eps

etc. You will find the question of how to get a dataset from the form in which you
find it into a form you want in your programming environment to be a persistent
nuisance. It’s usually approached with quick-and-dirty solutions like this one.

You should have noticed one nice thing. Once I’ve actually gotten my data
into a reasonable form, making the bar chart is easy (bar does the trick). It’s more
trouble to get the title on the figure and the fonts right, etc. than to make the
figure. This is true for histograms, as well (listing 2.2). In this case, the data was
just a vector, so I cut it out from the web page and stuck it into the code. Look
at doc hist, and notice you can change the number of bars and also the centers of
the bars if you wish.

Scatter plots are easy in matlab. Listing 4.14 shows the code I used to make
the scaled figure in Figure 4.14. In the original data, prices are in shillings and
pence. I reduced this to pennies by multiplying the shillings by twelve, and adding
the number of pence.

Series are also straightforward to plot. Listing 3.7 shows the code I used to
make one of the plots in Figure 4.5. The data has two series — one before an
intervention, and one after. I plotted the before in the figure, but the code shows
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Listing 3.3: Matlab code used to make the boxplot in figure 2.11

% pi z z a s i z e data
set (0 , ’ DefaultAxesFontName ’ , ’ Times New Roman ’ )
set (0 , ’ DefaultAxesFontSize ’ , 11)
% Change d e f a u l t t e x t f on t s .
set (0 , ’ DefaultTextFontname ’ , ’ Times New Roman ’ )
set (0 , ’ DefaultTextFontS ize ’ , 11)
cd ( ’ ˜/Current/Courses /Probcourse/SomeData/DataSets / ’ ) ;
[ num, txt , raw]= x l s r e ad ( ’ c l e a np i z z a s i z e . x l s ’ ) ;
ndat=s ize (num, 1 ) ;
figure ( 1 ) ; boxplot (num( : , 5 ) , txt ( : , 2 ) ) ; figure (1 )
t i t l e ( ’Box p l o t s o f p i z z a s by maker ’ ) ;
print −depsc2 pmakerboxes . eps

how to plot both. plot has a variety of options and tricks; look at doc plot for
details.
Some useful commands:

• bar makes a bar chart.

• hist makes a histogram.

• xlsread will read many spreadsheet files.

• mean computes the mean of a dataset represented as a column vector. If you
give it an array, it will compute the mean of each column.

• std computes the standard deviation of a dataset represented as a column
vector. If you give it an array, it will compute the standard deviation of each
column.

• var computes the variance of a dataset represented as a column vector. If
you give it an array, it will compute the variance of each column.

• median computes the median of a dataset represented as a column vector. If
you give it an array, it will compute the median of each column.

• prctile can compute a set of percentiles for a dataset represented as a column
vector. If you give it an array, it will compute those percentiles for each
column. Note it takes two argument; you should do doc prctile.

• boxplot will produce a boxplot; there are many arguments and tricks, so you
should do doc boxplot.

3.2 R

R is a free programming environment that is very widely used by statisticians and
data analysts. R has an extremely rich set of tools for reading, analyzing, and
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Listing 3.4: Matlab code used to make the boxplot in figure 2.13

% pi z z a s i z e data
set (0 , ’ DefaultAxesFontName ’ , ’ Times New Roman ’ )
set (0 , ’ DefaultAxesFontSize ’ , 11)
% Change d e f a u l t t e x t f on t s .
set (0 , ’ DefaultTextFontname ’ , ’ Times New Roman ’ )
set (0 , ’ DefaultTextFontS ize ’ , 11)
cd ( ’ ˜/Current/Courses /Probcourse/SomeData/DataSets / ’ ) ;
[ num, txt , raw]= x l s r e ad ( ’ c l e a np i z z a s i z e . x l s ’ ) ;
ndat=s ize (num, 1 ) ;
t2=txt ( : , 1 ) ;
for i =1:ndat

foo=txt ( i , 2 ) ; bar=foo {1} ; c1=bar ( 1 ) ;
% th i s g e t s a l e t t e r f o r the maker
foo=txt ( i , 3 ) ; bar=foo {1} ; c2=bar ( 1 ) ;
% th i s g e t s a l e t t e r f o r the c ru s t
foo=txt ( i , 4 ) ; bar=foo {1} ; c3=bar ( 1 ) ; c4=bar (end ) ;
% th i s g e t s f i r s t , l a s t l e t t e r f o r the topping
t2 ( i )={ s t r c a t ( c1 , c2 , c3 , c4 ) } ;

end
figure ( 2 ) ; boxplot (num( : , 5 ) , t2 , ’ grouporder ’ , { ’DCBs ’ , ’DCHn ’ , . . .

’DCSe ’ , ’DDBs ’ , ’DDHn’ , ’DDSe ’ , ’DTBs ’ , ’DTHn ’ , ’DTSe ’ , . . .
’EDBs ’ , ’EDHn ’ , ’EDSo ’ , ’EMBs ’ , ’EMHn’ , ’EMSo ’ , ’ETBs ’ , . . .
’ETHn ’ , ’ETSo ’ } ) ; figure ( 2 ) ;

t i t l e ( ’Box p l o t s o f p i z z a s by maker , type , and topping ’ ) ;

plotting data. I have found R very good for taking quick looks at datasets, even
though I’m not a fluent R programmer. My experience has been that I can usually
modify some R programs that I already have to get what I want, rather than write
a new one (which I find hard, because I keep forgetting details of syntax). I have
found that, if there is a statistical algorithm I’d like to try, I can usually fairly easily
find at least one implementation in R that I can fiddle with.

History of R:The wikipedia page http://en.wikipedia.org/wiki/R_(programming_
language) has some information on the history and implementation of R.

Obtaining and installing R: The main page for R is at http://www.

r-project.org, where (unless you have a quite unusual computer system) you
can find a set of binaries for your system. If you have the urge to compile it
yourself, you can also find source and some information about how to make R on
some systems. If you’re having trouble installing R, you should look at the FAQ
at http://www.r-project.org, which has entries like “How can R be obtained?”
and “How can R be installed?”.

Learning to use R: There are a variety of books and web pages on how
to use R. A good introduction is at http://cran.r-project.org/doc/manuals/
r-release/R-intro.html. There is a list of learning resources at http://www.
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ats.ucla.edu/stat/r/. If you look at http://www.ats.ucla.edu/stat/r/seminars/
intro.htm, you will find a set of slides that give an introduction to R; at \http:
//www.ats.ucla.edu/stat/r/seminars/intro.R, you will find a listing of the
code used in the slides. If you’d like a book, then you could search Amazon with
the keyword R, then read the reviews. I have a hard time recommending any one
book. I have bought several, at various levels, and have found each a bit helpful for
some things, but there is no book I always reach for first. I have found it sufficient
to have quite a shallow understanding of R, and I can usually get things done by
copying and then modifying existing code.

3.2.1 R examples

If you don’t know what an R function does, do ?hist (to get information on hist).
This should throw up a help window. If it doesn’t, ??hist is sometimes helpful.
If I can’t understand the help window, which happens more often than I care to
admit, I search the web.

Listing 3.8 shows how I could have made the cheese histogram of figure 2.2
using R. Notice I couldn’t be bothered to write a reader for this dataset. Instead,
I downloaded the text file, then used an editor to cut out the numbers and make
them into a constant vector. This isn’t the best approach for a big file or a general
problem, but if you want to take a quick look at something small it might be a
sensible thing to do. Notice how to make a constant vector in R. I’ve told R what
bins to use (the line using seq produces a sequence of values, which gets passed
in using the breaks argument). hist is (like most R commands) rather rich in
options; I found http://www.r-bloggers.com/basics-of-histograms/ helpful
when I wanted to understand some of them.

R usually just then throws a window on your screen with the figure in it. If
you want a file you can incorporate into a document or print, you have to do more.
This is illustrated in the next example. I didn’t fiddle with the labels, etc. because
I wanted a simple example.

I show the code for producing a figure rather like the normalized oyster his-
togram of figure 2.7 in listing 3.9. Because I don’t have a good reader for Xcel files
in R, I export the files to a comma separated value format, then use the R function
read.csv. In this case, there was no header in the data, and I told R that. R pro-
duces a fairly rich data structure called a data table, but I only really cared about
the volume column, so I extract that to produce oystervolumes. R has a function
to compute the standard deviation, but irritatingly it isn’t the standard deviation
we want (see the point of confusion on 17). The code shows how I computed the
value I need, then set up a histogram with a reasonable set of breaks.

One useful point: once you’ve read a dataset into R, it’s usually a good idea
to use summary. This gives you some information about the data set. It isn’t
necessary for producing a histogram, but it’s informative, which is why I put it into
the listing.

R will do boxplots, too. In listing 3.10, I show R code to make a figure
like Figure 2.11. There is one bit of R deviousness here, which I’ve expanded in
following listings. A data table is an object with quite a lot of structure. The
version of boxplot I’ve used here says, in effect: “prepare a boxplot of the values
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of V5 for each of the cases in V2 taken from the data table pizza”. V2 takes the
values “Dominos” and “EagleBoys”, so I get one boxplot for each manufacturer.

This trick can be extended. Listing 3.11 shows R code that does one box per
manufacturer and crust type. The version of boxplot I’ve used here says, in effect:
“prepare a boxplot of the values of V5 for each of the cases in V2 and V3 taken
from the data table pizza”. V2 takes the values “Dominos” and “EagleBoys”, and
V3 has each crust type.

If you fire up R and produce the figure, you should be a bit unhappy with the
labelling of the boxes. You’ll need to do some work to fix this.

Listing 3.12 may help you get started on one of the exercises.
Listing 3.13 illustrates some other tricks with R. In particular, getting counts

of a categorical variable is easy with table. I normalized the tables by iterating
with for, and there is some code that shows how to print a postscript figure to a
file.

Scatter plots are easy in R. Listing 4.14 shows the code I used to make the
scaled figure in Figure 4.14. In the original data, prices are in shillings and pence.
I reduced this to pennies by multiplying the shillings by twelve, and adding the
number of pence. Notice I haven’t used R’s sd function, because it isn’t the standard
deviation we want (see the point of confusion on 17).

Series are also straightforward to plot. Listing 3.15 shows the code I used to
make a plot like one of the plots in Figure 4.5. The data has two series — one
before an intervention, and one after. Instead of walking along the data in my code
(like I did in the Matlab code for this example), I cut out the first series by hand
and pasted it into a csv file. This made it easy to plot the before series in the figure.
You should be constantly looking out for tricks to make data handling easier; we’re
typically not looking for a clean programming solution, just a way to make some
problems go away.



Section 3.2 R 47

Listing 3.5: Matlab code used to make the gender bar chart and pie chart in figure
2.1

cd ( ’ ˜/Current/ cour s e s /ProbCourse/SomeData/MatlabCode ’ ) ;
[ num, txt ]= x l s r e ad ( ’ . . / Datasets / schoo ldata . x l s ’ ) ;
wv=zeros ( s ize (num, 1 ) , 1 ) ;
wv2=zeros ( s ize (num, 1 ) , 1 ) ;
% next l i n e s form a r e a l l y s imple parser
for i =1: s ize (num, 1)

i f strcmp ( txt ( i , 7 ) , ’ Spor ts ’ )
wv( i )=1;

e l s e i f strcmp ( txt ( i , 7 ) , ’ Grades ’ )
wv( i )=2;

e l s e i f strcmp ( txt ( i , 7 ) , ’ Popular ’ )
wv( i )=3;

end
i f strcmp ( txt ( i , 1 ) , ’ boy ’ )

wv2( i )=1;
e l s e i f strcmp ( txt ( i , 1 ) , ’ g i r l ’ )

wv2( i )=2;
end

end
%%
% now we have s i x c a t e g o r i e s boy−spor t , e t c .
cvec=zeros (6 , 1 ) ;
cvec (3)=sum( (wv==1).∗(wv2==1));
cvec (2)=sum( (wv==2).∗(wv2==1));
cvec (1)=sum( (wv==3).∗(wv2==1));
cvec (4)=sum( (wv==1).∗(wv2==2));
cvec (5)=sum( (wv==2).∗(wv2==2));
cvec (6)=sum( (wv==3).∗(wv2==2));
% cvec now con ta in s counts o f each case
figure (6 )
p i e ( cvec , { ’ boy−Popular ’ , ’ boy−Grades ’ , ’ boy−Sports ’ , ’ g i r l−Sports ’ , ’ g i r l−Grade
t i t l e ( ’Number o f each gender choos ing each goa l ’ ) ;
print −depsc2 . . / Figures / ch i l dp i e g ende r g o a l . eps
%%
figure (7 )
bar ( cvec ) ;
set (gca , ’ XTick ’ , [ 1 , 2 , 3 , 4 , 5 , 6 ] ) ;
set (gca , ’ XTickLabel ’ ,{ ’b−P ’ , ’b−G’ , ’b−S ’ , ’ g−S ’ , ’ g−G’ , ’ g−P ’ } ) ;
figure ( 7 ) ;
print −depsc2 . . / Figures / ch i ldba rg ende rgoa l . eps
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Listing 3.6: Matlab code used to make the scatter plot in figure 4.14

set (0 , ’ DefaultAxesFontName ’ , ’ Times New Roman ’ )
set (0 , ’ DefaultAxesFontSize ’ , 28)
% Change d e f a u l t t e x t f on t s .
set (0 , ’ DefaultTextFontname ’ , ’ Times New Roman ’ )
set (0 , ’ DefaultTextFontS ize ’ , 28)
cd ( ’ ˜/Current/Courses /Probcourse/SomeData/DataSets / ’ ) ;
% t h i s i s where I keep the f i l e , bu t you may have i t somewhere e l s e
[ num, txt , raw]= x l s r e ad ( ’ lynxdata . x l s ’ ) ;
pennypr ices=12∗num( : , 3)+num( : , 4 ) ;
mnp=mean(num(1 : 4 4 , 2 ) ) ;
snp=std (num(1 : 4 4 , 2 ) ) ;
mpp=mean( pennypr ices ( 1 : 4 4 ) ) ;
spp=std ( pennypr ices ( 1 : 4 4 ) ) ;
figure ( 3 ) ; plot ( (num(1 : 4 4 , 2)−mnp)/ snp , ( pennypr ices (1:44)−mpp)/ spp , ’ r ∗ ’ ) ; figur
xlabel ( ’ normal ized number o f p e l t s ’ ) ;
ylabel ( ’ normal ized p r i c e ’ )
%t i t l e ( ’ Normalized s c a t t e r p l o t o f l ynx p e l t s aga in s t pr ice ’ ) ;
print −depsc2 l y n x s c a l e d s c a t t e r . eps
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Listing 3.7: Matlab code used to make the Hyde Park series plot in figure 4.5

cd ( ’ ˜/Current/Courses /Probcourse/SomeData/DataSets / ’ ) ;
set (0 , ’ DefaultAxesFontName ’ , ’ Times New Roman ’ )
set (0 , ’ DefaultAxesFontSize ’ , 28)
% Change d e f a u l t t e x t f on t s .
set (0 , ’ DefaultTextFontname ’ , ’ Times New Roman ’ )
set (0 , ’ DefaultTextFontS ize ’ , 28)
% t h i s i s where I keep the f i l e , bu t you may have i t somewhere e l s e
[ num, txt , raw]= x l s r e ad ( ’ hydepa rkburg l a r i e s . x l s ’ ) ;
for i =1: s ize (num, 1)−1

i f (num( i , 2)==0)&&(num( i +1, 2)==1)
brk=i ;

end
end
prev=num(1 : brk , 1 ) ;
post=num( brk+1:end , 1 ) ;
figure ( 1 ) ; plot ( prev , ’−o ’ ) ; figure (1 )
xlabel ( ’month ’ ) ;
ylabel ( ’ number o f b u r g l a r i e s ’ ) ;
t i t l e ( ’ Bu r g l a r i e s each month in Hyde Park ’ ) ;
axis ( [ 0 45 0 1 1 0 ] )
print −depsc2 hydepa rkburg l a r i e s . eps
%%
figure ( 2 ) ; c l f ; hold o f f
plot ( [ 1 : brk ] , prev , ’−o ’ , [ brk+1: s ize (num, 1 ) ] , post , ’−r s ’ ) ; figure (2 )
legend ( ’ Be fo re i n t e r v en t i o n ’ , ’ After i n t e r v en t i o n ’ ) ;
xlabel ( ’month ’ ) ;
ylabel ( ’ number o f b u r g l a r i e s ’ ) ;
t i t l e ( ’Number o f b u r g l a r i e s each month in Hyde Park , a suburb o f Chicago ’ ) ;
%%
axis ( [ 0 60 0 1 1 0 ] )
print −depsc2 in thydepa rkburg l a r i e s . eps

Listing 3.8: R code for a cheese histogram like in figure 2.2

chee s e s<− c ( 1 2 . 3 , 20 . 9 , 39 , 47 . 9 , 5 . 6 , 25 . 9 ,
37 . 3 , 21 . 9 , 18 . 1 , 21 , 34 . 9 , 57 . 2 , 0 . 7 ,
25 . 9 , 54 . 9 , 40 .9 , 15 . 9 , 6 . 4 , 18 , 38 . 9 ,
14 , 15 . 2 , 32 , 56 . 7 , 16 . 8 , 11 . 6 , 26 . 5 ,
0 . 7 , 13 .4 , 5 . 5 )

cbr<−seq (0 , 60 , by=10)
chh<−hist ( cheeses , breaks=cbr )
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Listing 3.9: R code used to make a figure like the normalized oyster volume histogram
in figure 2.7

setwd ( ’˜/Current/Courses/Probcourse/SomeData/DataSets/ ’ )
o y s t e r s<−read . csv ( ’ 30 oy s t e r sda ta . csv ’ , header=FALSE) ;
summary( o y s t e r s ) # not s t r i c t l y necessary
oystervo lumes<−oy s t e r s$V3
omean<−mean( oystervo lumes )
zmo<−oystervo lumes−omean
osd<−sqrt (sum(zmoˆ2)/length (zmo ) )
normoysters<−zmo/osd
hist ( normoysters , breaks=seq (−6 , 6 , by=0 .5 ) ) ;

Listing 3.10: R code used to make a boxplot like that in figure 2.11

setwd ( ’˜/Current/Courses/Probcourse/SomeData/DataSets/ ’ )
p i z za<−read . csv ( ’ c l e a np i z z a s i z e . csv ’ , header=FALSE)
boxplot (V5˜V2 , data=pizza )

Listing 3.11: R code for more boxplots, illustrating a neat trick with data tables.

setwd ( ’˜/Current/Courses/Probcourse/SomeData/DataSets/ ’ )
p i z za<−read . csv ( ’ c l e a np i z z a s i z e . csv ’ , header=FALSE)
boxplot (V5˜V2+V3 , data=pizza )

Listing 3.12: R code for college examples.

setwd ( ’˜/Current/Courses/Probcourse/SomeData/DataSets/ ’ )
pub l i c s<−read . csv ( ” pub l i c s . csv ” , header=FALSE)
pub l i c s$V12<−cut ( pub l i c s$V1 , breaks=c (0 , 33 , 66 , 100))
# t h i s c r ea t e s t hree e qu i v a l en c e c l a s s e s :
# top th i rd , mid t h i r d and bottom t h i r d
# then s t i c k s them back in t o the data frame
boxplot (V11˜V12 , data=pub l i c s )
# now we have a box p l o t o f deb t f o r each t h i r d
boxplot (V5˜V12 , data=pub l i c s )
# now we have a box p l o t o f number o f f a c u l t y f o r each t h i r d
p r i v a t e s<−read . csv ( ” p r i v a t e s . csv ” , header=FALSE)
p r i v a t e s$V12<−cut ( p r i v a t e s$V1 , breaks=c (0 , 33 , 66 , 100))
boxplot (V11˜V12 , data=pr i v a t e s )
boxplot (V5˜V12 , data=pr i v a t e s )
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Listing 3.13: R code for bar charts of figure 3.13.

setwd ( ’˜/Current/ cour s e s/ProbCourse/SomeData/Datasets ’ ) ;
s choo ldata<−read . csv ( ’ s choo ldata . csv ’ , header=FALSE) ;
counts<−table ( schoo ldata$V1 , schoo ldata $V7)
setEPS ( )
postscript ( ” goa l sbygender . eps ” )
barplot ( counts , main=”Goals by gender ” ,

x lab=”Goals” , col=c ( ” darkblue ” , ” red ” ) ,
legend = rownames( counts ) , xpd=FALSE, xlim=c (0 , 100) , width=20)

dev . of f ( )
counts2<−table ( schoo ldata $V7 , schoo ldata$V1)
setEPS ( )
postscript ( ” genderbygoa l s . eps ” )
barplot ( counts2 , main=”Gender by goa l s ” ,

x lab=”Gender” , col=c ( ” darkblue ” , ” red ” , ” green ” ) ,
legend = colnames ( counts ) , xpd=FALSE, xlim=c (0 , 100) , width=20)

dev . of f ( )
counts3<−counts2
for ( i in 1 : 2 ) {

counts3 [ , i ]<−counts3 [ , i ] /sum( counts3 [ , i ] )
}
setEPS ( )
postscript ( ” g ende r bygoa l s r e l f r e q . eps ” )
barplot ( counts3 , main=”Gender by goa l s , r e l a t i v e f r e q u e n c i e s ” ,

x lab=”Gender” , col=c ( ” darkblue ” , ” red ” , ” green ” ) ,
legend = colnames ( counts ) , xpd=FALSE, xlim=c (0 , 100) , width=20)

dev . of f ( )
counts4<−counts
for ( i in 1 : 3 ) {

counts4 [ , i ]<−counts4 [ , i ] /sum( counts4 [ , i ] )
}
setEPS ( )
postscript ( ” g o a l s byg ende r r e l f r e q . eps ” )
barplot ( counts4 , main=”Goals by gender , r e l a t i v e f r e q u e n c i e s ” ,

x lab=”Goals” , col=c ( ” darkblue ” , ” red ” ) ,
legend = rownames( counts ) , xpd=FALSE, xlim=c (0 , 100) , width=20)

dev . of f ( )
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Listing 3.14: R code used to make a scatter plot like that of figure 4.14

setwd ( ’˜/Current/Courses/Probcourse/SomeData/DataSets/ ’ ) ;
lynxdata<−read . csv ( ’ lynxdata . csv ’ , header=FALSE ) ;
lynxdata$V5=12∗ lynxdata$V3+lynxdata$V4
# t h i s g i v e s p r i c e s in pennies
# in t e r e s t e d in years 1−44
lpen<−lynxdata$V5 [ 1 : 4 4 ]
lpm<−mean( lpen )
l p s<−sqrt ( (sum( ( lpen−lpm )ˆ2 ) )/length ( lpen ) )
lpn<−( lpen−lpm)/ l p s
lnums<−lynxdata$V1 [ 1 : 4 4 ]
lnm<−mean( lnums )
l n s<−sqrt ( (sum( ( lnums−lnm )ˆ2 ) )/length ( lnums ) )
lnn<−( lnums−lnm)/ l n s
plot ( lnn , lpn , x lab=”Number o f p e l t s ” , y lab=”Pr i c e in pennies ” , asp=1)

Listing 3.15: R code used to make a series like the Hyde Park series plot in figure
4.5

setwd ( ’˜/Current/Courses/Probcourse/SomeData/DataSets/ ’ )
hydepark<−read . csv ( ’ hydeparksmal l . csv ’ , header=FALSE)
plot ( hydepark$V1 , type=’b ’ , y lab=”Number o f b u r g l a r i e s ” , x lab=”Days” )



C H A P T E R 4

Looking at Relationships

We think of a dataset as a collection of d-tuples (a d-tuple is an ordered list of
d elements). For example, the Chase and Dunner dataset had entries for Gender;
Grade; Age; Race; Urban/Rural; School; Goals; Grades; Sports; Looks; and Money
(so it consisted of 11-tuples). The previous chapter explored methods to visualize
and summarize a set of values obtained by extracting a single element from each
tuple. For example, I could visualize the heights or the weights of a population (as
in Figure 2.7). But I could say nothing about the relationship between the height
and weight. In this chapter, we will look at methods to visualize and summarize
the relationships between pairs of elements of a dataset.

4.1 PLOTTING 2D DATA

We take a dataset, choose two different entries, and extract the corresponding
elements from each tuple. The result is a dataset consisting of 2-tuples, and we
think of this as a two dimensional dataset. The first step is to plot this dataset in a
way that reveals relationships. The topic of how best to plot data fills many books,
and we can only scratch the surface here. Categorical data can be particularly
tricky, because there are a variety of choices we can make, and the usefulness of
each tends to depend on the dataset and to some extent on one’s cleverness in
graphic design (section 4.1.1).

For some continuous data, we can plot the one entry as a function of the other
(so, for example, our tuples might consist of the date and the number of robberies;
or the year and the price of lynx pelts; and so on, section 4.1.2).

Mostly, we use a simple device, called a scatter plot. Using and thinking about
scatter plots will reveal a great deal about the relationships between our data items
(section 4.1.3).

4.1.1 Categorical Data, Counts, and Charts

Categorical data is a bit special. Assume we have a dataset with several categorical
descriptions of each data item. One way to plot this data is to think of it as belong-
ing to a richer set of categories. Assume the dataset has categorical descriptions,
which are not ordinal. Then we can construct a new set of categories by looking
at each of the cases for each of the descriptions. For example, in the Chase and
Dunner data of table 2.2, our new categories would be: “boy-sports”; “girl-sports”;
“boy-popular”; “girl-popular”; “boy-grades”; and “girl-grades”. A large set of cat-
egories like this can result in a poor bar chart, though, because there may be too
many bars to group the bars successfully. Figure 4.1 shows such a bar chart. Notice
that it is hard to group categories by eye to compare; for example, you can see that
slightly more girls think grades are important than boys do, but to do so you need
to compare two bars that are separated by two other bars. An alternative is a pie
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FIGURE 4.1: I sorted the children in the Chase and Dunner study into six categories
(two genders by three goals), and counted the number of children that fell into each
cell. I then produced the bar chart on the left, which shows the number of children
of each gender, selecting each goal. On the right, a pie chart of this information.
I have organized the pie chart so it is easy to compare boys and girls by eye — start
at the top; going down on the left side are boy goals, and on the right side are girl
goals. Comparing the size of the corresponding wedges allows you to tell what goals
boys (resp. girls) identify with more or less often.

chart, where a circle is divided into sections whose angle is proportional to the
size of the data item. You can think of the circle as a pie, and each section as a
slice of pie. Figure 4.1 shows a pie chart, where each section is proportional to the
number of students in its category. In this case, I’ve used my judgement to lay the
categories out in a way that makes comparisons easy. I’m not aware of any tight
algorithm for doing this, though.

Pie charts have problems, because it is hard to judge small differences in area
accurately by eye. For example, from the pie chart in figure 4.1, it’s hard to tell
that the “boy-sports” category is slightly bigger than the “boy-popular” category
(try it; check using the bar chart). For either kind of chart, it is quite important
to think about what you plot. For example, the plot of figure 4.1 shows the total
number of respondents, and if you refer to figure 2.1, you will notice that there
are slightly more girls in the study. Is the percentage of boys who think grades are
important smaller (or larger) than the percentage of girls who think so? you can’t
tell from these plots, and you’d have to plot the percentages instead.

An alternative is to use a stacked bar chart. You can (say) regard the data
as of two types, “Boys” and “Girls”. Within those types, there are subtypes (“Pop-
ularity”, “Grades” and “Sport”). The height of the bar is given by the number of
elements in the type, and the bar is divided into sections corresponding to the num-
ber of elements of that subtype. Alternatively, if you want the plot to show relative
frequencies, the bars could all be the same height, but the shading corresponds to
the fraction of elements of that subtype. This is all much harder to say than to see
or to do (Figure 4.2).

An alternative to a pie chart that is very useful for two dimensional data is
a heat map. This is a method of displaying a matrix as an image. Each entry of
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FIGURE 4.2: These bar charts use stacked bars. In the top row, the overall height of
the bar is given by the number of elements of that type but each different subtype is
identified by shading, so you can tell by eye, for example, how many of the “Grades”
in the study were “Boys”. This layout makes it hard to tell what fraction of, say,
“Boys” aspire to “Popularity”. In the bottom row, all bars have the same height,
but the shading of the bar identifies the fraction of that type that has a corresponding
subtype. This means you can tell by eye what fraction of “Girls” aspire to “Sports”.

the matrix is mapped to a color, and the matrix is represented as an image. For
the Chase and Dunner study, I constructed a matrix where each row corresponds
to a choice of “sports”, “grades”, or “popular”, and each column corresponds to a
choice of “boy” or “girl”. Each entry contains the count of data items of that type.
Zero values are represented as white; the largest values as red; and as the value
increases, we use an increasingly saturated pink. This plot is shown in figure 4.3

If the categorical data is ordinal, the ordering offers some hints for making
a good plot. For example, imagine we are building a user interface. We build an
initial version, and collect some users, asking each to rate the interface on scales for
“ease of use” (-2, -1, 0, 1, 2, running from bad to good) and “enjoyability” (again,
-2, -1, 0, 1, 2, running from bad to good). It is natural to build a 5x5 table, where
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FIGURE 4.3: A heat map of the Chase and Dunner data. The color of each cell
corresponds to the count of the number of elements of that type. The colorbar at
the side gives the correspondence between color and count. You can see at a glance
that the number of boys and girls who prefer grades is about the same; that about
the same number of boys prefer sports and popularity, with sports showing a mild
lead; and that more girls prefer popularity to sports.

-2 -1 0 1 2
-2 24 5 0 0 1
-1 6 12 3 0 0
0 2 4 13 6 0
1 0 0 3 13 2
2 0 0 0 1 5

TABLE 4.1: I simulated data representing user evaluations of a user interface.
Each cell in the table on the left contains the count of users rating “ease of use”
(horizontal, on a scale of -2 -very bad- to 2 -very good) vs. “enjoyability” (vertical,
same scale). Users who found the interface hard to use did not like using it either.
While this data is categorical, it’s also ordinal, so that the order of the cells is
determined. It wouldn’t make sense, for example, to reorder the columns of the
table or the rows of the table.

each cell represents a pair of “ease of use” and “enjoyability” values. We then count
the number of users in each cell, and build graphical representations of this table.
One natural representation is a 3D bar chart, where each bar sits on its cell in
the 2D table, and the height of the bars is given by the number of elements in the
cell. Table 4.1 shows a table and figure 4.4 shows a 3D bar chart for some simulated
data. The main difficulty with a 3D bar chart is that some bars are hidden behind
others. This is a regular nuisance. You can improve things by using an interactive
tool to rotate the chart to get a nice view, but this doesn’t always work. Heatmaps
don’t suffer from this problem (Figure 4.4), another reason they are a good choice.

4.1.2 Series

Sometimes one component of a dataset gives a natural ordering to the data. For
example, we might have a dataset giving the maximum rainfall for each day of the
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FIGURE 4.4: On the left, a 3D bar chart of the data. The height of each bar is given
by the number of users in each cell. This figure immediately reveals that users
who found the interface hard to use did not like using it either. However, some of
the bars at the back are hidden, so some structure might be hard to infer. On the
right, a heat map of this data. Again, this figure immediately reveals that users
who found the interface hard to use did not like using it either. It’s more apparent
that everyone disliked the interface, though, and it’s clear that there is no important
hidden structure.

year. We could record this either by using a two-dimensional representation, where
one dimension is the number of the day and the other is the temperature, or with a
convention where the i’th data item is the rainfall on the i’th day. For example, at
http://lib.stat.cmu.edu/DASL/Datafiles/timeseriesdat.html, you can find
four datasets indexed in this way. It is natural to plot data like this as a function
of time. From this dataset, I extracted data giving the number of burglaries each
month in a Chicago suburb, Hyde Park. I have plotted part this data in Figure 4.5
(I left out the data to do with treatment effects). It is natural to plot a graph of
the burglaries as a function of time (in this case, the number of the month). The
plot shows each data point explicitly. I also told the plotting software to draw
lines joining data points, because burglaries do not all happen on a specific day.
The lines suggest, reasonably enough, the rate at which burglaries are happening
between data points.

As another example, at http://lib.stat.cmu.edu/datasets/Andrews/ you
can find a dataset that records the number of lynx pelts traded to the Hudson’s Bay
company and the price paid for each pelt. This version of the dataset appeared first
in table 3.2 of Data: a Collection of Problems from many Fields for the Student
and Research Worker by D.F. Andrews and A.M. Herzberg, published by Springer
in 1985. I have plotted it in figure 4.5. The dataset is famous, because it shows
a periodic behavior in the number of pelts (which is a good proxy for the number
of lynx), which is interpreted as a result of predator-prey interactions. Lynx eat
rabbits. When there are many rabbits, lynx kittens thrive, and soon there will
be many lynx; but then they eat most of the rabbits, and starve, at which point
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FIGURE 4.5: Left, the number of burglaries in Hyde Park, by month. Right, a plot
of the number of lynx pelts traded at Hudson Bay and of the price paid per pelt, as
a function of the year. Notice the scale, and the legend box (the number of pelts is
scaled by 100).

FIGURE 4.6: Snow’s scatter plot of cholera deaths on the left. Each cholera death
is plotted as a small bar on the house in which the bar occurred (for example, the
black arrow points to one stack of these bars, indicating many deaths, in the detail
on the right). Notice the fairly clear pattern of many deaths close to the Broad
street pump (grey arrow in the detail), and fewer deaths further away (where it was
harder to get water from the pump).

the rabbit population rockets. You should also notice that after about 1900, prices
seem to have gone up rather quickly. I don’t know why this is. There is also some
suggestion, as there should be, that prices are low when there are many pelts, and
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FIGURE 4.7: Left, a scatter plot of arsenic levels in US groundwater, prepared by
the US Geological Survey (you can find the data at http:// water.usgs. gov/

GIS/metadata/usgswrd/XML/ arsenic_map. xml . Here the shape and color of
each marker shows the amount of arsenic, and the spatial distribution of the mark-
ers shows where the wells were sampled. Right, the usage of Nitrogen (a com-
ponent of fertilizer) by US county in 1991, prepared by the US Geological Survey
(you can find the data at http:// water.usgs.gov/ GIS/ metadata/usgswrd/

XML/nit91.xml ). In this variant of a scatter plot (which usually takes specialized
software to prepare) one fills each region with a color indicating the data in that
region.

high when there are few.

4.1.3 Scatter Plots for Spatial Data

It isn’t always natural to plot data as a function. For example, in a dataset con-
taining the temperature and blood pressure of a set of patients, there is no reason
to believe that temperature is a function of blood pressure, or the other way round.
Two people could have the same temperature, and different blood pressures, or
vice-versa. As another example, we could be interested in what causes people to
die of cholera. We have data indicating where each person died in a particular
outbreak. It isn’t helpful to try and plot such data as a function.

The scatter plot is a powerful way to deal with this situation. In the first
instance, assume that our data points actually describe points on the a real map.
Then, to make a scatter plot, we make a mark on the map at a place indicated by
each data point. What the mark looks like, and how we place it, depends on the
particular dataset, what we are looking for, how much we are willing to work with
complex tools, and our sense of graphic design.

Figure 4.6 is an extremely famous scatter plot, due to John Snow. Snow —
one of the founders of epidemiology — used a scatter plot to reason about a cholera
outbreak centered on the Broad Street pump in London in 1854. At that time,
the mechanism that causes cholera was not known. Snow plotted cholera deaths as
little bars (more bars, more deaths) on the location of the house where the death
occurred. More bars means more deaths, fewer bars means fewer deaths. There
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FIGURE 4.8: A scatter plot of body temperature against heart rate, from the dataset
at http:// www2.stetson.edu/ ~ jrasp/data.htm ; normtemp.xls. I have sepa-
rated the two genders by plotting a different symbol for each (though I don’t know
which gender is indicated by which letter); if you view this in color, the differences
in color makes for a greater separation of the scatter. This picture suggests, but
doesn’t conclusively establish, that there isn’t much dependence between tempera-
ture and heart rate, and any dependence between temperature and heart rate isn’t
affected by gender.

are more bars per block close to the pump, and few far away. This plot offers quite
strong evidence of an association between the pump and death from cholera. Snow
used this scatter plot as evidence that cholera was associated with water, and that
the Broad Street pump was the source of the tainted water.

Figure 4.7 shows a scatter plot of arsenic levels in groundwater for the United
States, prepared by the US Geological Survey. The data set was collected by
Focazio and others in 2000; by Welch and others in 2000; and then updated by
Ryker 2001. It can be found at http://water.usgs.gov/GIS/metadata/usgswrd/
XML/arsenic_map.xml. One variant of a scatter plot that is particularly useful
for geographic data occurs when one fills regions on a map with different colors,
following the data in that region. Figure 4.7 shows the nitrogen usage by US county
in 1991; again, this figure was prepared by the US Geological Survey.

4.1.4 Exposing Relationships with Scatter Plots

Scatter plots are natural for geographic data, but a scatter plot is a useful, simple
tool for ferreting out associations in other kinds of data as well. Now we need
some notation. Assume we have a dataset {x} of N data items, x1, . . . , xN . Each
data item is a d dimensional vector (so its components are numbers). We wish to
investigate the relationship between two components of the dataset. For example,
we might be interested in the 7’th and the 13’th component of the dataset. We
will produce a two-dimensional plot, one dimension for each component. It does
not really matter which component is plotted on the x-coordinate and which on
the y-coordinate (though it will be some pages before this is clear). But it is very
difficult to write sensibly without talking about the x and y coordinates.
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FIGURE 4.9: A scatter plots of weight against height, from the dataset at http://
www2.stetson.edu/ ~ jrasp/data.htm . Left: Notice how two outliers dominate
the picture, and to show the outliers, the rest of the data has had to be bunched up.
Right shows the data with the outliers removed. The structure is now somewhat
clearer.
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FIGURE 4.10: Scatter plots of weight against height, from the dataset at http://
www2.stetson.edu/ ~ jrasp/data.htm . Left: data with two outliers removed,
as in figure 4.9. Right: this data, rescaled slightly. Notice how the data looks less
spread out. But there is no difference between the datasets. Instead, your eye is
easily confused by a change of scale.

We will make a two-dimensional dataset out of the components that interest
us. We must choose which component goes first in the resulting 2-vector. We will
plot this component on the x-coordinate (and we refer to it as the x-coordinate),
and to the other component as the y-coordinate. This is just to make it easier to
describe what is going on; there’s no important idea here. It really will not matter
which is x and which is y. The two components make a dataset {xi} = {(xi, yi)}.
To produce a scatter plot of this data, we plot a small shape at the location of each
data item.

Such scatter plots are very revealing. For example, figure 4.8 shows a scatter
plot of body temperature against heart rate for humans. In this dataset, the gender
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FIGURE 4.11: A scatter plot of the price of lynx pelts against the number of pelts.
I have plotted data for 1901 to the end of the series as circles, and the rest of the
data as *’s. It is quite hard to draw any conclusion from this data, because the scale
is confusing. Furthermore, the data from 1900 on behaves quite differently from the
other data.

of the subject was recorded (as “1” or “2” — I don’t know which is which), and
so I have plotted a “1” at each data point with gender “1”, and so on. Looking
at the data suggests there isn’t much difference between the blob of “1” labels and
the blob of “2” labels, which suggests that females and males are about the same
in this respect.

The scale used for a scatter plot matters. For example, plotting lengths in
meters gives a very different scatter from plotting lengths in millimeters. Fig-
ure 4.9 shows two scatter plots of weight against height. Each plot is from the
same dataset, but one is scaled so as to show two outliers. Keeping these out-
liers means that the rest of the data looks quite concentrated, just because the
axes are in large units. In the other plot, the axis scale has changed (so you can’t
see the outliers), but the data looks more scattered. This may or may not be a
misrepresentation. Figure 4.10 compares the data with outliers removed, with the
same plot on a somewhat different set of axes. One plot looks as though increasing
height corresponds to increasing weight; the other looks as though it doesn’t. This
is purely due to deceptive scaling — each plot shows the same dataset.

Dubious data can also contribute to scaling problems. Recall that, in fig-
ure 4.5, price data before and after 1900 appeared to behave differently. Figure 4.11
shows a scatter plot of the lynx data, where I have plotted number of pelts against
price. I plotted the post-1900 data as circles, and the rest as asterisks. Notice how
the circles seem to form a quite different figure, which supports the suggestion that
something interesting happened around 1900. We can reasonably choose to analyze
data after 1900 separately from before 1900. A choice like this should be made with
care. If you exclude every data point that might disagree with your hypothesis, you
may miss the fact that you are wrong. Leaving out data is an essential component
of many kinds of fraud. You should always reveal whether you have excluded data,
and why, to allow the reader to judge the evidence.
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When you look at Figure 4.11, you should notice the scatter plot does not
seem to support the idea that prices go up when supply goes down. This is puzzling
because it’s generally a pretty reliable idea. In fact, the plot is just hard to interpret
because it is poorly scaled. Scale is an important nuisance, and it’s easy to get
misled by scale effects.
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FIGURE 4.12: A normalized scatter plot of weight against height, from the dataset at
http:// www2.stetson.edu/ ~ jrasp/data.htm . Now you can see that someone
who is a standard deviation taller than the mean will tend to be somewhat heavier
than the mean too.
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FIGURE 4.13: Left: A scatter plot of body temperature against heart rate, from
the dataset at http:// www2.stetson.edu/ ~ jrasp/data.htm ; normtemp.xls. I
have separated the two genders by plotting a different symbol for each (though I
don’t know which gender is indicated by which letter); if you view this in color,
the differences in color makes for a greater separation of the scatter. This picture
suggests, but doesn’t conclusively establish, that there isn’t much dependence between
temperature and heart rate, and any dependence between temperature and heart
rate isn’t affected by gender. The scatter plot of the normalized data, in standard
coordinates, on the right supports this view.
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FIGURE 4.14: Left: A scatter plot of the price of lynx pelts against the number of
pelts (this is a repeat of figure 4.11 for reference). I have plotted data for 1901 to
the end of the series as circles, and the rest of the data as *’s. It is quite hard
to draw any conclusion from this data, because the scale is confusing. Right: A
scatter plot of the price of pelts against the number of pelts for lynx pelts. I excluded
data for 1901 to the end of the series, and then normalized both price and number
of pelts. Notice that there is now a distinct trend; when there are fewer pelts, they
are more expensive, and when there are more, they are cheaper.

The way to avoid the problem is to plot in standard coordinates. We can
normalize without worrying about the dimension of the data — we normalize each
dimension independently by subtracting the mean of that dimension and dividing
by the standard deviation of that dimension. This means we can normalize the
x and y coordinates of the two-dimensional data separately. We continue to use
the convention of writing the normalized x coordinate as x̂ and the normalized y
coordinate as ŷ. So, for example, we can write x̂j = (xj −mean ({x}))/std (x)) for
the x̂ value of the j’th data item in normalized coordinates. Normalizing shows us
the dataset on a standard scale. Once we have done this, it is quite straightforward
to read off simple relationships between variables from a scatter plot.

4.2 CORRELATION

The simplest, and most important, relationship to look for in a scatter plot is this:
when x̂ increases, does ŷ tend to increase, decrease, or stay the same? This is
straightforward to spot in a normalized scatter plot, because each case produces a
very clear shape on the scatter plot. Any relationship is called correlation (we will
see later how to measure this), and the three cases are: positive correlation, which
means that larger x̂ values tend to appear with larger ŷ values; zero correlation,
which means no relationship; and negative correlation, which means that larger x̂
values tend to appear with smaller ŷ values. I have shown these cases together
in one figure using a real data example (Figure 4.16), so you can compare the
appearance of the plots.

Positive correlation occurs when larger x̂ values tend to appear with larger
ŷ values. This means that data points with with small (i.e. negative with large
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FIGURE 4.15: On the left, a normalized scatter plot of weight (y-coordinate) against
height (x-coordinate). On the right, a scatter plot of height (y-coordinate) against
weight (x-coordinate). I’ve put these plots next to one another so you don’t have to
mentally rotate (which is what you should usually do).

magnitude) x̂ values must have small ŷ values, otherwise the mean of x̂ (resp. ŷ)
would be too big. In turn, this means that the scatter plot should look like a “smear”
of data from the bottom left of the graph to the top right. The smear might be
broad or narrow, depending on some details we’ll discuss below. Figure 4.12 shows
normalized scatter plots of weight against height, and of body temperature against
heart rate. In the weight-height plot, you can clearly see that individuals who are
higher tend to weigh more. The important word here is “tend” — taller people
could be lighter, but mostly they tend not to be. Notice, also, that I did NOT
say that they weighed more because they were taller, but only that they tend to be
heavier.

Negative correlation occurs when larger x̂ values tend to appear with
smaller ŷ values. This means that data points with with small x̂ values must
have large ŷ values, otherwise the mean of x̂ (resp. ŷ) would be too big. In turn,
this means that the scatter plot should look like a “smear” of data from the top left
of the graph to the bottom right. The smear might be broad or narrow, depending
on some details we’ll discuss below. Figure 4.14 shows a normalized scatter plot of
the lynx pelt-price data, where I have excluded the data from 1901 on. I did so
because there seemed to be some other effect operating to drive prices up, which
was inconsistent with the rest of the series. This plot suggests that when there were
more pelts, prices were lower, as one would expect.

Zero correlation occurs when there is no relationship. This produces a
characteristic shape in a scatter plot, but it takes a moment to understand why. If
there really is no relationship, then knowing x̂ will tell you nothing about ŷ. All
we know is that mean ({ŷ}) = 0, and var ({ŷ}) = 1. This is enough information to
predict what the plot will look like. We know thatmean ({x̂}) = 0 and var ({x̂}) = 1;
so there will be many data points with x̂ value close to zero, and few with a much
larger or much smaller x̂ value. The same applies to ŷ. Now consider the data
points in a strip of x̂ values. If this strip is far away from the origin, there will
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FIGURE 4.16: The three kinds of scatter plot are less clean for real data than for
our idealized examples. Here I used the body temperature vs heart rate data for the
zero correlation; the height-weight data for positive correlation; and the lynx data
for negative correlation. The pictures aren’t idealized — real data tends to be messy
— but you can still see the basic structures.

be few data points in the strip, because there aren’t many big x̂ values. If there
is no relationship, we don’t expect to see large or small ŷ values in this strip,
because there are few data points in the strip and because large or small ŷ values
are uncommon — we see them only if there are many data points, and then seldom.
So for a strip with x̂ close to zero, we might see some ŷ values that are far from
zero because we will see many ŷ values. For a strip with x̂ that is far from zero,
we expect to see few ŷ values that are far from zero, because we see few points
in this strip. This reasoning means the data should form a round blob, centered
at the origin. In the temperature-heart rate plot of figure 4.13, it looks as though
nothing of much significance is happening. The average heart rate seems to be
about the same for people who run warm or who run cool. There is probably not
much relationship here.

The correlation is not affected by which variable is plotted on the x-axis and
which is plotted on the y-axis. Figure 4.15 compares a plot of height against weight
to one of weight against height. Usually, one just does this by rotating the page, or
by imagining the new picture. The left plot tells you that data points with higher
height value tend to have higher weight value; the right plot tells you that data
points with higher weight value tend to have higher height value — i.e. the plots
tell you the same thing. It doesn’t really matter which one you look at. Again, the
important word is “tend” — the plot doesn’t tell you anything about why, it just
tells you that when one variable is larger the other tends to be, too.

4.2.1 The Correlation Coefficient

Consider a normalized data set of N two-dimensional vectors. We can write the
i’th data point in standard coordinates (x̂i, ŷi). We already know many important
summaries of this data, because it is in standard coordinates. We havemean ({x̂}) =
0; mean ({ŷ}) = 0; std (x̂) = 1; and std (ŷ) = 1. Each of these summaries is

itself the mean of some monomial. So std (x̂)2 = mean
({

x̂2
})

= 1; std (ŷ)2 =

mean
({

ŷ2
})

(the other two are easy). We can rewrite this information in terms
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of means of monomials, giving mean ({x̂}) = 0; mean ({ŷ}) = 0; mean
({

x̂2
})

= 1;

and mean
({

ŷ2
})

= 1. There is one monomial missing here, which is x̂ŷ.
The term mean ({x̂ŷ}) captures correlation between x and y. The term is

known as the correlation coefficient or correlation.

Definition: 4.1 Correlation coefficient

Assume we have N data items which are 2-vectors
(x1, y1), . . . , (xN , yN ), where N > 1. These could be obtained,
for example, by extracting components from larger vectors. We
compute the correlation coefficient by first normalizing the x and y

coordinates to obtain x̂i = (xi−mean({x}))
std(x) , ŷi = (yi−mean({y}))

std(y) . The

correlation coefficient is the mean value of x̂ŷ, and can be computed
as:

corr ({(x, y)}) =
∑

i x̂iŷi
N

Correlation is a measure of our ability to predict one value from another.
The correlation coefficient takes values between −1 and 1 (we’ll prove this below).
If the correlation coefficient is close to 1, then we are likely to predict very well.
Small correlation coefficients (under about 0.5, say, but this rather depends on what
you are trying to achieve) tend not to be all that interesting, because (as we shall
see) they result in rather poor predictions. Figure 4.17 gives a set of scatter plots
of different real data sets with different correlation coefficients. These all come
from data set of age-height-weight, which you can find at http://www2.stetson.
edu/~jrasp/data.htm (look for bodyfat.xls). In each case, two outliers have been
removed. Age and height are hardly correlated, as you can see from the figure.
Younger people do tend to be slightly taller, and so the correlation coefficient is
-0.25. You should interpret this as a small correlation. However, the variable
called “adiposity” (which isn’t defined, but is presumably some measure of the
amount of fatty tissue) is quite strongly correlated with weight, with a correlation
coefficient is 0.86. Average tissue density is quite strongly negatively correlated with
adiposity, because muscle is much denser than fat, so these variables are negatively
correlated — we expect high density to appear with low adiposity, and vice versa.
The correlation coefficient is -0.86. Finally, density is very strongly correlated with
body weight. The correlation coefficient is -0.98.

It’s not always convenient or a good idea to produce scatter plots in standard
coordinates (among other things, doing so hides the units of the data, which can
be a nuisance). Fortunately, scaling or translating data does not change the value
of the correlation coefficient (though it can change the sign if one scale is negative).
This means that it’s worth being able to spot correlation in a scatter plot that
isn’t in standard coordinates (even though correlation is always defined in standard
coordinates). Figure 4.18 shows different correlated datasets plotted in their original
units. These data sets are the same as those used in figure 4.17
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FIGURE 4.17: Scatter plots for various pairs of variables for the age-height-weight
dataset from http:// www2.stetson.edu/ ~ jrasp/data.htm ; bodyfat.xls. In
each case, two outliers have been removed, and the plots are in standard coordi-
nates (compare to figure 4.18, which shows these data sets plotted in their original
units). The legend names the variables.

Properties of the Correlation Coefficient
You should memorize the following properties of the correlation coefficient:

• The correlation coefficient is symmetric (it doesn’t depend on the order of its
arguments), so

corr ({(x, y)}) = corr ({(y, x)})

• The value of the correlation coefficient is not changed by translating the data.
Scaling the data can change the sign, but not the absolute value. For constants
a 6= 0, b, c 6= 0, d we have

corr ({(ax+ b, cx+ d)}) = sign(ab)corr ({(x, y)})

• If ŷ tends to be large (resp. small) for large (resp. small) values of x̂, then
the correlation coefficient will be positive.
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FIGURE 4.18: Scatter plots for various pairs of variables for the age-height-weight
dataset from http:// www2.stetson.edu/ ~ jrasp/data.htm ; bodyfat.xls. In
each case, two outliers have been removed, and the plots are NOT in standard coor-
dinates (compare to figure 4.17, which shows these data sets plotted in normalized
coordinates). The legend names the variables.

• If ŷ tends to be small (resp. large) for large (resp. small) values of x̂, then
the correlation coefficient will be negative.

• If ŷ doesn’t depend on x̂, then the correlation coefficient is zero (or close to
zero).

• The largest possible value is 1, which happens when x̂ = ŷ.

• The smallest possible value is -1, which happens when x̂ = −ŷ.

The first property is easy, and we relegate that to the exercises. One way to
see that the correlation coefficient isn’t changed by translation or scale is to notice
that it is defined in standard coordinates, and scaling or translating data doesn’t
change those. Another way to see this is to scale and translate data, then write out
the equations; notice that taking standard coordinates removes the effects of the
scale and translation. In each case, notice that if the scale is negative, the sign of
the correlation coefficient changes.
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The property that, if ŷ tends to be large (resp. small) for large (resp. small)
values of x̂, then the correlation coefficient will be positive, doesn’t really admit
a formal statement. But it’s relatively straightforward to see what’s going on.
Because mean ({x̂}) = 0, small values of mean ({x̂}) must be negative and large

values must be positive. But corr ({(x, y)}) =

∑

i
x̂iŷi

N ; and for this sum to be
positive, it should contain mostly positive terms. It can contain few or no hugely
positive (or hugely negative) terms, because std (x̂) = std (ŷ) = 1 so there aren’t
many large (or small) numbers. For the sum to contain mostly positive terms, then
the sign of x̂i should be the same as the sign ŷi for most data items. Small changes
to this argument work to show that if if ŷ tends to be small (resp. large) for large
(resp. small) values of x̂, then the correlation coefficient will be negative.

Showing that no relationship means zero correlation requires slightly more
work. Divide the scatter plot of the dataset up into thin vertical strips. There
are S strips. Each strip is narrow, so the x̂ value does not change much for the
data points in a particular strip. For the s’th strip, write N(s) for the number of
data points in the strip, x̂(s) for the x̂ value at the center of the strip, and ŷ(s)
for the mean of the ŷ values within that strip. Now the strips are narrow, so we
can approximate all data points within a strip as having the same value of x̂. This
yields

mean ({x̂ŷ}) ≈ 1

S

∑

s∈strips

x̂(s)
[

N(s)ŷ(s)
]

(where you could replace ≈ with = if the strips were narrow enough). Now assume
that ŷ(s) does not change from strip to strip, meaning that there is no relation-
ship between x̂ and ŷ in this dataset (so the picture is like the left hand side in
figure 4.16). Then each value of ŷ(s) is the same — we write ŷ — and we can
rearrange to get

mean ({x̂ŷ}) ≈ ŷ
1

S

∑

s∈strips

x̂(s).

Now notice that

0 = mean ({ŷ}) ≈ 1

S

∑

s∈strips

N(s)ŷ(s)

(where again you could replace ≈ with = if the strips were narrow enough). This
means that if every strip has the same value of ŷ(s), then that value must be zero.
In turn, if there is no relationship between x̂ and ŷ, we must have mean ({x̂ŷ}) = 0.
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Proposition:
−1 ≤ corr ({(x, y)}) ≤ 1

Proof: Writing x̂, ŷ for the normalized coefficients, we have

corr ({(x, y)}) =
∑

i x̂iŷi
N

and you can think of the value as the inner product of two vectors. We write

x =
1√
N

[x̂1, x̂2, . . . x̂N ] and y =
1√
N

[ŷ1, ŷ2, . . . ŷN ]

and we have corr ({(x, y)}) = xTy. Notice xTx = std (x)
2
= 1, and similarly

for y. But the inner product of two vectors is at its maximum when the two
vectors are the same, and this maximum is 1. This argument is also sufficient to
show that smallest possible value of the correlation is −1, and this occurs when
x̂i = −ŷi for all i.

Property 4.1: The largest possible value of the correlation is 1, and this occurs
when x̂i = ŷi for all i. The smallest possible value of the correlation is −1, and
this occurs when x̂i = −ŷi for all i.

4.2.2 Using Correlation to Predict

Assume we have N data items which are 2-vectors (x1, y1), . . . , (xN , yN), where
N > 1. These could be obtained, for example, by extracting components from
larger vectors. As usual, we will write x̂i for xi in normalized coordinates, and so
on. Now assume that we know the correlation coefficient is r (this is an important,
traditional notation). What does this mean?

One (very useful) interpretation is in terms of prediction. Assume we have a
data point (x0, ?) where we know the x-coordinate, but not the y-coordinate. We
can use the correlation coefficient to predict the y-coordinate. First, we transform
to standard coordinates. Now we must obtain the best ŷ0 value to predict, using
the x̂0 value we have.

We want to construct a prediction function which gives a prediction for any
value of x̂. This predictor should behave as well as possible on our existing data.
For each of the (x̂i, ŷi) pairs in our data set, the predictor should take x̂i and
produce a result as close to ŷi as possible. We can choose the predictor by looking
at the errors it makes at each data point.

We write ŷpi for the value of ŷi predicted at x̂i. The simplest form of predictor
is linear. If we predict using a linear function, then we have, for some unknown
a, b, that ŷpi = ax̂i + b. Now think about ui = ŷi − ŷpi , which is the error in our
prediction. We would like to have mean ({u}) = 0 (otherwise, we could reduce the
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error of the prediction just by subtracting a constant).

mean ({u}) = mean ({ŷ − ŷp})
= mean ({ŷ})−mean ({ax̂i + b})
= mean ({ŷ})− amean ({x̂}) + b

= 0− a0 + b

= 0.

This means that we must have b = 0.
To estimate a, we need to think about var ({u}). We should like var ({u}) to

be as small as possible, so that the errors are as close to zero as possible (remember,
small variance means small standard deviation which means the data is close to the
mean). We have

var ({u}) = var ({ŷ − ŷp})
= mean

({

(ŷ − ax̂)2
})

because mean ({u}) = 0

= mean
({

(ŷ)2 − 2ax̂ŷ + a2(x̂)2
})

= mean
({

(ŷ)2
})

− 2amean ({x̂ŷ}) + a2mean
({

(x̂)2
})

= 1− 2ar + a2,

which we want to minimize by choice of a. At the minimum, we must have

dvar ({ui})
da

= 0 = −2r + 2a

so that a = r and the correct prediction is

ŷp0 = rx̂0

You can use a version of this argument to establish that if we have (?, ŷ0), then
the best prediction for x̂0 (which is in standard coordinates) is rŷ0. It is important
to notice that the coefficient of ŷi is NOT 1/r; you should work this example, which
appears in the exercises. We now have a prediction procedure, outlined below.
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Procedure: 4.1 Predicting a value using correlation

Assume we have N data items which are 2-vectors
(x1, y1), . . . , (xN , yN ), where N > 1. These could be obtained,
for example, by extracting components from larger vectors. Assume
we have an x value x0 for which we want to give the best prediction of
a y value, based on this data. The following procedure will produce a
prediction:

• Transform the data set into standard coordinates, to get

x̂i =
1

std (x)
(xi −mean ({x}))

ŷi =
1

std (y)
(yi −mean ({y}))

x̂0 =
1

std (x)
(x0 −mean ({x})).

• Compute the correlation

r = corr ({(x, y)}) = mean ({x̂ŷ}).

• Predict ŷ0 = rx̂0.

• Transform this prediction into the original coordinate system, to
get

y0 = std (y)rx̂0 +mean ({y})

Now assume we have a y value y0, for which we want to give the best
prediction of an x value, based on this data. The following procedure
will produce a prediction:

• Transform the data set into standard coordinates.

• Compute the correlation.

• Predict x̂0 = rŷ0.

• Transform this prediction into the original coordinate system, to
get

x0 = std (x)rŷ0 +mean ({x})

There is another way of thinking about this prediction procedure, which is
often helpful. Assume we need to predict a value for x0. In normalized coordinates,
our prediction is ŷp = rx̂0; if we revert back to the original coordinate system, the
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prediction becomes

(yp −mean ({y}))
std (y)

= r

(

(x0 −mean ({x}))
std (x)

)

.

This gives a really useful rule of thumb, which I have broken out in the box below.

Procedure: 4.2 Predicting a value using correlation: Rule of thumb - 1

If x0 is k standard deviations from the mean of x, then the predicted
value of y will be rk standard deviations away from the mean of y, and
the sign of r tells whether y increases or decreases.

An even more compact version of the rule of thumb is in the following box.

Procedure: 4.3 Predicting a value using correlation: Rule of thumb - 2

The predicted value of y goes up by r standard deviations when the
value of x goes up by one standard deviation.

We can compute the average root mean square error that this prediction
procedure will make. The square of this error must be

mean
({

u2
})

= mean
({

y2
})

− 2rmean ({xy}) + r2mean
({

x2
})

= 1− 2r2 + r2

= 1− r2

so the root mean square error will be
√
1− r2. This is yet another interpretation of

correlation; if x and y have correlation close to one, then predictions could have very
small root mean square error, and so might be very accurate. In this case, knowing
one variable is about as good as knowing the other. If they have correlation close
to zero, then the root mean square error in a prediction might be as large as the
root mean square error in ŷ — which means the prediction is nearly a pure guess.

The prediction argument means that we can spot correlations for data in
other kinds of plots — one doesn’t have to make a scatter plot. For example, if
we were to observe a child’s height from birth to their 10’th year (you can often
find these observations in ballpen strokes, on kitchen walls), we could plot height
as a function of year. If we also had their weight (less easily found), we could plot
weight as a function of year, too. The prediction argument above say that, if you
can predict the weight from the height (or vice versa) then they’re correlated. One
way to spot this is to look and see if one curve goes up when the other does (or
goes down when the other goes up). You can see this effect in figure 4.5, where
(before 19h00), prices go down when the number of pelts goes up, and vice versa.
These two variables are negatively correlated.
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FIGURE 4.19: This figure, from Vickers (ibid, p184) shows a plot of the stork pop-
ulation as a function of time, and the human birth rate as a function of time, for
some years in Germany. The correlation is fairly clear; but this does not mean that
reducing the number of storks means there are fewer able to bring babies. Instead,
this is the impact of the first world war — a hidden or latent variable.

4.2.3 Confusion caused by correlation

There is one very rich source of potential (often hilarious) mistakes in correlation.
When two variables are correlated, they change together. If the correlation is
positive, that means that, in typical data, if one is large then the other is large,
and if one is small the other is small. In turn, this means that one can make
a reasonable prediction of one from the other. However, correlation DOES NOT
mean that changing one variable causes the other to change (sometimes known as
causation).

Two variables in a dataset could be correlated for a variety of reasons. One
important reason is pure accident. If you look at enough pairs of variables, you
may well find a pair that appears to be correlated just because you have a small
set of observations. Imagine, for example, you have a dataset consisting of only
two vectors — there is a pretty good chance that there is some correlation between
the coefficients. Such accidents can occur in large datasets, particularly if the
dimensions are high.

Another reason variables could be correlated is that there is some causal
relationship — for example, pressing the accelerator tends to make the car go
faster, and so there will be some correlation between accelerator position and car
acceleration. As another example, adding fertilizer does tend to make a plant grow
bigger. Imagine you record the amount of fertilizer you add to each pot, and the
size of the resulting potplant. There should be some correlation.

Yet another reason variables could be correlated is that there is some other
background variable — often called a latent variable — linked causally to each of
the observed variables. For example, in children (as Freedman, Pisani and Purves
note in their excellent Statistics), shoe size is correlated with reading skills. This
DOES NOT mean that making your feet grow will make you read faster, or that
you can make your feet shrink by forgetting how to read. The real issue here is
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the age of the child. Young children tend to have small feet, and tend to have
weaker reading skills (because they’ve had less practice). Older children tend to
have larger feet, and tend to have stronger reading skills (because they’ve had more
practice). You can make a reasonable prediction of reading skills from foot size,
because they’re correlated, even though there is no direct connection.

This kind of effect can mask correlations, too. Imagine you want to study the
effect of fertilizer on potplants. You collect a set of pots, put one plant in each,
and add different amounts of fertilizer. After some time, you record the size of each
plant. You expect to see correlation between fertilizer amount and plant size. But
you might not if you had used a different species of plant in each pot. Different
species of plant can react quite differently to the same fertilizer (some plants just
die if over-fertilized), so the species could act as a latent variable. With an unlucky
choice of the different species, you might even conclude that there was a negative
correlation between fertilizer and plant size. This example illustrates why you need
to take great care in setting up experiments and interpreting their results.

This sort of thing happens often, and it’s an effect you should look for. An-
other nice example comes from Vickers (ibid). The graph, shown in Figure 4.19,
shows a plot of (a) a dataset of the stork population in Europe over a period of
years and (b) a dataset of the birth rate over those years. This isn’t a scatter plot;
instead, the data has been plotted on a graph. You can see by eye that these two
datasets are quite strongly correlated . Even more disturbing, the stork popula-
tion dropped somewhat before the birth rate dropped. Is this evidence that storks
brought babies in Europe during those years? No (the usual arrangement seems
to have applied). For a more sensible explanation, look at the dates. The war
disturbed both stork and human breeding arrangements. Storks were disturbed
immediately by bombs, etc., and the human birth rate dropped because men died
at the front.

4.3 STERILE MALES IN WILD HORSE HERDS

Large herds of wild horses are (apparently) a nuisance, but keeping down numbers
by simply shooting surplus animals would provoke outrage. One strategy that
has been adopted is to sterilize males in the herd; if a herd contains sufficient
sterile males, fewer foals should result. But catching stallions, sterilizing them, and
reinserting them into a herd is a performance — does this strategy work?

We can get some insight by plotting data. At http://lib.stat.cmu.edu/

DASL/Datafiles/WildHorses.html, you can find a dataset covering herd manage-
ment in wild horses. I have plotted part of this dataset in figure 4.20. In this
dataset, there are counts of all horses, sterile males, and foals made on each of a
small number of days in 1986, 1987, and 1988 for each of two herds. I extracted
data for one herd. I have plotted this data as a function of the count of days since
the first data point, because this makes it clear that some measurements were taken
at about the same time, but there are big gaps in the measurements. In this plot,
the data points are shown with a marker. Joining them leads to a confusing plot
because the data points vary quite strongly. However, notice that the size of the
herd drifts down slowly (you could hold a ruler against the plot to see the trend),
as does the number of foals, when there is a (roughly) constant number of sterile
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FIGURE 4.20: A plot of the number of adult horses, sterile males, and foals in horse
herds over a period of three years. The plot suggests that introducing sterile males
might cause the number of foals to go down. Data from http:// lib.stat. cmu.

edu/DASL/ Datafiles/WildHorses.html .

males.
Does sterilizing males result in fewer foals? This is likely hard to answer for

this dataset, but we could ask whether herds with more sterile males have fewer
foals. A scatter plot is a natural tool to attack this question. However, the scatter
plots of figure 4.21 suggest, rather surprisingly, that when there are more sterile
males there are more adults (and vice versa), and when there are more sterile
males there are more foals (and vice versa). This is borne out by a correlation
analysis. The correlation coefficient between foals and sterile males is 0.74, and
the correlation coefficient between adults and sterile males is 0.68. You should find
this very surprising — how do the horses know how many sterile males there are in
the herd? You might think that this is an effect of scaling the plot, but there is a
scatter plot in normalized coordinates in figure 4.21 that is entirely consistent with
the conclusions suggested by the unnormalized plot. What is going on here?

The answer is revealed by the scatter plots of figure 4.22. Here, rather than
plotting a ’*’ at each data point, I have plotted the day number of the observation.
This is in days from the first observation. You can see that the whole herd is
shrinking — observations where there are many adults (resp. sterile adults, foals)
occur with small day numbers, and observations where there are few have large day
numbers. Because the whole herd is shrinking, it is true that when there are more
adults and more sterile males, there are also more foals. Alternatively, you can see
the plots of figure 4.20 as a scatter plot of herd size (resp. number of foals, number
of sterile males) against day number. Then it becomes clear that the whole herd
is shrinking, as is the size of each group. To drive this point home, we can look at
the correlation coefficient between adults and days (-0.24), between sterile adults
and days (-0.37), and between foals and days (-0.61). We can use the rule of thumb
in box 4.3 to interpret this. This means that every 282 days, the herd loses about
three adults; about one sterile adult; and about three foals. For the herd to have
a stable size, it needs to gain by birth as many foals as it loses both to growing up
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FIGURE 4.21: Scatter plots of the number of sterile males in a horse herd against
the number of adults, and the number of foals against the number of sterile males,
from data of http: // lib. stat.cmu. edu/ DASL/Datafiles/WildHorses.html .
Top: unnormalized; bottom: standard coordinates.

and to death. If the herd is losing three foals every 282 days, then if they all grow
up to replace the missing adults, the herd will be shrinking slightly (because it is
losing four adults in this time); but if it loses foals to natural accidents, etc., then
it is shrinking rather fast.

The message of this example is important. To understand a simple dataset,
you might need to plot it several ways. You should make a plot, look at it and ask
what it says, and then try to use another type of plot to confirm or refute what
you think might be going on.

4.4 WHAT YOU MUST REMEMBER

You should be able to:

• Plot a bar chart, a heat map, and a pie chart for a categorical dataset.

• Plot a dataset as a graph, making sensible choices about markers, lines and
the like.
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FIGURE 4.22: Scatter plots of the number of foals vs. the number of adults and the
number of adults vs. the number of sterile adults for the wild horse herd, from
http:// lib.stat. cmu. edu/DASL/ Datafiles/WildHorses.html . Rather than
plot data points as dots, I have plotted the day on which the observation was made.
Notice how the herd starts large, and then shrinks.

• Plot a scatter plot for a dataset.

• Plot a normalized scatter plot for a dataset.

• Interpret the scatter plot to tell the sign of the correlation between two vari-
ables, and estimate the size of the correlation coefficient.

• Compute a correlation coefficient.

• Interpret a correlation coefficient.

• Use correlation to make predictions.

You should remember:

• The definition and properties of the correlation coefficient.

PROBLEMS

4.1. Show that corr ({(x, y)}) = corr ({(y, x)}) by substituting into the definition.
4.2. Show that if ŷ tends to be small (resp. large) for large (resp. small) values of

x̂, then the correlation coefficient will be negative.
4.3. We have a 2D dataset consisting of N pairs (x̂i, ŷi) in normalized coordinates.

This data has correlation coefficient r. We observe a new ŷ value ŷ0, and
wish to predict the (unknown) x value. We will do so with a linear prediction,
choosing a, b, to predict an x̂ for any ŷ using the rule x̂p = aŷp + b. Write
ui = x̂i − x̂pi for the error that this rule makes on each data item.
(a) We require mean ({u}) = 0. Show that this means that b = 0.
(b) We require that var ({u}) is minimized. Show that this means that a = r.
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FIGURE 4.23: This figure shows two lines, y = 0.86x and x = 0.86y, superimposed
on the normalized adiposity-weight scatter plot.

(c) We now have a result that seems paradoxical — if I have (x̂0, ?) I predict
(x̂0, rx̂0) and if I have (?, y0), I predict (rŷ0, ŷ0). Use figure 4.23 to explain
why this is right. The important difference between the two lines is that
lies (approximately) in the middle of each vertical span of data, and the
other lies (approximately) in the middle of each horizontal span of data.

4.4. I did the programming exercise about the earth temperature below. I looked
at the years 1965-2012. Write {(y, T )} for the dataset giving the temperature
(T ) of the earth in year y. I computed: mean ({y}) = 1988.5, std (y) = 14,
mean ({T}) = 0.175, std (T ) = 0.231 and corr ({y})T = 0.892. What is the
best prediction using this information for the temperature in mid 2014? in
mid 2028? in mid 2042?

4.5. I did the programming exercise about the earth temperature below. It is
straightforward to build a dataset {(T, nt)} where each entry contains the
temperature of the earth (T ) and the number of counties where FEMA de-
clared tornadoes nt (for each year, you look up T and nt, and make a data
item). I computed: mean ({T}) = 0.175, std (T ) = 0.231, mean ({nt}) = 31.6,
std (nt) = 30.8, and corr ({T})nt = 0.471. What is the best prediction using
this information for the number of tornadoes if the global earth temperature
is 0.5? 0.6? 0.7?

PROGRAMMING EXERCISES

4.6. At http://lib.stat.cmu.edu/DASL/Datafiles/cigcancerdat.html, you will
find a dataset recording per capita cigarette sales and cancer deaths per 100K
population for a variety of cancers, recorded for 43 states and the District of
Columbia in 1960.
(a) Plot a scatter plot of lung cancer deaths against cigarette sales, using

the two letter abbreviation for each state as a marker. You should see
two fairly obvious outliers. The backstory at http://lib.stat.cmu.edu/
DASL/Stories/cigcancer.html suggests that the unusual sales in Nevada
are generated by tourism (tourists go home, and die there) and the unusual
sales in DC are generated by commuting workers (who also die at home).
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FIGURE 4.24: Plots I prepared from left uea data on temperature and right FEMA
data on tornadoes by county. These should help you tell if you’re on the right track.

(b) What is the correlation coefficient between per capita cigarette sales and
lung cancer deaths per 100K population? Compute this with, and without
the outliers. What effect did the outliers have? Why?

(c) What is the correlation coefficient between per capita cigarette sales and
bladder cancer deaths per 100K population? Compute this with, and
without the outliers. What effect did the outliers have? Why?

(d) What is the correlation coefficient between per capita cigarette sales and
kidney cancer deaths per 100K population? Compute this with, and with-
out the outliers. What effect did the outliers have? Why?

(e) What is the correlation coefficient between per capita cigarette sales and
leukemia deaths per 100K population? Compute this with, and without
the outliers. What effect did the outliers have? Why?

(f) You should have computed a positive correlation between cigarette sales
and lung cancer deaths. Does this mean that smoking causes lung cancer?
Why?

(g) You should have computed a negative correlation between cigarette sales
and leukemia deaths. Does this mean that smoking cures leukemia? Why?

4.7. At http://www.cru.uea.ac.uk/cru/info/warming/gtc.csv, you can find a
dataset of global temperature by year. When I accessed this, the years spanned
1880-2012. I don’t know what units the temperatures are measured in. Keep
in mind that measuring the temperature of the earth has non-trivial diffi-
culties (you can’t just insert an enormous thermometer!), and if you look at
http://www.cru.uea.ac.uk/cru and http://www.cru.uea.ac.uk/cru/data/

temperature/ you can see some discussion of the choices made to get these
measurements. There are two kinds of data in this dataset, smoothed and un-
smoothed. I used the unsmoothed data, which should be fine for our purposes.
The government publishes a great deal of data at http://data.gov. From
there, I found a dataset, published by the Federal Emergency Management
Agency (FEMA), of all federally declared disasters (which I found at http://
www.fema.gov/media-library/assets/documents/28318?id=6292). We would
like to see whether weather related disasters are correlated to global tempera-
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ture.
(a) The first step is preprocessing the data. The FEMA data has all sorts of

information. From 1965 on, a disaster was declared per county (so you
get one line in the data set for each county), but before 1965, it seems to
have been by state. We divide the disasters into four types: TORNADO,
FLOOD, STORM, HURRICANE. (FEMA seems to have a much richer
type system). We want to know how many counties declare a disaster of
each type, in each year. This is a really rough estimate of the number
of people affected by the disaster. If a disaster has two types (in some
rows, you will see “SEVERE STORMS, HEAVY RAINS & FLOODING”
we will allocate the credit evenly between the types (i.e. for this case we
would count 1/2 for STORM and 1/2 for FLOOD). You should write code
that will (a) read the dataset and then (b) compute a table with the count
of the number of counties where a disaster of each type has occurred for
each year. This takes a bit of work. Notice you only need to deal with
two columns of the data (the date it was declared, and the type). Notice
also that FEMA changed the way it represented dates somewhere through
the first column (they added times), which can cause problems. You can
tell the type of the disaster by just using a string match routine with the
four keywords. Figure 4.24 shows the plot of temperature and of number
of counties where FEMA declared a tornado disaster for this data.

(b) Plot a normalized scatter plot of the number of counties where FEMA
declared the disaster against temperature, for each kind.

(c) For each kind of disaster, compute the correlation coefficient between the
number of counties where FEMA declared the disaster and the year. For
each kind of disaster, use this correlation coefficient to predict the number
of disasters of this kind for 2013. Compare this to the true number, and
explain what you see.

(d) For each kind of disaster, compute the correlation coefficient between the
number of counties where FEMA declared the disaster and the global
temperature. For each kind of disaster, use this correlation coefficient to
predict the number of disasters of this kind when the earth reaches 0.6
temperature units and 0.7 temperature units (on the absolute temperature
scale).

(e) Does this data show that warming of the earth causes weather disasters?
Why?

(f) Does this data suggest that more people will be affected by disasters in
the US in the future? Why?

(g) Does this data suggest that the earth will be warmer in the future? Why?
4.8. If you go to https://github.com/TheUpshot/Military-Surplus-Gear, you

will find data on purchases of military weapons by US police departments.
This data is organized by state and county. There’s a fair amount of data
here, and you’ll need to do some data jockeying.
(a) Prepare a plot showing how much each Illinois county spent under this

program.
(b) Now look up population levels in the counties. Prepare a plot showing

how much each county spent per capita.
(c) Prepare a graphic illustrating what the overall most popular items were

— i.e., those items counties bought the most of.
(d) Prepare a graphic illustrating on what items the most money was spent

— for example, was more money spent on “RIFLE,5.56 MILLIMETER”
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or on “MINE RESISTANT VEHICLE”?
(e) Prepare a graphic illustrating the pattern of purchases across counties for

the ten overall most popular items.
(f) Can you draw any interesting conclusions?



C H A P T E R 5

Basic ideas in probability

We will perform experiments — which could be pretty much anything, from
flipping a coin, to eating too much saturated fat, to smoking, to crossing the road
without looking — and reason about the outcomes (mostly bad, for the examples I
gave). But these outcomes are uncertain, and we need to weigh those uncertainties
against one another. If I flip a coin, I could get heads or tails, and there’s no reason
to expect to see one more often than the other. If I eat too much saturated fat
or smoke, I will very likely have problems, though I might not. If I cross the road
without looking, I may be squashed by a truck or I may not. Our methods need
also to account for information. If I look before I cross the road, I am much less
likely to be squashed.

Probability is the machinery we use to predict what will happen in an exper-
iment. Probability measures the tendency of events to occur frequently or seldom
when we repeat experiments. Building this machinery involves a formal model of
potential outcomes and sets of outcomes. Once we have this, a set of quite simple
axioms allows us, at least in principle, to compute probabilities in most situations.

5.1 EXPERIMENTS, OUTCOMES, EVENTS, AND PROBABILITY

If we flip a fair coin many times, we expect it to come up heads about as often as
it comes up tails. If we toss a fair die many times, we expect each number to come
up about the same number of times. We are performing an experiment each time
we flip the coin, and each time we toss the die. We can formalize this experiment
by describing the set of outcomes that we expect from the experiment. Every run
of the experiment produces one of the set of possible outcomes. There are never
two or more outcomes, and there is never no outcome.

In the case of the coin, the set of outcomes is:

{H,T } .

In the case of the die, the set of outcomes is:

{1, 2, 3, 4, 5, 6} .

We are making a modelling choice by specifying the outcomes of the experiment.
For example, we are assuming that the coin can only come up heads or tails (but
doesn’t stand on its edge; or fall between the floorboards; or land behind the
bookcase; or whatever). We write the set of all outcomes Ω; this is usually known
as the sample space.

84
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Worked example 5.1 Find the lady

We have three playing cards. One is a queen; one is a king, and one is a knave.
All are shown face down, and one is chosen at random and turned up. What
is the set of outcomes?

Solution: Write Q for queen, K for king, N for knave; the outcomes are
{Q,K,N}

Worked example 5.2 Find the lady, twice

We play Find the Lady twice, replacing the card we have chosen. What is the
sample space?

Solution: We now have {QQ,QK,QN,KQ,KK,KN,NQ,NK,NN}

Worked example 5.3 Children

A couple decides to have children until either (a) they have both a boy and a
girl or (b) they have three children. What is the set of outcomes?

Solution: Write B for boy, G for girl, and write them in birth order; we have
{BG,GB,BBG,BBB,GGB,GGG}.

Worked example 5.4 Monty Hall (sigh!)

There are three boxes. There is a goat, a second goat, and a car. These
are placed into the boxes at random. The goats are indistinguishable for our
purposes; equivalently, we do not care about the difference between goats.
What is the sample space?

Solution: Write G for goat, C for car. Then we have {CGG,GCG,GGC}.
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Worked example 5.5 Monty Hall, different goats (sigh!)

There are three boxes. There is a goat, a second goat, and a car. These are
placed into the boxes at random. One goat is male, the other female, and the
distinction is important. What is the sample space?

Solution: Write M for male goat, F for female goat, C for car. Then we
have {CFM,CMF,FCM,MCF,FMC,MFC}. Notice how the number of
outcomes has increased, because we now care about the distinction between
goats.

Worked example 5.6 A poor choice of strategy for planning a family

A couple decides to have children. As they know no mathematics, they decide
to have children until a girl then a boy are born. What is the sample space?
Does this strategy bound the number of children they could be planning to
have?

Solution: Write B for boy, G for girl. The sample space looks like any string
of B’s and G’s that (a) ends in GB and (b) does not contain any other GB.
In regular expression notation, you can write such strings as B∗G+B. There
is a lower bound on the length of the string (two), but no upper bound. As a
family planning strategy, this is unrealistic, but it serves to illustrate the point
that sample spaces don’t have to be finite to be tractable.

5.1.1 The Probability of an Outcome

We represent our model of how often a particular outcome will occur in a repeated
experiment with a probability, a non-negative number. This number gives the
relative frequency of the outcome of interest, when an experiment is repeated a
very large number of times.

Assume that we repeat an experiment N times. Assume also that the coins,
dice, whatever involved in each repetition of the experiment don’t communicate
with one another from experiment to experiment (or, equivalently, that experiments
don’t “know” about one another). We describe these experiments as independent.
We say that an outcome A has probability P if (a) in about N × P of those
experiments the outcome will occur and (b) as N gets larger, the fraction where
the outcome occurs will get closer to P . We write #(A) for the number of times
outcome A occurs. We interpret P as

lim
N→∞

#(A)

N
.

We can draw two important conclusions immediately.
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• For any outcome A, 0 ≤ P (A) ≤ 1.

• ∑Ai∈Ω P (Ai) = 1.

Remember that every run of the experiment produces exactly one outcome. The
probabilities add up to one because each experiment must have one of the outcomes
in the sample space.

Worked example 5.7 A biased coin

Assume we have a coin where the probability of getting heads is P (H) = 1
3 ,

and so the probability of getting tails is P (T ) = 2
3 . We flip this coin three

million times. How many times do we see heads?

Solution: P (H) = 1
3 , so we expect this coin will come up heads in 1

3 of
experiments. This means that we will very likely see very close to a million
heads.

Some problems can be handled by building a set of outcomes and reason-
ing about the probability of each outcome. This is particularly useful when the
outcomes must have the same probability, which happens rather a lot.

Worked example 5.8 Find the Lady

Assume that the card that is chosen is chosen fairly — that is, each card is
chosen with the same probability. What is the probability of turning up a
Queen?

Solution: There are three outcomes, and each is chosen with the same prob-
ability, so the probability is 1/3.

Worked example 5.9 Monty Hall, indistinguishable goats, again

Each outcome has the same probability. We choose to open the first box. With
what probability will we find a goat (any goat)?

Solution: There are three outcomes, each has the same probability, and two
give a goat, so 2/3
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Worked example 5.10 Monty Hall, yet again

Each outcome has the same probability. We choose to open the first box. With
what probability will we find the car?

Solution: There are three places the car could be, each has the same proba-
bility, so 1/3

Worked example 5.11 Monty Hall, with distinct goats, again

Each outcome has the same probability. We choose to open the first box. With
what probability will we find a female goat?

Solution: Using the reasoning of the previous example, but substituting “fe-
male goat” for “car”, 1/3. The point of this example is that the sample space
matters. If you care about the gender of the goat, then it’s important to keep
track of it; if you don’t, it’s a good idea to omit it from the sample space.

5.1.2 Events

Assume we run an experiment and get an outcome. We know what the outcome
is (that’s the whole point of a sample space). This means we can tell whether the
outcome we get belongs to some particular known set of outcomes. We just look in
the set and see if our outcome is there. This means that we should be able to predict
the probability of a set of outcomes from any reasonable model of an experiment.
For example, we might roll a die and ask what the probability of getting an even
number is. As another example, we might flip a coin ten times, and ask what the
probability of getting three heads is.

An event is a set of outcomes. The set of all outcomes, which we wrote Ω,
must be an event. It is not a particularly interesting event, because we must have
P (Ω) = 1 (because we said that every run of an experiment produces one outcome,
and that outcome must be in Ω). In principle, there could be no outcome, although
this never happens. This means that the empty set, which we write ∅, is an event,
and we have P (∅) = 0. The space of events has a rich structure, which makes it
possible to compute probabilities for other, more interesting, events.

Notation: Generally, we write sets like A; in principle, you could confuse
this notation with the matrix notation, but it’s clear from context which is meant.
We write A∪B for the union of two sets, A∩B for the intersection of two sets, and
A− B for the set theoretic difference (i.e. A− B = {x ∈ A|x /∈ B}). We will write
Ω− U as Uc; read “the complement of U”.

Events have three important properties that follow from their nature as sets
of outcomes:
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• If U and V are events — sets of outcomes — then so is U ∩ V . You should
interpret this as the event that we have an outcome that is in U and also in
V .

• If U and V are events, then U ∪ V is also an event. You should interpret this
as the event that we have an outcome that is either in U or in V (or in both).

• If U is an event, then Uc = Ω− U is also an event. You should think of this
as the event we get an outcome that is not in U .

This means that the set of all possible events Σ has a very important structure.

• ∅ is in Σ.

• Ω is in Σ.

• If U ∈ Σ and V ∈ Σ then U ∪ V ∈ Σ.

• If U ∈ Σ and V ∈ Σ then U ∩ V ∈ Σ.

• If U ∈ Σ then Uc ∈ Σ.

This means that the space of events can be quite big. For a single flip of a
coin, the only possible space of events looks like:

{∅, {H} , {T } , {H,T }}

Many experiments admit more than one space of events. For example, if we flip
two coins, one natural event space is














∅,Ω,
{HH}, {HT }, {TH}, {TT},
{HH,HT }, {HH,TH}, {HH,TT}, {HT, TT}, {HT, TH}, {TT,HH},
{HT, TH, TT }, {HH,TH, TT}, {HH,HT, TT}, {HH,HT, TH}















which can represent any possible event that can be built out of two coin flips. But
this is not the only event space possible with these outcomes.

Worked example 5.12 The structure of event spaces

I flip two coins. Is the following collection of sets an event space?

Σ = {∅,Ω, {HH}, {TT,HT, TH}}

Solution: Yes, because: ∅ ∈ Σ; Ω ∈ Σ; if A ∈ Σ, Ac ∈ Σ; if A ∈ Σ and
B ∈ Σ, A ∪ B ∈ Σ; and if A ∈ Σ and B ∈ Σ, A ∩ B ∈ Σ. You can interpret the
event space as encoding the events “two heads” and “anything other than two
heads”.
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So, as example 5.12 illustrates, we can have different consistent collections of
events built on top of the same set of outcomes. This makes sense, because it allows
us to reason about different kinds of result obtained with the same experimental
equipment.

For a single throw of the die, the set of every possible event is



















































































































∅, {1, 2, 3, 4, 5, 6} ,
{1} , {2} , {3} , {4} , {5} , {6} ,

{1, 2} , {1, 3} , {1, 4} , {1, 5} , {1, 6} ,
{2, 3} , {2, 4} , {2, 5} , {2, 6} ,

{3, 4} , {3, 5} , {3, 6} ,
{4, 5} , {4, 6} ,

{5, 6} ,
{1, 2, 3} , {1, 2, 4} , {1, 2, 5} , {1, 2, 6} ,

{1, 3, 4} , {1, 3, 5} , {1, 3, 6} ,
{1, 4, 5} , {1, 4, 6} ,

{1, 5, 6} ,
{2, 3, 4} , {2, 3, 5} , {2, 3, 6} ,
{2, 4, 5} , {2, 4, 6} , {2, 5, 6} ,

{3, 4, 5} , {3, 4, 6} ,
{3, 5, 6} ,
{4, 5, 6} ,

{1, 2, 3, 4} , {1, 2, 3, 5} , {1, 2, 3, 6} ,
{1, 3, 4, 5} , {1, 3, 4, 6} ,
{2, 3, 4, 5} , {2, 3, 4, 6} ,

{3, 4, 5, 6} ,
{2, 3, 4, 5, 6} , {1, 3, 4, 5, 6} , {1, 2, 4, 5, 6} , {1, 2, 3, 5, 6} , {1, 2, 3, 4, 6} , {1, 2, 3, 4, 5}



















































































































(which gives some explanation as to why we don’t usually write out the whole
space of events). In fact, it is seldom necessary to explain which event space one is
working with. We usually assume that the event space consists of all events that
can be obtained with the outcomes (as in the event space shown for a die).

5.1.3 The Probability of Events

So far, we have described the probability of each outcome with a non-negative
number. This number represents the relative frequency of the outcome. Because
we can tell when an event has occurred, we can compute the relative frequency
of events, too. Because it is a relative frequency, the probability of an event is a
non-negative number, and is no greater than one. But the probability of events
must be consistent with the probability of outcomes. This implies a set of quite
straightforward properties:

• The probability of every event is non-negative, which we write P (A) ≥
0 for all A in the collection of events.

• Every experiment has an outcome, which we write P (Ω) = 1.

• The probability of disjoint events is additive, which requires more nota-
tion. Assume that we have a collection of events Ai, indexed by i. We require
that these have the property Ai ∩Aj = ∅ when i 6= j. This means that there
is no outcome that appears in more than one Ai. In turn, if we interpret
probability as relative frequency, we must have that P (∪iAi) =

∑

i P (Ai).
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Any function P taking events to numbers that has these properties is a probability.
These very simple properties imply a series of other very important properties.

Useful Facts: 5.1 The probability of events

• P (Ac) = 1− P (A)

• P (∅) = 0

• P (A− B) = P (A) − P (A∩ B)

• P (A ∪ B) = P (A) + P (B)− P (A ∩ B)

• P (∪n
1Ai) =

∑

i P (Ai)−
∑

i<j P (Ai ∩Aj) +
∑

i<j<k P (Ai ∩Aj ∩
Ak) + . . . (−1)(n+1)P (A1 ∩ A2 ∩ . . . ∩ An)

I prove each of these below. Looking at the useful facts should suggest a
helpful analogy. Think about the probability of an event as the “size” of that
event. This “size” is relative to Ω, which has “size” 1. I find this a good way to
remember equations. Some people find Venn diagrams a useful way to keep track
of this argument, and Figure 5.1 is for them.

For example, P (A) + P (Ac) = 1 has to be true, by this analogy, because
A and Ac don’t overlap, and together make up all of Ω. Similarly, P (A − B) =
P (A) − P (A ∩ B) is easily captured — the “size” of the part of A that isn’t B is
obtained by taking the “size” of A and subtracting the “size” of the part that is
also in B. Similarly, P (A ∪ B) = P (A) + P (B) − P (A ∩ B) says — you can get
the “size” of A ∪ B by adding the two “sizes”, then subtracting the “size” of the
intersection because otherwise you would count these terms twice.

Proposition: P (Ac) = 1− P (A)

Proof: Ac and A are disjoint, so that P (Ac ∪ A) = P (Ac) + P (A) =
P (Ω) = 1.
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A

B

A    B

A

Ω Ω

FIGURE 5.1: If you think of the probability of an event as measuring its “size”, many
of the rules are quite straightforward to remember. Venn diagrams can sometimes
help. On the left, a Venn diagram to help remember that P (A) + P (Ac) = 1. The
“size” of Ω is 1, outcomes lie either in A or Ac, and the two don’t intersect. On
the right, you can see that P (A−B) = P (A)−P (A∩B) by noticing that P (A−B)
is the “size” of the part of A that isn’t B. This is obtained by taking the “size” of
A and subtracting the “size” of the part that is also in B, i.e. the “size” of A ∩ B.
Similarly, you can see that P (A ∪ B) = P (A) + P (B)− P (A ∩ B) by noticing that
you can get the “size” of A∪B by adding the “sizes” of A and B, then subtracting
the “size” of the intersection to avoid double counting.

Proposition: P (∅) = 0

Proof: P (∅) = P (Ωc) = P (Ω− Ω) = 1− P (Ω) = 1− 1 = 0.

Proposition: P (A− B) = P (A)− P (A ∩ B)

Proof: A−B is disjoint from P (A∩B), and (A− B)∪ (A ∩ B) = A.
This means that P (A− B) + P (A∩ B) = P (A).
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Proposition: P (A ∪ B) = P (A) + P (B)− P (A ∩ B)

Proof: P (A ∪ B) = P (A ∪ (B ∩ Ac)) = P (A) + P ((B ∩ Ac)). Now
B = (B ∩ A)∪(B ∩ Ac). Furthermore, (B ∩ A) is disjoint from (B ∩Ac),
so we have P (B) = P ((B ∩ A)) +P ((B ∩Ac)). This means that P (A∪
B) = P (A) + P ((B ∩ Ac)) = P (A) + P (B)− P ((B ∩A)).

Proposition: P (∪n
1Ai) =

∑

i P (Ai)−
∑

i<j P (Ai∩Aj)+
∑

i<j<k P (Ai∩
Aj ∩Ak) + . . . (−1)(n+1)P (A1 ∩ A2 ∩ . . . ∩ An)

Proof: This can be proven by repeated application of the previous
result. As an example, we show how to work the case where there are
three sets (you can get the rest by induction).

P (A1 ∪ A2 ∪ A3) = P (A1 ∪ (A2 ∪ A3))

= P (A1) + P (A2 ∪A3)− P (A1 ∩ (A2 ∪ A3))

= P (A1) + (P (A2) + P (A3)− P (A2 ∩ A3))−
P ((A1 ∩A2) ∪ (A1 ∩A3))

= P (A1) + (P (A2) + P (A3)− P (A2 ∩ A3))−
P (A1 ∩ A2)− P (A1 ∩ A3)

−(−P ((A1 ∩ A2) ∩ (A1 ∩ A3)))

= P (A1) + P (A2) + P (A3)−
P (A2 ∩ A3)− P (A1 ∩ A2)− P (A1 ∩A3) +

P (A1 ∩ A2 ∩ A3)

5.1.4 Computing Probabilities by Counting Outcomes

The rule P (A ∪ B) = P (A) + P (B) − P (A ∩ B) yields a very useful procedure
for computing the probability of some events. Imagine A and B are disjoint (so
A ∩ B = ∅). Then P (A ∪ B) is just P (A) + P (B). So imagine some event E that
consists of a set of outcomes. Each singleton set — containing just one outcome —
is disjoint from each other one. I can make the set E by: starting with an empty set;
unioning this with one of the outcomes in E ; then repeatedly unioning the result a
new outcome until I get E . I am always unioning disjoint sets, so the probability of
this event is the sum of probabilities of the outcomes. So we have

P (E) =
∑

O∈E
P (O)
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where O ranges over the outcomes in E .
This is particularly useful when you know each outcome in Ω has the same

probability. In this case, you can show

P (E) = Number of outcomes in E
Total number of outcomes in Ω

(exercises). Such problems become, basically, advanced counting exercises.

Worked example 5.13 Odd numbers with fair dice

We throw a fair (each number has the same probability) die twice, then add
the two numbers. What is the probability of getting an odd number?

Solution: There are 36 outcomes. Each has the same probability (1/36). 18
of them give an odd number, and the other 18 give an even number, so the
probability is 18/36 = 1/2

Worked example 5.14 Drawing a red ten

I shuffle a standard pack of cards, and draw one card. What is the probability
that it is a red ten?

Solution: There are 52 cards, and each is an outcome. Two of these outcomes
are red tens; so we have 2/52 = 1/26.

Worked example 5.15 Numbers divisible by five with fair dice

We throw a fair (each number has the same probability) die twice, then add
the two numbers. What is the probability of getting a number divisible by five?

Solution: There are 36 outcomes. Each has the same probability (1/36). For
this event, the spots must add to either 5 or to 10. There are 4 ways to get 5.
There are 3 ways to get 10, so the probability is 7/36.
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Worked example 5.16 Birthdays in succession

We stop three people at random, and ask the day of the week on which they
are born. What is the probability that they are born on three days of the week
in succession (for example, the first on Monday; the second on Tuesday; the
third on Wednesday; or Saturday-Sunday-Monday; and so on).

Solution: We assume that births are equally common on each day of the week.
The space of outcomes consists of triples of days, and each outcome has the
same probability. The event is the set of triples of three days in succession
(which has seven elements, one for each starting day). The space of outcomes
has 73 elements in it, so the probability is

Number of outcomes in the event

Total number of outcomes
=

7

73
=

1

49
.

Worked example 5.17 Shared birthdays

We stop two people at random. What is the probability that they were born
on the same day of the week?

Solution: The day the first person was born doesn’t matter; the probability
the second person was born on that day is 1/7. Or you could count outcomes
explicitly to get

Number of outcomes in the event

Total number of outcomes
=

7

7× 7
=

1

7
.

Sometimes a bit of fiddling with the space of outcomes makes it easy to
compute what we want. Examples 5.19 and 5.20 show cases where you can use
fictitious outcomes as an accounting device to simplify a computation.
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Worked example 5.18 Children - 1

This example is a version of of example 1.12, p44, in Stirzaker, “Elementary
Probability”. A couple decides to have children. They decide simply to have
three children. Assume that boys and girls are equally likely at each birth. Let
Bi be the event that there are i boys, and C be the event there are more girls
than boys. Compute P (B1) and P (C).

Solution: There are eight outcomes. Each has the same probability. Three
of them have a single boy, so P (B1) = 3/8. P (C) = P (Cc) (because Cc is the
event there are more boys than than girls, AND the number of children is odd),
so that P (C) = 1/2; you can also get this by counting outcomes.

Worked example 5.19 Children - 2

This example is a version of of example 1.12, p44, in Stirzaker, “Elementary
Probability”. A couple decides to have children. They decide to have children
until the first girl is born, or until there are three, and then stop. Assume that
each gender is equally likely at each birth. Let Bi be the event that there are i
boys, and C be the event there are more girls than boys. Compute P (B1) and
P (C).

Solution: In this case, we could write the outcomes as {G,BG,BBG}, but
if we think about them like this, we have no simple way to compute their
probability. Instead, we could use the sample space from the previous answer,
but assume that some of the later births are fictitious. This gives us natural
collection of events for which it is easy to compute probabilities. Having one
girl corresponds to the event {Gbb,Gbg,Ggb,Ggg}, where I have used lowercase
letters to write the fictitious later births; the probability is 1/2. Having a boy
then a girl corresponds to the event {BGb,BGg} (and so has probability 1/4).
Having two boys then a girl corresponds to the event {BBG} (and so has
probability 1/8). Finally, having three boys corresponds to the event {BBB}
(and so has probability 1/8). This means that P (B1) = 1/4 and P (C) = 1/2.
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Worked example 5.20 Children - 2

This example is a version of of example 1.12, p44, in Stirzaker, “Elementary
Probability”. A couple decides to have children. They decide to have children
until there is one of each gender, or until there are three, and then stop. Assume
that each gender is equally likely at each birth. Let Bi be the event that there
are i boys, and C be the event there are more girls than boys. Compute P (B1)
and P (C).

Solution: We could write the outcomes as
{GB,BG,GGB,GGG,BBG,BBB}. Again, if we think about them like
this, we have no simple way to compute their probability; so we use the
sample space from the previous example with the device of the fictitious births
again. The important events are {GBb,GBg}; {BGb,BGg}; {GGB}; {GGG};
{BBG}; and {BBB}. Like this, we get P (B1) = 5/8 and P (C) = 1/4.

5.1.5 Computing Probabilities by Reasoning about Sets

The rule P (Ac) = 1 − P (A) is occasionally useful for computing probabilities on
its own; more commonly, you need other reasoning as well. The next problem
illustrates an important feature of questions in probability: your intuition can be
quite misleading. One problem is that the number of outcomes can be bigger or
smaller than you expect.
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Worked example 5.21 Shared birthdays

What is the probability that, in a room of 30 people, there is a pair of people
who have the same birthday?

Solution: We simplify, and assume that each year has 365 days, and that none
of them are special (i.e. each day has the same probability of being chosen as
a birthday). This model isn’t perfect (there tend to be slightly more births
roughly 9 months after: the start of spring; blackouts; major disasters; and so
on) but it’s workable. The easy way to attack this question is to notice that
our probability, P ({shared birthday}), is

1− P ({all birthdays different}).

This second probability is rather easy to compute. Each outcome in the sample
space is a list of 30 days (one birthday per person). Each outcome has the same
probability. So

P ({all birthdays different}) = Number of outcomes in the event

Total number of outcomes
.

The total number of outcomes is easily seen to be 36530, which is the total
number of possible lists of 30 days. The number of outcomes in the event is the
number of lists of 30 days, all different. To count these, we notice that there
are 365 choices for the first day; 364 for the second; and so on. So we have

P ({shared birthday}) = 1− 365× 364× . . . 336

36530
= 1− 0.2937 = 0.7063

which means there’s really a pretty good chance that two people in a room of
30 share a birthday.

If we change the birthday example slightly, the problem changes drastically.
If you stand up in a room of 30 people and bet that two people in the room have
the same birthday, you have a probability of winning of about 0.71. If you bet that
there is someone else in the room who has the same birthday that you do, your
probability of winning is very different.
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Worked example 5.22 Shared birthdays

You bet there is someone else in a room of 30 people who has the same birthday
that you do. Assuming you know nothing about the other 29 people, what is
the probability of winning?

Solution: The easy way to do this is

P ({winning}) = 1− P ({losing}).

Now you will lose if everyone has a birthday different from you. You can think
of the birthdays of the others in the room as a list of 29 days of the year. If
your birthday is on the list, you win; if it’s not, you lose. The number of losing
lists is the number of lists of 29 days of the year such that your birthday is
not in the list. This number is easy to get. We have 364 days of the year to
choose from for each of 29 locations in the list. The total number of lists is the
number of lists of 29 days of the year. Each list has the same probability. So

P ({losing}) = 36429

36529

and
P ({winning}) ≈ 0.0765.

There is a wide variety of problems like this; if you’re so inclined, you can
make a small but quite reliable profit off people’s inability to estimate probabilities
for this kind of problem correctly (examples 5.21 and 5.22 are reliably profitable;
you could probably do quite well out of examples 5.16 and 5.17).

The rule P (A−B) = P (A)−P (A∩B) is also occasionally useful for computing
probabilities on its own; more commonly, you need other reasoning as well.

Worked example 5.23 Dice

You flip two fair six-sided dice, and add the number of spots. What is the
probability of getting a number divisible by 2, but not by 5?

Solution: There is an interesting way to work the problem. Write Dn for
the event the number is divisible by n. Now P (D2) = 1/2 (count the cases; or,
more elegantly, notice that each die has the same number of odd and even faces,
and work from there). Now P (D2 −D5) = P (D2)− P (D2 ∩D5). But D2 ∩D5

contains only two outcomes (6, 4 and 4, 6), so P (D2−D5) = 18/36−2/36 = 4/9

Sometimes it is easier to reason about unions than to count outcomes directly.



Section 5.1 Experiments, Outcomes, Events, and Probability 100

Worked example 5.24 Two fair dice

I roll two fair dice. What is the probability that the result is divisible by either
2 or 5, or both?

Solution: Write Dn for the event the number is divisible by n. We want
P (D2 ∪ D5) = P (D2) + P (D5) − P (D2 ∩ D5). From example 5.23, we know
P (D2) = 1/2 and P (D2 ∩ D5) = 2/36. By counting outcomes, P (D5) = 6/36.
So P (D2 ∪ D5) = (18 + 6− 2)/36 = 22/36.

5.1.6 Independence

Some experimental results do not affect others. For example, if I flip a coin twice,
whether I get heads on the first flip has no effect on whether I get heads on the
second flip. As another example, I flip a coin; the outcome does not affect whether
I get hit on the head by a falling apple later in the day. We refer to events with
this property as independent.

Here is a pair of events that is not independent. Imagine I throw a die. Write
A for the event that the die comes up with an odd number of spots, and write
B for the event that the number of spots is either 3 or 5. Now these events are
interrelated in an important way. If I know that A has occurred, I also know that
B has occurred — I don’t need to check separately, because A implies B.

Here is an example of a weaker interaction that results in events not being
independent. Write C for the event that the die comes up with an odd number of
spots, and write D for the event that the number of spots is larger than 3. These
events are interrelated. The probability of each event separately is 1/2. If I know
that C has occurred, then I know that the die shows either 1, 3, or 5 spots. One of
these outcomes belongs to D, and two do not. This means that knowing that C has
occured tells you something about whether D has occurred. Independent events
do not have this property. This means that the probability that the occur together
has an important property, given in the box below.

Useful Facts: 5.2 Independent events

Two events A and B are independent if and only if

P (A ∩ B) = P (A)P (B)

The “size” analogy helps motivate this expression. We think of P (A) as the
“size” of A relative to Ω, and so on. Now P (A ∩ B) measures the “size” of A ∩ B
— that is, the part of A that lies inside B. But if A and B are independent, then
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Ω

A

B

Ω

A

B

Independent Events Dependent Events

FIGURE 5.2: On the left, A and B are independent. A spans 1/4 of Ω, and A ∩ B
spans 1/4 of B. This means that B can’t affect A. 1/4 of the outcomes of Ω lie in
A, and 1/4 of the outcomes in B lie in A ∩ B. On the right, they are not. Very
few of the outcomes in B lie in B ∩ A, so that observing B means that A becomes
less likely, because very few of the outcomes in B also lie in A ∩ B.

the size of A ∩ B relative to B should be the same as the size of A relative to Ω
(Figure 5.2). Otherwise, B affects A, because A is more (or less) likely when B has
occurred.

So for A and B to be independent, we must have

“Size” of A =
“Size” of piece of A in B

“Size” of B ,

or, equivalently,

P (A) =
P (A ∩ B)
P (B)

which yields our expression. Independence is important, because it is straightfor-
ward to compute probabilities for sequences of independent outcomes.

Worked example 5.25 A fair coin

A fair coin (or die, or whatever) is one where each outcome has the same
probability. A fair coin has two sides, so the probability of each outcome must
be 1/2. We flip this coin twice - what is the probability we see two heads?

Solution: The flips are independent. Write H1 for the event that the first
flip comes up heads, H2 for the event the second comes up heads. We have
H1 = {HH,HT } and H2 = {HH,TH}. We seek P (H1 ∩H2) = P (H1)P (H2).
The coin is fair, so P (H1) = P (H2) = 1/2. So the probability is 1

4 .

The reasoning of example 5.25 is moderately rigorous (if you want real rigor,
you should specify the event space, etc.; I assumed that it would be obvious), but
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it’s a bit clumsy for everyday use. The rule to remember is this: the probability
that both events occur is P (A ∩ B) and, if A and B are independent, then this is
P (A)P (B).

Worked example 5.26 A fair die

The space of outcomes for a fair six-sided die is

{1, 2, 3, 4, 5, 6} .

The die is fair means that each outcome has the same probability. Now we toss
two fair dice — with what probability do we get two threes?

Solution:

P (first toss yields 3 ∩ second toss yields 3) = P (first toss yields 3)×
P (second toss yields 3)

= (1/6)(1/6)

= 1/36

Worked example 5.27 Find the Lady, twice

Assume that the card that is chosen is chosen fairly — that is, each card is
chosen with the same probability. The game is played twice, and the cards are
reshuffled between games. What is the probability of turning up a Queen and
then a Queen again?

Solution: The events are independent, so 1/9.



Section 5.1 Experiments, Outcomes, Events, and Probability 103

Worked example 5.28 Children

A couple decides to have two children. Genders are assigned to children at
random, fairly, independently and at birth (our models have to abstract a
little!). What is the probability of having a boy and then a girl?

Solution:

P (first is boy ∩ second is girl) = P (first is boy)P (second is girl)

= (1/2)(1/2)

= 1/4

You can use the expression to tell whether events are independent or not.
Quite small changes to a problem affect whether events are independent. For ex-
ample, simply removing a card from a deck can make some events not independent.

Worked example 5.29 Independent cards

We shuffle a standard deck of 52 cards and draw one card. The event A is “the
card is a red suit” and the event B is “the card is a 10”. Are they independent?

Solution: P (A) = 1/2, P (B) = 1/13 and in example 5.14 we determined
P (A ∩ B) = 2/52. But 2/52 = 1/26 = P (A)P (B), so they are independent.

Worked example 5.30 Cards that aren’t independent

We take a standard deck of cards, and remove the ten of hearts. We now shuffle
this deck, and draw one card. The event A is “the card is a red suit” and the
event B is “the card is a 10”. Are they independent?

Solution: These are not independent because P (A) = 25/51, P (B) = 3/51
and P (A ∩ B) = 1/51 6= P (A)P (B) = 75/(512)

The probability of a sequence of independent events can become very small
very quickly, and this often misleads people.
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Worked example 5.31 Accidental DNA Matches

I search a DNA database with a sample. Each time I attempt to match this
sample to an entry in the database, there is a probability of an accidental
chance match of 1e − 4. Chance matches are independent. There are 20, 000
people in the database. What is the probability I get at least one match, purely
by chance?

Solution: This is 1 − P (no chance matches). But P (no chance matches) is
much smaller than you think. We have

P (no chance matches) = P









no chance match to record 1∩
no chance match to record 2∩

. . .∩
no chance match to record 20, 000









= P (no chance match to a record)20,000

= (1− 1e− 4)20,000

so the probability is about 0.86 that you get at least one match by chance.
Notice that if the database gets bigger, the probability grows; so at 40, 000 the
probability of one match by chance is 0.98.

5.1.7 Permutations and Combinations

Counting outcomes in an event can require pretty elaborate combinatorial argu-
ments. One form of argument that is particularly important is to reason about
permutations. You should recall that the number of permutations of k items is k!.
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Worked example 5.32 Counting outcomes with permutations

I flip a coin N times. How many of the possible outcomes have exactly k heads?

Solution: Here is one natural way to think about this problem. Each outcome
we are interested in is a string of k H’s and N − k T’s, and we need to count
the number of such strings. We can do so with permutations. Write down any
string of k H’s and N − k T’s. Any other string of k H’s and N − k T’s is a
permutation of this one. However, many of these permutations simply swap
one H with another, or one T with another. The total number of permutations
of a string of N entries is N !. The number of permutations that swap H’s with
one another is k! (because there are k H’s), and the number of permutations
that swap T’s with one another is (N − k)!. The total number of strings must
then be

N !

k!(N − k)!
=

(

N
k

)

There is another way to think about example 5.32, which is more natural if
you’ve seen combinations before. You start with a string of N T’s, then you choose
k distinct elements to turn into H’s. The number of choices of k distinct elements
in N items is:

N !

k!(N − k)!
=

(

N
k

)

so there must be this number of strings.
We can now quite easily study airline overbooking. Airlines generally sell more

tickets for a flight than there are seats on the aircraft, because some passengers
don’t turn up on time, usually for random reasons. If the airline only sold one
ticket per seat, their planes would likely have empty seats — which are lost profit
— on each flight. If too many passengers turn up for a flight, someone will accept
money to take the next flight. The amount of money that an airline has to give a
passenger who doesn’t get a seat is usually prescribed by regulators. Now an airline
must compute with what probability they will have to pay out as a function of the
number of tickets sold.
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Worked example 5.33 Overbooking - 1

An airline has a regular flight with six seats. It always sells seven tickets.
Passengers turn up for the flight with probability p, and do so independent of
other passengers. What is the probability that the flight is overbooked?

Solution: This is like a coin-flip problem; think of each passenger as a biased
coin. With probability p, it comes up T (for turn up) and with probability
(1 − p), it turns up N (for no-show). This coin is flipped seven times, and we
are interested in the probability that there are seven T ’s. This is p7, because
the flips are independent.

Worked example 5.34 Overbooking - 2

An airline has a regular flight with six seats. It always sells eight tickets.
Passengers turn up for the flight with probability p, and do so independent of
other passengers. What is the probability that six passengers arrive? (i.e. the
flight is not overbooked or underbooked).

Solution: Now we flip the coin eight times, and are interested in the probability
of getting exactly six T ’s. We get, by the reasoning of worked example 5.32,

8!

2!6!
p6(1− p)2 = 28p6(1− p)2
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Worked example 5.35 Overbooking - 3

An airline has a regular flight with six seats. It always sells eight tickets.
Passengers turn up for the flight with probability p, and do so independent of
other passengers. What is the probability that the flight is overbooked?

Solution: Now we flip the coin eight times, and are interested in the probability
of getting more than six T ’s. This is the union of two disjoint events (seven T ’s
and eight T ’s). For the case of seven T ’s, one flip must be N ; there are eight
choices. For the case of eight T ’s, all eight flips must be T , and there is only
one way to achieve this. So the probability the flight is overbooked is

P (overbooked) = P (7 T ’s ∪ 8 T ’s)

= P (7 T ’s) + P (8 T ’s)

= 8p7(1− p) + p8

Worked example 5.36 Overbooking - 4

An airline has a regular flight with s seats. It always sells t tickets. Passen-
gers turn up for the flight with probability p, and do so independent of other
passengers. What is the probability that u passengers turn up?

Solution: Now we flip the coin t times, and are interested in the probability
of getting u T ’s. By the argument of worked example 5.32, there are

t!

u!(t− u)!

disjoint outcomes with u T ’s and t−u N ’s. Each such outcome is independent,
and has probability pu(1− p)t−u. So

P (u passengers turn up) =
t!

u!(t− u)!
pu(1− p)t−u
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Worked example 5.37 Overbooking - 5

An airline has a regular flight with s seats. It always sells t tickets. Passen-
gers turn up for the flight with probability p, and do so independent of other
passengers. What is the probability that the flight is oversold?

Solution: We need P ({s+ 1 turn up} ∪ {s+ 2 turn up} ∪ . . . ∪ {t turn up}).
But the events {i turn up} and {j turn up} are disjoint if i 6= j. So we can
exploit example 5.36, and write

P (overbooked) = P ({s+ 1 turn up}) + P ({s+ 2 turn up}) +
. . . P ({t turn up})

=
t
∑

i=s+1

P ({i turn up})

=

t
∑

i=s+1

t!

i!(t− i)!
pi(1− p)t−i

Probability as Frequency
I started the discussion of probability by describing it as a relative frequency.

We now have enough machinery to investigate this view, because we can compute
the probability that a collection of coin flip experiments will produce a particular
fraction of heads.

Worked example 5.38 A fair coin, revisited

We conduct N experiments, where each experiment is to flip a fair coin twice.
In what fraction of these experiments do we see both sides of the coin?

Solution: The sample space is {HH,HT, TH, TT }. The coin is fair, so each
outcome has the same probability. This means that (1/4)N experiments pro-
duce HT ; (1/4)N produce TH ; and so on. We see both sides of the coin in an
experiment for about (1/2)N experiments.

Example 5.38 might seem like a contradiction to you. I claimed that we could
interpret P as the relative frequency of outcomes, and that my coin was fair; but,
in only half of my experiments did I see both sides of the coin. In the other half,
the coin behaved as if the probability of seeing one side is 1, and the probability
of seeing the other side is 0. This occurs because the number of flips in each
experiment is very small. If the number of flips is larger, you are much more likely
to see about the right frequencies.
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Worked example 5.39 A fair coin, yet again

We conduct N experiments, where each experiment is to flip a fair coin six
times. In what fraction of these experiments do we get three heads and three
tails?

Solution: There are 64 = 26 outcomes in total for six coin flips. Each has the
same probability. By the argument of example 5.32, there are

6!

3!3!
= 20

outcomes with three heads. So the fraction is 20/64 = 1/3.

At first glance, example 5.39 suggests that making the number of experiments
get bigger doesn’t help. But in the definition of probability, I said that there would
be “about” N × P experiments with the outcome of interest.

Worked example 5.40 A fair coin, yet again

We conduct N experiments, where each experiment is to flip a fair coin 10
times. In what fraction of these experiments do we get between 4 and 6 heads?

Solution: We want to compute

P (E) = Number of outcomes in E
Total number of outcomes in Ω

.

There are 1024 = 210 outcomes for each experiment. Our event contains the
four head outcomes, the five head outcomes and the six head outcomes. Using
the argument of example 5.39 gives

total outcomes in E = 4H outcomes + 5H outcomes + 6H outcomes

=
10!

4!6!
+

10!

5!5!
+

10!

6!4!
= 210 + 252 + 210

= 692

so in 692/1024 ≈ 0.68 of the experiments, we will see between four and six
heads



Section 5.2 Conditional Probability 110

Worked example 5.41 A fair coin, and a lot of flipping

We conduct N experiments, where each experiment is to flip a fair coin 100
times. In what fraction of these experiments do we get between 45 and 65
heads?

Solution: There are 2100 outcomes for an experiment. Using the argument of
example 5.40 gives

total outcomes in E
total outcomes in Ω

=

∑65
i=45

100!
i!(100−i)!

2100

which isn’t particularly easy to evaluate without more powerful machinery,
which we’ll see in the next chapter.

As these examples suggest, if an experiment consists of flipping a large number
of coins, then a high fraction of those experiments will show heads with a frequency
very close to the right number. We will establish this later, with rather more
powerful machinery.

5.2 CONDITIONAL PROBABILITY

If you throw a fair die twice and add the numbers, then the probability of getting
a number less than six is 10

36 . Now imagine you know that the first die came up
three. In this case, the probability that the sum will be less than six is 1

3 , which is
slightly larger. If the first die came up four, then the probability the sum will be
less than six is 1

6 , which is rather less than 10
36 . If the first die came up one, then

the probability that the sum is less than six becomes 2
3 , which is much larger.

Each of these probabilities is an example of a conditional probability. We
assume we have a space of outcomes and a collection of events. The conditional
probability of B, conditioned on A, is the probability that B occurs given that A
has definitely occurred. We write this as

P (B|A)

5.2.1 Evaluating Conditional Probabilities

Now to get an expression for P (B|A), notice that, because A is known to have
occurred, our space of outcomes or sample space is now reduced to A. We know
that our outcome lies in A; P (B|A) is the probability that it also lies in B ∩A.

The outcome lies in A, and so it must lie in either P (B ∩A) or in P (Bc ∩A).
This means that

P (B|A) + P (Bc|A) = 1.

Now recall the idea of probabilities as relative frequencies. If P (C ∩ A) =
kP (B ∩ A), this means that outcomes in C ∩ A will appear k times as often as
outcomes in B ∩ A. But this must apply even if we know in advance that the
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outcome is in A. So we must have

P (B|A) ∝ P (B ∩ A).

Now we need to determine the constant of proportionality; write c for this constant,
meaning

P (B|A) = cP (B ∩ A).

We have that

P (B|A) + P (Bc|A) = cP (B ∩ A) + cP (Bc ∩ A) = cP (A) = 1,

so that

P (B|A) =
P (B ∩ A)

P (A)
.

We can use the “size” metaphor here, too. Now P (B|A) measures the prob-
ability that an outcome is in B, given we know it is in A — this is the fraction of
A that also belongs to B. So our expression makes sense, because the fraction of
the event A that is also part of the event B is given by the size of the intersection
divided by the size of A.

Worked example 5.42 Car factories

There are two car factories, A and B. Each year, factory A produces 1000 cars,
of which 10 are lemons. Factory B produces 2 cars, each of which is a lemon.
All cars go to a single lot, where they are thoroughly mixed up. I buy a car.

• What is the probability it is a lemon?

• What is the probability it came from factory B?

• The car is now revealed to be a lemon. What is the probability it came
from factory B, conditioned on the fact it is a lemon?

Solution:

• Write the event the car is a lemon as L. There are 1002 cars, of which
12 are lemons. The probability that I select any given car is the same, so
we have 12/1002.

• Same argument yields 2/1002.

• Write B for the event the car comes from factory B. I need P (B|L). This
is P (L|B)P (B)/P (L) = (1× 2/1002)/(12/1002) = 1/6.
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Worked example 5.43 Royal flushes in poker - 1

This exercise is after Stirzaker, p. 51.
You are playing a straightforward version of poker, where you are dealt five
cards face down. A royal flush is a hand of AKQJ10 all in one suit. What is
the probability that you are dealt a royal flush?

Solution: This is

number of hands that are royal flushes, ignoring card order

total number of different five card hands, ignoring card order
.

There are four hands that are royal flushes (one for each suit). Now the total
number of five card hands is

(

52
5

)

= 2598960

so we have
4

2598960
=

1

649740
.

Worked example 5.44 Royal flushes in poker - 2

This exercise is after Stirzaker, p. 51.
You are playing a straightforward version of poker, where you are dealt five
cards face down. A royal flush is a hand of AKQJ10 all in one suit. The fifth
card that you are dealt lands face up. It is the nine of spades. What now
is the probability that your have been dealt a royal flush? (i.e. what is the
conditional probability of getting a royal flush, conditioned on the event that
one card is the nine of spades)

Solution: No hand containing a nine of spades is a royal flush, so this is easily
zero.
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Worked example 5.45 Royal flushes in poker - 3

This exercise is after Stirzaker, p. 51.
You are playing a straightforward version of poker, where you are dealt five
cards face down. A royal flush is a hand of AKQJ10 all in one suit. The fifth
card that you are dealt lands face up. It is the Ace of spades. What now
is the probability that your have been dealt a royal flush? (i.e. what is the
conditional probability of getting a royal flush, conditioned on the event that
one card is the Ace of spades)

Solution: Now consider the events

A = you get a royal flush and the last card is the ace of spades

and
B = the last card you get is the ace of spades,

and the expression

P (A|B) = P (A ∩ B)
P (B) .

Now P (A) = 1
52 . P (A ∩ B) is given by

number of five card royal flushes where card five is Ace of spades

total number of different five card hands
.

where we DO NOT ignore card order. This is

4× 3× 2× 1

52× 51× 50× 49× 48

yielding

P (A|B) = 1

249900
.

Notice the interesting part: the conditional probability is rather larger than
the probability. If you see this ace, the conditional probability is 13

5 times the
probability that you will get a flush if you don’t. Seeing this card has really
made a difference.

Another, very useful, way to write the expression P (B|A) = P (B∩A)
P (A) is:

P (B|A)P (A) = P (B ∩ A).

Now, since B ∩ A = A∩ B, we must have that

P (B|A) =
P (A|B)P (B)

P (A)
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Worked example 5.46 Two dice

We throw two fair dice. What is the conditional probability that the sum of
spots on both dice is greater than six, conditioned on the event that the first
die comes up five?

Solution: Write the event that the first die comes up 5 as F , and the event
the sum is greather than six as S. There are five outcomes where the first die
comes up 5 and the number is greater than 6, so P (F ∩ S) = 5/36. P (S|F) =
P (F ∩ S)/P (F) = (5/36)/(1/6) = 5/6.

Notice that A∩B and A∩Bc are disjoint sets, and that A = (A∩B)∪(A∩Bc).
So, because P (A) = P (A ∩ B) + P (A ∩ Bc), we have

P (A) = P (A|B)P (B) + P (A|Bc)P (Bc)

a tremendously important and useful fact. Another version of this fact is also very
useful. Assume we have a set of disjoint sets Bi. These sets must have the property
that (a) Bi ∩ Bj = ∅ for i 6= j and (b) they cover A, meaning that A∩ (∪iBi) = A.
Then, because P (A) =

∑

i P (A ∩ Bi), so we have

P (A) =
∑

i

P (A|Bi)P (Bi)

Worked example 5.47 False positives

After Stirzaker, p55. You have a blood test for a rare disease that occurs by
chance in 1 person in 100, 000. If you have the disease, the test will report that
you do with probability 0.95 (and that you do not with probability 0.05). If you
do not have the disease, the test will report a false positive with probability
1e-3. If the test says you do have the disease, what is the probability it is
correct?

Solution: Write S for the event you are sick and R for the event the test
reports you are sick. We need P (S|R). We have

P (S|R) =
P (R|S)P (S)

P (R)

=
P (R|S)P (S)

P (R|S)P (S) + P (R|Sc)P (Sc)

=
0.95× 1e− 5

0.95× 1e− 5 + 1e− 3× (1− 1e− 5)

= 0.0094

which should strike you as being a bit alarming. The disease is so rare that the
test is almost useless.
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Worked example 5.48 False positives -2

After Stirzaker, p55. You want to design a blood test for a rare disease that
occurs by chance in 1 person in 100, 000. If you have the disease, the test will
report that you do with probability p (and that you do not with probability
(1 − p)). If you do not have the disease, the test will report a false positive
with probability q. You want to choose the value of p so that if the test says
you have the disease, there is at least a 50% probability that you do.

Solution: Write S for the event you are sick and R for the event the test
reports you are sick. We need P (S|R). We have

P (S|R) =
P (R|S)P (S)

P (R)

=
P (R|S)P (S)

P (R|S)P (S) + P (R|Sc)P (Sc)

=
p× 1e− 5

p× 1e− 5 + q × (1− 1e− 5)

≥ 0.5

which means that p ≥ 99999q which should strike you as being very alarming
indeed, because p ≤ 1 and q ≥ 0. One plausible pair of values is q = 1e − 5,
p = 1− 1e− 5. The test has to be spectacularly accurate to be of any use.

Useful Facts: 5.3 Conditional probability formulas

You should remember the following formulas:

• P (B|A) = P (A|B)P (B)
P (A)

• P (A) = P (A|B)P (B) + P (A|Bc)P (Bc)

• P (A) =
∑

i P (A|Bi)P (Bi)

• P (A) =
∑

i P (A|Bi)P (Bi)

5.2.2 The Prosecutors Fallacy

It is quite easy to make mistakes in conditional probability. Several such mistakes
have names, because they’re so common. One is the prosecutor’s fallacy. This
often occurs in the following form: A prosecutor has evidence E against a suspect.
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Write I for the event that the suspect is innocent. The evidence has the property
that P (E|I) is extremely small. The prosecutor argues that the suspect must be
guilty, because P (E|I) is so small.

This argument is misleading, because the conditional probability of interest
is P (I|E). It does not matter how unlikely the evidence is if you are innocent;
what matters is the probability you are innocent, given the evidence. The fact that
P (E|I) is small doesn’t mean that P (I|E) is small, because

P (I|E) = P (E|I)P (I)
P (E) =

P (E|I)P (I)
(P (E|I)P (I) + P (E|Ic)(1− P (I)))

Notice how, if P (I) is large or if P (E|Ic) is much smaller than P (E|I), then P (I|E)
could be close to one. The question to look at is not how unlikely the evidence is
if the subject is innocent; instead, the question is how likely the subject is to be
guilty compared to some other source of the evidence. These are two very different
questions.

One useful analogy may be helpful. If you buy a lottery ticket (L), the
probability of winning (W) is small. So P (W|L) may be very small. But P (L|W)
is 1 — the winner is always someone who bought a ticket.

The prosecutor’s fallacy has contributed to a variety of miscarriages of jus-
tice. One famous incident occurred in the UK, involving a mother, Sally Clark,
who was convicted of murdering two of her children. Expert evidence by paedi-
atrician Roy Meadow argued that the probability of both deaths resulting from
Sudden Infant Death Syndrome was extremely small. Her first appeal cited, among
other grounds, statistical error in the evidence (you should spot the prosecutors
fallacy; others were involved, too). The appeals court rejected this appeal, call-
ing the statistical point “a sideshow”. This prompted a great deal of controversy,
both in the public press and various professional journals, including a letter from
the then president of the Royal Statistical Society to the Lord Chancellor, point-
ing out that “statistical evidence . . . (should be) . . . presented only by appropri-
ately qualified statistical experts”. A second appeal (on other grounds) followed,
and was successful. The appelate judges specifically criticized the statistical ev-
idence, although it was not a point of appeal. Clark never recovered from this
horrific set of events and died in tragic circumstances shortly after the second
appeal. Roy Meadow was then struck off the rolls for serious professional mis-
conduct as an expert witness, a ruling he appealed successfully. You can find
a more detailed account of this case, with pointers to important documents in-
cluding the letter to the Lord Chancellor (which is well worth reading), at http:
//en.wikipedia.org/wiki/Roy_Meadow; there is further material on the prosecu-
tors fallacy at http://en.wikipedia.org/wiki/Prosecutor\%27s_fallacy.

5.2.3 Independence and Conditional Probability

As we have seen, two events are independent if

P (A ∩ B) = P (A)P (B).
If two events A and B are independent, then

P (A|B) = P (A)
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and
P (B|A) = P (B).

Again, this means that knowing that A occurred tells you nothing about B — the
probability that B will occur is the same whether you know that A occurred or not.

Events A1 . . .An are pairwise independent if each pair is independent (i.e.
A1 and A2 are independent, etc.). They are independent if for any collection of
distinct indices i1 . . . ik we have

P (Ai1 ∩ . . . ∩ Aik) = P (Ai1 ) . . . P (Aik )

Notice that independence is a much stronger assumption than pairwise indepen-
dence.

Worked example 5.49 Cards and pairwise independence

We draw three cards from a properly shuffled standard deck, with replacement
and reshuffling (i.e., draw a card, make a note, return to deck, shuffle, draw
the next, make a note, shuffle, draw the third). Let A be the event that “card
1 and card 2 have the same suit”; let B be the event that “card 2 and card 3
have the same suit”; let C be the event that “card 1 and card 3 have the same
suit”. Show these events are pairwise independent, but not independent.

Solution: By counting, you can check that P (A) = 1/4; P (B) = 1/4; and
P (A∩B) = 1/16, so that these two are independent. This argument works for
other pairs, too. But P (C ∩A∩B) = 1/16 which is not 1/43, so the events are
not independent; this is because the third event is logically implied by the first
two.

Events A∞ . . .A\ are conditionally independent conditioned on event B
if

P (Ai1 ∩ . . . ∩ Aik |B) = P (Ai1 |B) . . . P (Aik |B)
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Worked example 5.50 Cards and conditional independence

We remove a red 10 and a red 6 from a standard deck of playing cards. We
shuffle the remaining cards, and draw one card. Write A for the event that
the card drawn is a 10, B for the event the card drawn is red, and C for the
event that the card drawn is either a 10 or a 6. Show that A and B are not
independent, but are conditionally independent conditioned on C.

Solution: We have P (A) = 3/50, P (B) = 24/50, P (A ∩ B) = 1/50, so

P (A|B) = 1/50

24/50
=

1

24
6= P (A)

soA and B are not independent. We have also that P (A|C) = 1/2 and P (B|C) =
2/6 = 1/3. Now

P (A∩ B|C) = 1/6 = P (A|C)P (B|C)
so A and B are conditionally independent conditioned on C.

We usually do not have the information required to prove that events are
independent. Instead, we use intuition (for example, two flips of the same coin are
likely to be independent unless there is something very funny going on) or simply
choose to apply models in which some variables are independent.

Independent events can lead very quickly to very small probabilities, as we
saw in example 5.31. This can mislead intuition quite badly, and lead to serious
problems. In particular, these small probabilities can interact with the prosecutor’s
fallacy in a dangerous way. In example 5.31, we saw how the probability of getting
a chance match in a large DNA database could be quite big, even though the
probability of a single match is small. One version of the prosecutors fallacy is
to argue that, because the probability of a single match is small, the person who
matched the DNA must have committed the crime. The fallacy is to ignore the
fact that the probability of a chance match to a large database is quite high.

People quite often reason poorly about independent events. The most com-
mon problem is known as the gambler’s fallacy. This occurs when you reason
that the probability of an independent event has been changed by previous out-
comes. For example, imagine I toss a coin that is known to be fair 20 times and get
20 heads. The probability that the next toss will result in a head has not changed
at all — it is still 0.5 — but many people will believe that it has changed. This
idea is also sometimes referred to as antichance.

5.3 EXAMPLE: THE MONTY HALL PROBLEM

Careless thinking about probability, particularly conditional probability, can cause
wonderful confusion. The Monty Hall problem is a relatively simple exercise in
conditional probability. Nonetheless, it has been the subject of extensive, lively, and
often quite inaccurate correspondence in various national periodicals — it seems to
catch the attention, which is why we describe it in some detail. The problem works
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like this: There are three doors. Behind one is a car. Behind each of the others is
a goat. The car and goats are placed randomly and fairly, so that the probability
that there is a car behind each door is the same. You will get the object that lies
behind the door you choose at the end of the game. The goats are interchangeable,
and, for reasons of your own, you would prefer the car to a goat.

The game goes as follows. You select a door. The host then opens a door and
shows you a goat. You must now choose to either keep your door, or switch to the
other door. What should you do?

You cannot tell what to do using the information provided, by the following
argument. Label the door you chose at the start of the game 1; the other doors
2 and 3. Write Ci for the event that the car lies behind door i. Write Gm for
the event that a goat is revealed behind door m, where m is the number of the
door where the goat was revealed (which could be 1, 2, or 3). You need to know
P (C1|Gm). But

P (C1|Gm) =
P (Gm|C1)P (C1)

P (Gm|C1)P (C1) + P (Gm|C2)P (C2) + P (Gm|C3)P (C3)

and you do not know P (Gm|C1), P (Gm|C2), P (Gm|C3), because you don’t know
the rule by which the host chooses which door to open to reveal a goat. Different
rules lead to quite different analyses.

There are several possible rules for the host to show a goat:

• Rule 1: choose a door uniformly at random.

• Rule 2: choose from the doors with goats behind them that are not door 1
uniformly and at random.

• Rule 3: if the car is at 1, then choose 2; if at 2, choose 3; if at 3, choose 1.

• Rule 4: choose from the doors with goats behind them uniformly and at
random.

We should keep track of the rules in the conditioning, so we write P (Gm|C1, r1) for
the conditional probability that a goat was revealed behind door m when the car
is behind door 1, using rule 1 (and so on). This means we are interested in

P (C1|Gm, rn) =
P (Gm|C1, rn)P (C1)

P (Gm|C1, rn)P (C1) + P (Gm|C2, rn)P (C2) + P (Gm|C3, rn)P (C3)
.

Notice that each of these rules is consistent with your observations — what you
saw could have occurred under any of these rules. You have to know which rule the
host uses to proceed. You should be aware that in many of the discussions of this
problem, people assume without comment that the host uses rule 2, then proceed
with this assumption.
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Worked example 5.51 Monty Hall, rule one

Assume the host uses rule one, and shows you a goat behind door two. What
is P (C1|G2, r1)?

Solution: To work this out, we need to know P (G2|C1, r1), P (G2|C2, r1) and
P (G2|C3, r1). Now P (G2|C2, r1) must be zero, because the host could not
reveal a goat behind door two if there was a car behind that door. Write O2

for the event the host chooses to open door two, and B2 for the event there
happens to be a goat behind door two. These two events are independent —
the host chose the door uniformly at random. We can compute

P (G2|C1, r1) = P (O2 ∩B2|C1, r1)

= P (O2|C1, r1)P (B2|C1, r1)

= (1/3)(1)

= 1/3

where P (B2|C1, r1) = 1 because we conditioned on the fact there was a car
behind door one, so there is a goat behind each other door. This argument
establishes P (G2|C3, r1) = 1/3, too. So P (C1|G2, r1) = 1/2— the host showing
you the goat does not motivate you to do anything, because if P (C1|G2, r1) =
1/2, then P (C3|G2, r1) = 1/2, too — there’s nothing to choose between the
two closed doors.

Worked example 5.52 Monty Hall, rule two

Assume the host uses rule two, and shows you a goat behind door two. What
is P (C1|G2, r2)?

Solution: To work this out, we need to know P (G2|C1, r2), P (G2|C2, r2) and
P (G2|C3, r2). Now P (G2|C2, r2) = 0, because the host chooses from doors with
goats behind them. P (G2|C1, r2) = 1/2, because the host chooses uniformly
and at random from doors with goats behind them that are not door one; if the
car is behind door one, there are two such doors. P (G2|C3, r2) = 1, because
there is only one door that (a) has a goat behind it and (b) isn’t door one.
Plug these numbers into the formula, to get P (C1|G2, r2) = 1/3. This is the
source of all the fuss. It says that, if you know the host is using rule two, you
should switch doors if the host shows you a goat behind door two (because
P (C3|G2, r2) = 2/3).

Notice what is happening: if the car is behind door three, then the only choice
of goat for the host is the goat behind two. So by choosing a door under rule two,
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the host is signalling some information to you, which you can use. By using rule
three, the host can tell you precisely where the car is (exercises).

Many people find the result of example 5.52 counterintuitive, and object
(sometimes loudly, in newspaper columns, letters to the editor, etc.). One ex-
ample that some people find helpful is an extreme case. Imagine that, instead of
three doors, there are 1002. The host is using rule two, modified in the following
way: open all but one of the doors that are not door one, choosing only doors that
have goats behind them to open. You choose door one; the host opens 1000 doors
— say, all but doors one and 1002. What would you do?

5.4 WHAT YOU SHOULD REMEMBER

You should be able to:

• Write out a set of outcomes for an experiment.

• Construct an event space.

• Compute the probabilities of outcomes and events.

• Determine when events are independent.

• Compute the probabilities of outcomes by counting events, when the count is
straightforward.

• Compute a conditional probability.

You should remember:

• The definition of an event space.

• The properties of a probability function.

• The definition of independence.

• The definition of conditional probability.

• All of the useful facts.

PROBLEMS

Outcomes

5.1. You roll a four sided die. What is the space of outcomes?
5.2. King Lear decides to allocate three provinces (1, 2, and 3) to his daughters

(Goneril, Regan and Cordelia - read the book) at random. Each gets one
province. What is the space of outcomes?

5.3. You randomly wave a flyswatter at a fly. What is the space of outcomes?
5.4. You read the book, so you know that King Lear had family problems. As a

result, he decides to allocate two provinces to one daughter, one province to
another daughter, and no provinces to the third. Because he’s a bad problem
solver, he does so at random. What is the space of outcomes?
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Probability of outcomes

5.5. You roll a fair four sided die. What is the probability of getting a 3?
5.6. You roll a fair four sided die, and then a fair six sided die. You add the numbers

on the two dice. What is the probability the result is even?
5.7. You roll a fair 20 sided die. What is the probability of getting an even number?
5.8. You roll a fair five sided die. What is the probability of getting an even

number?

Events

5.9. At a particular University, 1/2 of the students drink alcohol and 1/3 of the
students smoke cigarettes.
(a) What is the largest possible fraction of students who do neither?
(b) It turns out that, in fact, 1/3 of the students do neither. What fraction

of the students does both?
5.10. I flip two coins. What one set needs to be added to this collection of sets to

form an event space?

Σ = {∅,Ω, {TH}, {HT, TH,TT}, {HH}, {HT, TT}, {HH,TH}}

Probability of Events

5.11. Assume each outcome in Ω has the same probability. In this case, show

P (E) = Number of outcomes in E
Total number of outcomes in Ω

5.12. You flip a fair coin three times. What is the probability of seeing HTH? (i.e.
Heads, then Tails, then Heads)

5.13. You flip a fair coin three times. What is the probability of seeing two heads
and one tail?

5.14. You remove the king of hearts from a standard deck of cards, then shuffle it
and draw a card.
(a) What is the probability this card is a king?
(b) What is the probability this card is a heart?

5.15. You shuffle a standard deck of cards, then draw four cards.
(a) What is the probability all four are the same suit?
(b) What is the probability all four are red?
(c) What is the probability each has a different suit?

5.16. You roll three fair six-sided dice and add the numbers. What is the probability
the result is even?

5.17. You roll three fair six-sided dice and add the numbers. What is the probability
the result is even and not divisible by 20?

5.18. You shuffle a standard deck of cards, then draw seven cards. What is the
probability that you see no aces?

5.19. Show that P (A− (B ∪ C)) = P (A)− P (A∩ B)− P (A∩ C) + P (A∩ B ∩ C).
5.20. You draw a single card from a standard 52 card deck. What is the probability

that it is red?
5.21. You remove all heart cards from a standard 52 card deck, then draw a single

card from the result. What is the probability that the card you draw is red?
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Conditional Probability

5.22. You roll two fair six-sided dice. What is the conditional probability the sum
of numbers is greater than three, conditioned on the first die coming up even.

5.23. You take a standard deck of cards, shuffle it, and remove one card. You then
draw a card.
(a) What is the conditional probability that the card you draw is a red king,

conditioned on the removed card being a king?
(b) What is the conditional probability that the card you draw is a red king,

conditioned on the removed card being a red king?
(c) What is the conditional probability that the card you draw is a red king,

conditioned on the removed card being a black ace?
5.24. A royal flush is a hand of five cards, consisting of Ace, King, Queen, Jack and

10 of a single suit. Poker players like this hand, but don’t see it all that often.
(a) You draw five cards from a standard deck of playing cards. What is the

probability of getting a royal flush?
(b) You draw three cards from a standard deck of playing cards. These are

Ace, King, Queen of hearts. What is the probability that the next two
cards you draw will result in a getting a royal flush? (this is the conditional
probability of getting a royal flush, conditioned on the first three cards
being AKQ of hearts).

5.25. You roll a fair five-sided die, and a fair six-sided die.
(a) What is the probability that the sum of numbers is even?
(b) What is the conditional probability that the sum of numbers is even,

conditioned on the six-sided die producing an odd number?

Independence

5.26. You take a standard deck of cards, shuffle it, and remove both red kings. You
then draw a card.
(a) Is the event {card is red} independent of the event {card is a queen}?
(b) Is the event {card is black} independent of the event {card is a king}?

The Monty Hall Problem

5.27. Monty Hall, Rule 3: If the host uses rule 3, then what is P (C1|G2, r3)? Do
this by computing conditional probabilities.

5.28. Monty Hall, Rule 4: If the host uses rule 4, and shows you a goat behind
door 2, what is P (C1|G2, r4)? Do this by computing conditional probabilities.
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Random Variables and Expectations

6.1 RANDOM VARIABLES

Quite commonly, we would like to deal with numbers that are random. We can
do so by linking numbers to the outcome of an experiment. We define a random
variable:

Definition: 6.1 Discrete random variable

Given a sample space Ω, a set of events F , and a probability function
P , and a countable set of of real numbers D, a discrete random variable
is a function with domain Ω and range D.

This means that for any outcome ω there is a number X(ω). P will play an
important role, but first we give some examples.

Example: 6.1 Numbers from coins

We flip a coin. Whenever the coin comes up heads, we report 1; when
it comes up tails, we report 0. This is a random variable.

Example: 6.2 Numbers from coins II

We flip a coin 32 times. We record a 1 when it comes up heads, and
when it comes up tails, we record a 0. This produces a 32 bit random
number, which is a random variable.

124
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Example: 6.3 The number of pairs in a poker hand

(from Stirzaker). We draw a hand of five cards. The number of pairs in
this hand is a random variable, which takes the values 0, 1, 2 (depending
on which hand we draw)

A function that takes a discrete random variable to a set of numbers is also a
discrete random variable.

Example: 6.4 Parity of coin flips

We flip a coin 32 times. We record a 1 when it comes up heads, and
when it comes up tails, we record a 0. This produces a 32 bit random
number, which is a random variable. The parity of this number is also
a random variable.

Associated with any value x of the random variable X are a series of events.
The most important is the set of outcomes such that X = x, which we can write
{ω : X(ω) = x}; it is usual to simplify to {X = x}, and we will do so. The proba-
bility that a random variable X takes the value x is given by P ({ω : X(ω) = x}),
which is more usually written P ({X = x}). This is sometimes written as P (X = x),
and rather often written as P (x).

We could also be interested in the set of outcomes such that X ≤ x (i.e. in
{ω : X(ω) ≤ x}), which we will write {X ≤ x}; The probability that X takes a
value less than or equal to x is given by P ({X ≤ x}). This is sometimes written as
P (X ≤ x). Similarly, we could be interested in {X > x}, and so on.

Definition: 6.2 The probability distribution of a discrete random variable

The probability distribution of a discrete random variable is the set of
numbers P ({X = x}) for each value x thatX can take. The distribution
takes the value 0 at all other numbers. Notice that the distribution is
non-negative.
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Definition: 6.3 The cumulative distribution of a discrete random vari-
able

The cumulative distribution of a discrete random variable is the set of
numbers P ({X <= x}) for each value x that X can take. Notice that
this is a non-decreasing function of x. Cumulative distributions are
often written with an f , so that f(x) might mean P ({X <= x}).

Worked example 6.1 Numbers from coins III

We flip a biased coin 2 times. The flips are independent. The coin has P (H) =
p, P (T ) = 1− p. We record a 1 when it comes up heads, and when it comes up
tails, we record a 0. This produces a 2 bit random number, which is a random
variable taking the values 0, 1, 2, 3. What is the probability distribution and
cumulative distribution of this random variable?

Solution: Probability distribution: P (0) = (1− p)2; P (1) = (1− p)p; P (2) =
p(1− p); P (3) = p2. Cumulative distribution: f(0) = (1− p)2; f(1) = (1− p);
f(2) = p(1− p) + (1− p) = (1− p2); f(3) = 1.

Worked example 6.2 Betting on coins

One way to get a random variable is to think about the reward for a bet.
We agree to play the following game. I flip a coin. The coin has P (H) = p,
P (T ) = 1 − p. If the coin comes up heads, you pay me q; if the coin comes
up tails, I pay you r. The number of dollars that change hands is a random
variable. What is its probability distribution?

Solution: We see this problem from my perspective. If the coin comes up
heads, I get q; if it comes up tails, I get −r. So we have P (X = q) = p and
P (X = −r) = (1 − p), and all other probabilities are zero.

6.1.1 Joint and Conditional Probability for Random Variables

All the concepts of probability that we described for events carry over to random
variables. This is as it should be, because random variables are really just a way of
getting numbers out of events. However, terminology and notation change a bit.

Assume we have two random variablesX and Y . The probability thatX takes
the value x and Y takes the value y could be written as P ({X = x} ∩ {Y = y}). It
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is more usual to write it as P (x, y). You can think of this as a table of values, one
for each possible pair of x and y values. This table is usually referred to as the joint
probability distribution of the random variables. Nothing (except notation) has
really changed here, but the change of notation is useful.

We will simplify notation further. Usually, we are interested in random vari-
ables, rather than potentially arbitrary outcomes or sets of outcomes. We will
write P (X) to denote the probability distribution of a random variable, and P (x)
or P (X = x) to denote the probability that that random variable takes a particular
value. This means that, for example, the rule we could write as

P ({X = x} | {Y = y})P ({Y = y}) = P ({X = x} ∩ {Y = y})

will be written as
P (x|y)P (y) = P (x, y).

This yields Bayes’ rule, which is important enough to appear in its own box.

Definition: 6.4 Bayes’ rule

P (x|y) = P (y|x)P (x)

P (y)

Random variables have another useful property. If x0 6= x1, then the event
{X = x0} must be disjoint from the event {X = x1}. This means that

∑

x

P (x) = 1

and that, for any y,
∑

x

P (x|y) = 1

(if you’re uncertain on either of these points, check them by writing them out in
the language of events).

Now assume we have the joint probability distribution of two random vari-
ables, X and Y . Recall that we write P ({X = x} ∩ {Y = y}) as P (x, y). Now
consider the sets of outcomes {Y = y} for each different value of y. These sets
must be disjoint, because y cannot take two values at the same time. Furthermore,
each element of the set of outcomes {X = x} must lie in one of the sets {Y = y}.
So we have

∑

y

P ({X = x} ∩ {Y = y}) = P ({X = x})

which is usually written as
∑

y

P (x, y) = P (x)

and is often referred to as the marginal probability of X .
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Definition: 6.5 Independent random variables

The random variablesX and Y are independent if the events {X = x}
and {Y = y} are independent. This means that

P ({X = x} ∩ {Y = y}) = P ({X = x})P ({Y = y}),

which we can rewrite as

P (x, y) = P (x)P (y)

Worked example 6.3 Sums and differences of dice

You throw two dice. The number of spots on the first die is a random variable
(call it X); so is the number of spots on the second die (Y ). X and Y are
independent. Now define S = X + Y and D = X − Y . What is the probability
distribution of S and of D?

Solution: S can have values in the range 2, . . . , 12. There is only one way
to get a S = 2; two ways to get S = 3; and so on. Using the methods
of chapter 14.1 for each case, the probabilities for [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
are [1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1]/36. Similarly, D can have values in the range
−5, . . . , 5. Again, using the methods of chapter 14.1, the probabilities for
[−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5] are [1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1]/36.

Worked example 6.4 Sums and differences of dice, II

Using the terminology of example 6.3, what is the joint probability distribution
of S and D?

Solution: This is more interesting to display, because it’s an 11x11 table.
Each entry of the table represents a pair of S, D values. Many pairs can’t
occur (for example, for S = 2, D can only be zero; if S is even, then D must
be even; and so on). You can work out the table by checking each case; it’s in
Table 6.1.
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1

36
×





































0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0
0 0 0 1 0 1 0 1 0 0 0
0 0 1 0 1 0 1 0 1 0 0
0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0
0 0 1 0 1 0 1 0 1 0 0
0 0 0 1 0 1 0 1 0 0 0
0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0





































TABLE 6.1: A table of the joint probability distribution of S (vertical axis; scale
2, . . . , 12) and D (horizontal axis; scale −5, . . . , 5) from example 6.4

Worked example 6.5 Sums and differences of dice, III

Using the terminology of example 6.3, are X and Y independent? are S and
D independent?

Solution: X and Y are clearly independent. But S and D are not. There
are several ways to see this. One way is to notice that, if you know S = 2, then
you know the value of D precisely; but if you know S = 3, D could be either
1 or −1. This means that P (S|D) depends on D, so they’re not independent.
Another way is to notice that the rank of the table, as a matrix, is 6, which
means that it can’t be the outer product of two vectors.

Worked example 6.6 Sums and differences of dice, IV

Using the terminology of example 6.3, what is P (S|D = 0)? what is P (D|S =
11)?

Solution: You could work it out either of these from the table, or by first
principles. If D = 0, S can have values 2, 4, 6, 8, 10, 12, and each value has
conditional probability 1/6. If S = 11, D can have values 1, or −1, and each
value has conditional probability 1/2.

6.1.2 Just a Little Continuous Probability

Our random variables take values from a discrete set of numbers D. This makes
the underlying machinery somewhat simpler to describe, and is often, but not
always, enough for model building. Some phenomena are more naturally modelled
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as being continuous — for example, human height; human weight; the mass of a
distant star; and so on. Giving a complete formal description of probability on a
continuous space is surprisingly tricky, and would involve us in issues that do not
arise much in practice.

These issues are caused by two interrelated facts: real numbers have infinite
precision; and you can’t count real numbers. A continuous random variable is still
a random variable, and comes with all the stuff that a random variable comes with.
We will not speculate on what the underlying sample space is, nor on the underlying
events. This can all be sorted out, but requires moderately heavy lifting that isn’t
particularly illuminating for us. The most interesting thing for us is specifying the
probability distribution. Rather than talk about the probability that a real number
takes a particular value (which we can’t really do satisfactorily most of the time),
we will instead talk about the probability that it lies in some interval. So we can
specify a probability distribution for a continuous random variable by giving a set
of (very small) intervals, and for each interval providing the probability that the
random variable lies in this interval.

The easiest way to do this is to supply a probability density function. Let
p(x) be a probability density function for a continuous random variable X . We
interpret this function by thinking in terms of small intervals. Assume that dx is
an infinitesimally small interval. Then

p(x)dx = P ({event that X takes a value in the range [x, x+ dx]}).

Important properties of probability density functions follow from this definition.
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Useful Facts: 6.1 Probability density functions

• Probability density functions are non-negative. This follows from
the definition; a negative value at some u would imply that P ({x ∈
[u, u+ du]}) was negative, and this cannot occur.

• For a < b

P ({X takes a value in the range [a, b]}) =
∫ b

a

p(x)dx.

which we obtain by summing p(x)dx over all the infinitesimal
intervals between a and b.

• We must have that
∫ ∞

−∞
p(x)dx = 1.

This is because

P ({X takes a value in the range [−∞,∞]}) = 1 =

∫ ∞

−∞
p(x)dx

• Probability density functions are usually called pdf’s.

• It is quite usual to write all pdf’s as lower-case p’s. If one specif-
ically wishes to refer to probability, one writes an upper case P ,
as in the previous points.

The property that
∫∞
−∞ p(x)dx = 1 is useful, because when we are trying to

determine a probability density function, we can ignore a constant factor. So if g(x)
is a non-negative function that is proportional to the probability density function
(often pdf) we are interested in, we can recover the pdf by computing

p(x) =
1

∫∞
−∞ g(x)dx

g(x).

This procedure is sometimes known as normalizing, and
∫∞
−∞ g(x)dx is the nor-

malizing constant.
One good way to think about pdf’s is as the limit of a histogram. Imagine

you collect an arbitrarily large dataset of data items, each of which is independent.
You build a histogram of that dataset, using arbitrarily narrow boxes. You scale
the histogram so that the sum of the box areas is one. The result is a probability
density function.

The pdf doesn’t represent the probability that a random variable takes a
value. Instead, you should think of p(x) as being the limit of a ratio (which is why
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it’s called a density):

the probability that the random variable will lie in a small interval centered on x

the length of the small interval centered on x

Notice that, while a pdf has to be non-negative, and it has to integrate to 1, it does
not have to be smaller than one. A ratio like this could be a lot larger than one, as
long as it isn’t larger than one for too many x (because the integral must be one).

Probability density functions can be moderately strange functions.
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Worked example 6.7 A strange probability density function

There is some (small!) voltage over the terminals of a warm resistor caused
by noise (electrons moving around in the heat and banging into one another).
This is a good example of a continuous random variable, and we can assume
there is some probability density function for it, say p(x). We assume that p(x)
has the property that

lim
ǫ→0

∫ v+ǫ

v−ǫ

p(x)dx = 0

which is what you’d expect for any function you’re likely to have dealt with.
Now imagine I define a new random variable by the following procedure: I flip
a coin; if it comes up heads, I report 0; if tails, I report the voltage over the
resistor. This random variable, u, has a probability 1/2 of taking the value 0,
and 1/2 of taking a value from p(x). Write this random variable’s probability
density function q(u). Compute

lim
ǫ→0

∫ ǫ

−ǫ

q(u)du

Solution: We can do this from the definition. We have

P ({u ∈ [−ǫ, ǫ]}) =
∫ ǫ

−ǫ

q(u)du.

But u will take the value 0 with probability 1/2, and otherwise takes the value
over the resistor. So

P ({u ∈ [−ǫ, ǫ]}) = 1/2 +

∫ ǫ

−ǫ

p(x)dx.

and

lim
ǫ→0

∫ ǫ

−ǫ

q(u)du = lim
ǫ→0

P ({u ∈ [−ǫ, ǫ]}) = 1/2.

This means that q(u) is displaying quite unusual behavior at u = 0. We will
not need to deal with probability density functions that behave like this; but
you should be aware of the possibility.

6.2 EXPECTATIONS AND EXPECTED VALUES

Imagine we play the game of example 6.2 multiple times. Our frequency definition of
probability means that in N games, we expect to see about pN heads and (1−p)N
tails. In turn, this means that my total income from these N games should be
about (pN)q − ((1 − p)N)r. The N in this expression is inconvenient; instead, we
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could say that for any single game, my income is

pq − (1− p)r.

This isn’t the actual income from a single game (which would be either q or −r,
depending on what the coin did). Instead, it’s an estimate of what would happen
over a large number of games, on a per-game basis. This is an example of an
expected value.

6.2.1 Expected Values of Discrete Random Variables

Definition: 6.6 Expected value

Given a discrete random variable X which takes values in the set D and
which has probability distribution P , we define the expected value

E[X ] =
∑

x∈D
xP (X = x).

This is sometimes written which is EP [X ], to clarify which distribution
one has in mind

Notice that an expected value could take a value that the random variable
doesn’t take.

Example: 6.5 Betting on coins

We agree to play the following game. I flip a fair coin (i.e. P (H) =
P (T ) = 1/2). If the coin comes up heads, you pay me 1; if the coin
comes up tails, I pay you 1. The expected value of my income is 0, even
though the random variable never takes that value.
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Definition: 6.7 Expectation

Assume we have a function f that maps a discrete random variable X
into a set of numbers Df . Then f(x) is a discrete random variable,
too, which we write F . The expected value of this random variable is
written

E[f ] =
∑

u∈Df

uP (F = u) =
∑

x∈D
f(x)P (X = x)

which is sometimes referred to as “the expectation of f”. The process
of computing an expected value is sometimes referred to as “taking
expectations”.

Expectations are linear, a property that is so important I have put it in its own
box. Furthermore, the expectation of a constant is that constant (or, in notation,
E[k] = k), because probabilities sum to 1. Because probabilities are non-negative,
the expectation of a non-negative random variable must be non-negative.

Useful Facts: 6.2 Expectations are linear.

E[0] = 0 and E[A+B] = E[A] + E[B].

6.2.2 Expected Values of Continuous Random Variables

We can compute expectations for continuous random variables, too, though sum-
ming over all values now turns into an integral. This should be expected. Imagine
you choose a set of closely spaced values for x which are xi, and then think about
x as a discrete random variable. The values are separated by steps of width ∆x.
Then the expected value of this discrete random variable is

E[X ] =
∑

i

xiP (X ∈ interval centered on xi) =
∑

i

xip(xi)∆x

and, as the values get closer together and ∆x gets smaller, the sum limits to an
integral.
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Definition: 6.8 Expected value

Given a continuous random variable X which takes values in the set D
and which has probability distribution P , we define the expected value

E[X ] =

∫

x∈D
xp(x)dx.

This is sometimes written Ep[X ], to clarify which distribution one has
in mind

The expected value of a continuous random variable could be a value that
the random variable doesn’t take, too. Notice one attractive feature of the E[X ]
notation; we don’t need to make any commitment to whetherX is a discrete random
variable (where we would write a sum) or a continuous random variable (where we
would write an integral). The reasoning by which we turned a sum into an integral
works for functions of continuous random variables, too.

Definition: 6.9 Expectation

Assume we have a function f that maps a continuous random variable
X into a set of numbers Df . Then f(x) is a continuous random variable,
too, which we write F . The expected value of this random variable is

E[f ] =

∫

x∈D
f(x)p(x)dx

which is sometimes referred to as “the expectation of f”. The process
of computing an expected value is sometimes referred to as “taking
expectations”.

Again, for continuous random variables, expectations are linear, so that E[0] =
0 and E[A+B] = E[A]+E[B]. The expectation of a constant is that constant (or, in
notation, E[k] = k), because probabilities sum to 1. Because probabilities are non-
negative, the expectation of a non-negative random variable must be non-negative.

6.2.3 Mean, Variance and Covariance

There are three very important expectations with special names.
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Definition: 6.10 The mean or expected value

The mean or expected value of a random variable X is

E[X ]

Definition: 6.11 The variance

The variance of a random variable X is

var[X ] = E
[

(X − E[X ])2
]

Notice that

E
[

(X − E[X ])2
]

= E

[

(X2 − 2XE[X ] + E[X ]
2
)
]

= E
[

X2
]

− 2E[X ]E[X ] + E[X ]
2

= E
[

X2
]

− (E[X ])2

Definition: 6.12 The covariance

The covariance of two random variables X and Y is

cov (X,Y ) = E[(X − E[X ])(Y − E[Y ])]

Notice that

E[(X − E[X ])(Y − E[Y ])] = E[(XY − Y E[X ]−XE[Y ] + E[X ]E[Y ])]

= E[XY ]− 2E[Y ]E[X ] + E[X ]E[Y ]

= E[XY ]− E[X ]E[Y ].

We also have var[X ] = cov (X,X).
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Now assume that we have a probability distribution P (X) defined on some
discrete set of numbers. There is some random variable that produced this proba-
bility distribution. This means that we could talk about the mean of a probability
distribution P (rather than the mean of a random variable whose probability dis-
tribution is P (X)). It is quite usual to talk about the mean of a probability distri-
bution. Furthermore, we could talk about the variance of a probability distribution
P (rather than the variance of a random variable whose probability distribution is
P (X)).

Worked example 6.8 Variance

Can a random variable have E[X ] >
√

E[X2]?

Solution: No, because that would mean that E
[

(X − E[X ])2
]

< 0. But this
is the expected value of a non-negative quantity; it must be non-negative.

Worked example 6.9 More variance

We just saw that a random variable can’t have E[X ] >
√

E[X2]. But I can
easily have a random variable with large mean and small variance - isn’t this a
contradiction?

Solution: No, you’re confused. Your question means you think that the vari-
ance of X is given by E

[

X2
]

; but actually var[X ] = E
[

X2
]

− E[X ]
2

Worked example 6.10 Mean of a coin flip

We flip a biased coin, with P (H) = p. The random variable X has value 1 if
the coin comes up heads, 0 otherwise. What is the mean of X? (i.e. E[X ]).

Solution: E[X ] =
∑

x∈D xP (X = x) = 1p+ 0(1− p) = p
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Useful Facts: 6.3 Expectations

1. E[0] = 0

2. E[X + Y ] = E[X ] + E[Y ]

3. E[kX] = kE[X ]

4. E[1] = 1

5. if X and Y are independent, then E[XY ] = E[X ]E[Y ].

6. if X and Y are independent, then cov (X,Y ) = 0.

All but 5 and 6 are obvious from the definition. If 5 is true, then 6 is
obviously true. I prove 5.

Proposition: If X and Y are independent random variables, then
E[XY ] = E[X ]E[Y ].

Proof: Recall that E[X ] =
∑

x∈D xP (X = x), so that

E[XY ] =
∑

(x,y)∈Dx×Dy

xyP (X = x, Y = y)

=
∑

x∈Dx

∑

y∈Dy

(xyP (X = x, Y = y))

=
∑

x∈Dx

∑

y∈Dy

(xyP (X = x)P (Y = y))

because X and Y are independent

=
∑

x∈Dx

∑

y∈Dy

(xP (X = x)) (yP (Y = y))

=

(

∑

x∈Dx

xP (X = x)

)





∑

y∈Dy

yP (Y = y)





= (E[X ])(E[Y ]).

This is certainly not true when X and Y are not independent (try
Y = −X).
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Useful Facts: 6.4 Variance

It is quite usual to write var[X ] for the variance of the random variable
X .

1. var[0] = 0

2. var[1] = 0

3. var[X ] ≥ 0

4. var[kX] = k2var[X ]

5. if X and Y are independent, then var[X + Y ] = var[X ] + var[Y ]

1, 2, 3 are obvious. You will prove 4 and 5 in the exercises.

Worked example 6.11 Variance of a coin flip

We flip a biased coin, with P (H) = p. The random variableX has value 1 if the
coin comes up heads, 0 otherwise. What is the variance of X? (i.e. var[X ]).

Solution: var[X ] = E
[

(X − E[X ])2
]

= E
[

X2
]

−E[X ]
2
= (1p−0(1−p))−p2 =

p(1− p)

The variance of a random variable is often inconvenient, because its units are
the square of the units of the random variable. Instead, we could use the standard
deviation.

Definition: 6.13 Standard deviation

The standard deviation of a random variable X is defined as

std (X) =
√

var[X ]

You do need to be careful with standard deviations. If X and Y are inde-
pendent random variables, then var[X + Y ] = var[X ] + var[Y ], but std (X + Y ) =
√

std (X)
2
+ std (Y )

2
. One way to avoid getting mixed up is to remember that

variances add, and derive expressions for standard deviations from that.
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6.2.4 Expectations and Statistics

You should have noticed we now have two notions each for mean, variance, covari-
ance, and standard deviation. One, which we expounded in section ??, describes
datasets. We will call these descriptive statistics. The other, described above, is
a property of probability distributions. We will call these expectations. In each
case, the reason we have one name for two notions is that the notions are not really
all that different.

Imagine we have a dataset {x} of N items, where the i’th item is xi. We can
build a probability distribution out of this dataset, by placing a probability on each
data item. We will give each data item the same probability (which must be 1/N ,
so all probabilities add to 1). Write E[x] for the mean of this distribution. We have

E[x] =
∑

i

xip(xi) =
1

N

∑

i

xi = mean ({x}).

The variances, standard deviations and covariance have the same property: For
this particular distribution (sometimes called the empirical distribution), the
expectations have the same value as the descriptive statistics (exercises).

In section 6.2.7, we will see a form of converse to this fact. Imagine we have a
dataset that consists of independent, identically distributed samples from a prob-
ability distribution (i.e. we know that each data item was obtained independently
from the distribution). For example, we might have a count of heads in each of a
number of coin flip experiments. Then the descriptive statistics will turn out to be
accurate estimates of the expectations.

6.2.5 Indicator Functions

It is sometimes convenient when working with random variables to use indicator
functions. This is a function that is one when some condition is true, and zero oth-
erwise. The reason they are useful is that their expectated values have interesting
properties.

Definition: 6.14 Indicator functions

An indicator function for an event is a function that takes the value
zero for values of X where the event does not occur, and one where the
event occurs. For the event E , we write

I[E](X)

for the relevant indicator function.

For example,

I[{|X|}≤a](X) =

{

1 if −a < X < a
0 otherwise
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Indicator functions have one useful property.

E
[

I[E]
]

= P (E)

which you can establish by checking the definition of expectations.

6.2.6 Two Inequalities

Mean and variance tell us quite a lot about a random variable, as two important
inequalities show.

Definition: 6.15 Markov’s inequality

Markov’s inequality is

P ({|X | ≥ a}) ≤ E[|X |]
a

.

You should read this as indicating that a random variable is most unlikely to
have an absolute value a lot larger than the mean of its absolute value. This should
seem fairly intuitive from the definition of expectation. Recall that

E[X ] =
∑

x∈D

xP ({X = x})

Assume that D contains only non-negative numbers (that absolute value). Then
the only way to have a small value of E[X ] is to be sure that, when x is large,
P ({X = x}) is small. The proof is a rather more formal version of this observation,
below.

Definition: 6.16 Chebyshev’s inequality

Chebyshev’s inequality is

P ({|X − E[X ]| ≥ a}) ≤ var[X ]

a2
.

It is common to see this in another form, obtained by writing σ for the
standard deviation of X , substituting kσ for a, and rearranging

P ({|X − E[X ]| ≥ kσ}) ≤ 1

k2
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This means that the probability of a random variable taking a particular value
must fall off rather fast as that value moves away from the mean, in units scaled to
the standard deviation. This probably doesn’t seem intuitive from the definition
of expectation. But think about it this way: values of a random variable that are
many standard deviations above the mean must have low probability, otherwise
the standard deviation would be bigger. The proof, again, is a rather more formal
version of this observation, and appears below.

Proposition: Markov’s inequality

P ({|X | ≥ a}) ≤ E[|X |]
a

.

Proof: (from Wikipedia). Notice that, for a > 0,

aI[{|X|≥a}](X) ≤ |X |

(because if |X | ≥ a, the LHS is a; otherwise it is zero). Now we have

E
[

aI[{|X|≥a}]
]

≤ E[|X |]

but, because expectations are linear, we have

E
[

aI[{|X|≥a}]
]

= aE
[

I[{|X|≥a}]
]

= aP ({|X | ≥ a})

and so we have
aP ({|X | ≥ a}) ≤ E[|X |]

and we get the inequality by division, which we can do because a > 0.
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Proposition: Chebyshev’s inequality

P ({|X − E[X ]| ≥ a}) ≤ var[X ]

a2
.

Proof: Write U for the random variable (X − E[X ])2. Markov’s in-
equality gives us

P ({|U | ≥ w}) ≤ E[|U |]
w

Now notice that, if a2 = w,

P ({|U | ≥ w}) = P ({|X − E[X ]|} ≥ a)

so we have

P ({|U | ≥ w}) = P ({|X − E[X ]|} ≥ a) ≤ E[|U |]
w

=
var[X ]

a2

6.2.7 IID Samples and the Weak Law of Large Numbers

Imagine a random variable X , obtained by flipping a fair coin and reporting 1 for
an H and −1 for a T . We can talk about the probability distribution P (X) of this
random variable; we can talk about the expected value that the random variable
takes; but the random variable itself doesn’t have a value. However, if we actually
flip a coin, we get either a 1 or a −1. This number is often called a sample of the
random variable (or of its probability distribution). Similarly, if we flipped a coin
many times, we’d have a set of numbers (or samples). These numbers would be
independent. Their histogram would look like P (X). Collections of data items like
this are important enough to have their own name.

Assume we have a set of data items xi such that (a) they are independent;
(b) each is produced from the same process; and (c) the histogram of a very large
set of data items looks increasingly like the probability distribution P (X) as the
number of data items increases. Then we refer to these data items as independent
identically distributed samples of P (X); for short, iid samples or even just
samples. For all of the cases we will deal with, it will be obvious how to get IID
samples. However, it’s worth knowing that obtaining IID samples from arbitrary
probability distributions is very difficult.

Now assume we have a set of N IID samples xi of a probability distribution
P (X). Write

XN =

∑N
i=1 xi

N
.

Now XN is a random variable (the xi are IID samples, and for a different set
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of samples you will get a different, random, XN ). Notice that P (X = x1, X =
x2, . . . , X = xn) = P (X = x1)P (X = x2) . . . P (X = xn), because the samples are
independent and each is a sample of P (X). Now

E[XN ] = E[X ]

because

E[XN ] =

(

1

N

) N
∑

i=1

E[X ].

This means that
∑N

i=1 xi

N

should be give an accurate estimate of E[X ]. In fact, as N gets large, the estimate
becomes more accurate.

Definition: 6.17 The Weak Law of Large Numbers

The weak law of large numbers states that, if P (X) has finite vari-
ance, then for any positive number ǫ

lim
N→∞

P ({|XN − E[X ] | ≥ ǫ}) = 0.

Equivalently, we have

lim
N→∞

P ({|XN − E[X ] | < ǫ}) = 1.

Each form means that, for a large enough set of IID samples, the average
of the samples (i.e. XN ) will, with high probability, be very close to
the expectation E[X ].
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Proposition: Weak law of large numbers

lim
N→∞

P ({|XN − E[X ] | ≥ ǫ}) = 0.

Proof: Assume that P (X) has finite variance; that is, var ({X}) = σ2.
Choose ǫ > 0. Now we have that

var ({XN}) = var

({

∑N
i=1 xi

N

})

= (
1

N2
)var

({

N
∑

i=1

xi

})

= (
1

N2
)(Nσ2)

because the xi are independent

=
σ2

N

and that
E[XN ] = E[X ].

Now Chebyshev’s inequality gives

P ({|XN − E[X ] | ≥ ǫ}) ≤ σ2

Nǫ2

so

lim
N→∞

P ({|XN − E[X ] | ≥ ǫ}) = lim
N→∞

σ2

Nǫ2
= 0.

Notice that

1− P ({|XN − E[X ] | ≥ ǫ}) = P ({|XN − E[X ] | < ǫ}) ≥ 1− σ2

Nǫ2
.

so that

lim
N→∞

P ({|XN − E[X ] | < ǫ}) = lim
N→∞

(

1− σ2

Nǫ2

)

= 1.

6.3 USING EXPECTATIONS

The weak law of large numbers gives us a very valuable way of thinking about
expectations. Assume we have a random variable X . Then the weak law says that,
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if you observe this random variable over a large number of trials, the mean value
you observe should be very close to E[X ]. Notice that this extends to functions of
random variables (because they are random variables, too). For example, I observe
values xi of a random variable X over a large number N of trials, and compute

1

N

N
∑

i=1

f(xi).

The weak law says that the value I get should be very close to E[f ]. You can
show this by defining a new random variable F = f(X). This has a probability
distribution P (F ), which might be difficult to know — but we don’t need to. E[f ],
the expected value of the function f under the distribution P (X). This is the same
as E[F ], and the weak law applies.

Remember: the average over repeated trials of a random variable is very close
to the expectation. You can use this information to make many kinds of decision
in uncertain circumstances.

6.3.1 Should you accept a bet?

We can’t answer this as a moral question, but we can as a practical question,
using expectations. Generally, a bet involves an agreement that amounts of money
will change hands, depending on the outcome of an experiment. Mostly, you are
interested in how much you get from the bet, so it is natural to give sums of
money you receive a positive sign, and sums of money you pay out a negative sign.
Under this convention, the practical answer is easy: accept a bet enthusiastically
if its expected value is positive, otherwise decline it. It is interesting to notice how
poorly this advice describes actual human behavior.
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Worked example 6.12 Red or Black?

A roulette wheel has 36 numbers, 18 of which are red and 18 of which are black.
Different wheels also have one, two, or even three zeros,which are colorless.
A ball is thrown at the wheel when it is spinning, and it falls into a hole
corresponding to one of the numbers (when the number is said to “come up”).
The wheel is set up so that there is the same probability of each number coming
up. You can bet on (among other things) whether a red number or a black
number comes up. If you bet 1 on red, and a red number comes up, you keep
your stake and get 1, otherwise you get −1 (i.e. the house keeps your bet).

• On a wheel with one zero, what is the expected value of a 1 bet on red?

• On a wheel with two zeros, what is the expected value of a 1 bet on red?

• On a wheel with three zeros, what is the expected value of a 1 bet on
red?

Solution: Write pr for the probability a red number comes up. The expected
value is 1× pr + (−1)(1− pr) which is 2pr − 1.

• In this case, pr = (number of red numbers)/(total number of numbers) =
18/37. So the expected value is −1/37 (you lose about 3 cents each time
you bet).

• In this case, pr = 18/38. So the expected value is −2/38 = −1/19 (you
lose slightly more than five cents each time you bet).

• In this case, pr = 18/39. So the expected value is −3/39 = −1/13 (you
lose slightly less than 8 cents each time you bet).

Notice that in the roulette game, the money you lose will go to the house. So
the expected value to the house is just the negative of the expected value to you.
This is positive, which is a partial explanation of why there are lots of roulette
wheels, and usually free food nearby. Not all bets are like this, though.
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Worked example 6.13 Coin game

In this game, P1 flips a fair coin and P2 calls “H” or “T”. If P2 calls right,
then P1 throws the coin into the river; otherwise, P1 keeps the coin. What is
the expected value of this game to P2? and to P1?

Solution: To P2, which we do first, because it’s easiest: P2 gets 0 if P2 calls
right, and 0 if P2 calls wrong; these are the only cases, so the expected value is
0. To P1: P1 gets −1 if P2 calls right, and 0 if P1 calls wrong. The coin is fair,
so the probability P2 calls right is 1/2. The expected value is −1/2. While I
can’t explain why people would play such a game, I’ve actually seen this done.

We call a bet fair when its expected value is zero. Taking a bet with a negative
expected value is unwise, because, on average, you will lose money. Worse, the more
times you play, the more you lose. Taking a bet with a positive expected value is
likely to be profitable. However, you do need to be careful you computed the
expected value right.

Worked example 6.14 Birthdays in succession

P1 and P2 agree to the following bet. P1 gives P2 a stake of 1. If three people,
stopped at random on the street, have birthdays in succession (i.e. Mon-Tue-
Wed, and so on), then P2 gives P1 100. Otherwise, P1 loses the stake. What
is the expected value of this bet to P1?

Solution: Write p for the probability of winning. Then the expected value is
p× 100− (1−p)× 1. We computed p in example 14.1 (it was 1/49). So the bet
is worth (52/49), or slightly more than a dollar, to P1. P1 should be happy to
agree to this as often as possible.

The reason P2 agrees to bets like that of example 6.14 is most likely that P2
can’t compute the probability exactly. P2 thinks the event is quite unlikely, so the
expected value is negative; but it isn’t as unlikely as P2 thought it was, and this is
how P1 makes a profit. This is one of the reasons you should be careful accepting
a bet from a stranger: they might be able to compute better than you.

6.3.2 Odds, Expectations and Bookmaking — a Cultural Diversion

Gamblers sometimes use a terminology that is a bit different from ours. In particu-
lar, the term odds is important. The term comes from the following idea: P1 pays
a bookmaker b (the stake) to make a bet; if the bet is successful, P1 receives a and
the stake back, and if not, loses the original stake. This bet is referred to as odds
of a : b (read “odds of a to b”).

Assume the bet is fair, so that the expected value is zero. Write p for the
probability of winning. The net income to P1 is ap− b(1− p). If this is zero, then
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p = b/(a+ b). So you can interpret odds in terms of probability, if you assume the
bet is fair.

A bookmaker sets adds at which to accept bets from gamblers. The book-
maker does not wish to lose money at this business, and so must set odds which are
potentially profitable. Doing so is not simple (bookmakers can, and occasionally
do, lose catastrophically, and go out of business). In the simplest case, assume
that the bookmaker knows the probability p that a particular bet will win. Then
the bookmaker could set odds of (1 − p)/p : 1. In this case, the expected value of
the bet is zero; this is fair, but not attractive business, so the bookmaker will set
odds assuming that the probability is a bit higher than it really is. There are other
bookmakers out there, so there is some reason for the bookmaker to try to set odds
that are close to fair.

In some cases, you can tell when you are dealing with a bookmaker who is
likely to go out of business soon. For example, imagine there are two horses running
in a race, both at 10 : 1 odds — whatever happens, you could win by betting 1
on each. There is a more general version of this phenomenon. Assume the bet is
placed on a horse race, and that bets pay off only for the winning horse. Assume
also that exactly one horse will win (i.e. the race is never scratched, there aren’t
any ties, etc.), and write the probability that the i’th horse will win as pi. Then
∑

i∈horses pi must be 1. Now if the bookmaker’s odds yield a set of probabilities
that is less than 1, their business should fail, because there is at least one horse
on which they are paying out too much. Bookmakers deal with this possibility by
writing odds so that

∑

i∈horses pi is larger than one.
But this is not the only problem a bookmaker must deal with. The bookmaker

doesn’t actually know the probability that a particular horse will win, and must ac-
count for errors in this estimate. One way to do so is to collect as much information
as possible (talk to grooms, jockeys, etc.). Another is to look at the pattern of bets
that have been placed already. If the bookmaker and the gamblers agree on the
probability that each horse will win, then there should be no expected advantage
to choosing one horse over another — each should pay out slightly less than zero
to the gambler (otherwise the bookmaker doesn’t eat). But if the bookmaker has
underestimated the probability that a particular horse will win, a gambler may get
a positive expected payout by betting on that horse. This means that if one partic-
ular horse attracts a lot of money from bettors, it is wise for the bookmaker to offer
less generous odds on that horse. There are two reasons: first, the bettors might
know something the bookmaker doesn’t, and they’re signalling it; second, if the
bets on this horse are very large and it wins, the bookmaker may not have enough
capital left to pay out or to stay in business. All this means that real bookmaking
is a complex, skilled business.

6.3.3 Ending a Game Early

Imagine two people are playing a game for a stake, but must stop early — who
should get what percentage of the stake? One way to do this is to give each player
what they put in at the start, but this is (mildly) unfair if one has an advantage
over the other. The alternative is to give each player the expected value of the
game at that state for that player. Sometimes one can compute that expectation
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quite easily.

Worked example 6.15 Ending a game early

(from Durrett), two players each pay 25 to play the following game. They toss
a fair coin. If it comes up heads, player H wins that toss; if tails, player T wins.
The first player to reach 10 wins takes the stake of 50. But one player is called
away when the state is 8-7 (H-T) — how should the stake be divided?

Solution: In this state, each player can either win — and so
get 50 — or lose — and so get 0. The expectation for H
is 50P ({H wins from 8-7}) + 0P ({T wins from 8-7}), so we need to
compute P ({H wins from 8-7}). Similarly, the expectation for T is
50P ({T wins from 8-7}) + 0P ({H wins from 8-7}), so we need to compute
P ({T wins from 8-7}); but P ({T wins from 8-7}) = 1−P ({H wins from 8-7}).
Now it is slightly easier to compute P ({T wins from 8-7}), because T can only
win in two ways: 8-10 or 9-10. These are independent. For T to win 8-10, the
next three flips must come up T, so that event has probability 1/8. For T to
win 9-10, the next four flips must have one H in them, but the last flip may
not be H (or else H wins); so the next four flips could be HTTT, THTT, or
TTHT. The probability of this is 3/16. This means the total probability that
T wins is 5/16. So T should get 16.625 and H should get the rest (although
they might have to flip for the odd half cent).

6.3.4 Making a Decision with Decision Trees and Expectations

Imagine we have to choose an action. Once we have chosen, a sequence of random
events occurs, and we get a reward with some probability. Which action should we
choose? A good answer is to choose the action with the best expected outcome.
In fact, choosing any other action is unwise, because if we encounter this situation
repeatedly and make a choice that is even only slightly worse than the best, we
could lose heavily. This is a very common recipe, and it can be applied to many
situations. Usually, but not always, the reward is in money, and we will compute
with money rewards for the first few examples.

For such problems, it can be useful to draw a decision tree. A decision
tree is a drawing of possible outcomes of decisions, which makes costs, benefits and
random elements explicit. Each node of the tree represents a test of an attribute
(which could be either a decision, or a random variable), and each edge represents
a possible outcome of a test. The final outcomes are leaves. Usually, decision nodes
are drawn as squares, chance elements as circles, and leaves as triangles.
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No disease $0

Minor disease -$1000

Major disease -$1e6

Minor disease -$1000

Major disease -$1e6

Vaccinate -$10

0.95

0.9

0.95

1e-7

FIGURE 6.1: A decision tree for the vaccination problem. The only decision is
whether to vaccinate or not (the box at the root of the tree). I have only labelled
edges where this is essential, so I did not annotate the “no vaccination” edge with
zero cost. Once you decide whether to vaccinate or not, there is a random node
(whether you get the disease or not), and, if you get it, another (minor or major).

Worked example 6.16 Vaccination

It costs 10 to be vaccinated against a common disease. If you have the vac-
cination, the probability you will get the disease is 1e − 7. If you do not, the
probability is 0.1. The disease is unpleasant; with probability 0.95, you will ex-
perience effects that cost you 1000 (eg several days in bed), but with probability
0.05, you will experience effects that cost you 1e6. Should you be vaccinated?

Solution: Figure 6.1 shows a decision tree for this problem. I have annotated
some edges with the choices represented, and some edges with probabilities;
the sum of probabilities over all rightward (downgoing) edges leaving a random
node is 1. It is straightforward to compute expectations. The expected cost of
the disease is 0.95 × 1000 + 0.05 × 1e6 = 50, 950. If you are vaccinated, your
expected income will be −(10 + 1e − 7 × 50, 950) = −10.01 (rounding to the
nearest cent). If you are not, your expected income is −5, 095. You should be
vaccinated.

Sometimes there is more than one decision. We can still do simple examples,
though drawing a decision tree is now quite important, because it allows us to keep
track of cases and avoid missing anything. For example, assume I wish to buy a
cupboard. Two nearby towns have used furniture shops (usually called antique
shops these days). One is further away than the other. If I go to town A, I will
have time to look in two (of three) shops; if I go to town B, I will have time to look
in one (of two) shops. I could lay out this sequence of decisions (which town to go
to; which shop to visit when I get there) as Figure 6.2.

You should notice that this figure is missing a lot of information. What is the
probability that I will find what I’m looking for in the shops? What is the value of
finding it? What is the cost of going to each town? and so on. This information is
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Town A

Town B

Shops 1, 2

Shops 2, 3

Shops 1, 3

Shop 1

Shop 2

FIGURE 6.2: The decision tree for the example of visiting furniture shops. Town A
is nearer than town B, so if I go there I can choose to visit two of the three shops
there; if I go to town B, I can visit only one of the two shops there. To decide what
to do, I could fill in the probabilities and values of outcomes, compute the expected
value of each pair of decisions, and choose the best. This could be tricky to do
(where do I get the probabilities from?) but offers a rational and principled way to
make the decision.

not always easy to obtain. In fact, I might simply need to give my best subjective
guess of these numbers. Furthermore, particularly if there are several decisions,
computing the expected value of each possible sequence could get difficult. There
are some kinds of model where one can compute expected values easily, but a good
viable hypothesis about why people don’t make optimal decisions is that optimal
decisions are actually too hard to compute.

6.3.5 Utility

Sometimes it is hard to work with money. For example, in the case of a serious
disease, choosing treatments often boils down to expected survival times, rather
than money.
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Radical

Standard

Toxicity

Can’t complete

Complete

Minor response

No response

Major response

0

6

60

10

10

6

m
o

n
th

s su
rv

iv
al

0.1

0.3

0.6
0.1

0.9

0.5

0.5

Minor response

FIGURE 6.3: A decision tree for example 6.17. Notations vary a bit, and here I have
put boxes around the labels for the edges.

Worked example 6.17 Radical treatment

(This example largely after Vickers, p97). Imagine you have a nasty disease.
There are two kinds of treatment: standard, and radical. Radical treatment
might kill you (with probability 0.1); might be so damaging that doctors stop
(with probability 0.3); but otherwise you will complete the treatment. If you
do complete radical treatment, there could be a major response (probability
0.1) or a minor response. If you follow standard treatment, there could be a
major response (probability 0.5) or a minor response, but the outcomes are less
good. All this is best summarized in a decision tree (Figure 6.3). What gives
the longest expected survival time?

Solution: In this case, expected survival time with radical treatment is (0.1×
0+ 0.3× 6+ 0.6× (0.1× 60+ 0.9× 10)) = 10.8 months; expected survival time
without radical treatment is 0.5× 10 + 0.5× 6 = 8 months.

Working with money values is not always a good idea. For example, many
people play state lotteries. The expected value of a 1 bet on a state lottery is well
below 1 — why do people play? It’s easy to assume that all players just can’t do
sums, but many players are well aware that the expected value of a bet is below the
cost. It seems to be the case that people value money in a way that doesn’t depend
linearly on the amount of money. So, for example, people may value a million
dollars rather more than a million times the value they place on one dollar. If this
is true, we need some other way to keep track of value; this is sometimes called
utility. It turns out to be quite hard to know how people value things, and there
is quite good evidence that (a) human utility is complicated and (b) it is difficult
to explain human decision making in terms of expected utility.
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Worked example 6.18 Human utility is not expected payoff

Here are four games:

• Game 1: The player is given 1. A biased coin is flipped, and the money
is taken back with probability p; otherwise, the player keeps it.

• Game 2: The player stakes 1, and a fair coin is flipped; if the coin comes
up heads, the player gets r and the stake back, but otherwise loses the
original stake.

• Game 3: The player bets nothing; a biased coin is flipped, and if it
comes up heads (probability q), the player gets 1e6.

• Game 4: The player stakes 1000; a fair coin is flipped, and if it comes
up heads, the player gets s and the stake back, but otherwise loses the
original stake.

In particular, what happens if r = 3 − 2p and q = (1 − p)/1e6 and s =
2− 2p+ 1000?

Solution: Game 1 has expected value (1 − p)1. Game 2 has expected value
(1/2)(r − 1). Game 3 has expected value q1e6. Game 4 has expected value
(1/2)s− 500.
In the case given, each game has the same expected value. Nonetheless, people
usually have decided preferences for which game they would play. Generally, 4
is unattractive (seems expensive to play); 3 seems like free money, and so a good
thing; 2 might be OK but is often seen as uninteresting; and 1 is unattractive.
This should suggest to you that people’s reasoning about money and utility is
not what simple expectations can predict.

6.4 WHAT YOU SHOULD REMEMBER

You should be able to:

• Interpret notation for joint and conditional probability for random variables;
in particular, understand notation such as: P ({X}), P ({X = x}), p(x),
p(x, y), p(x|y)

• Interpret a probability density function p(x) as P ({X ∈ [x, x + dx]}).

• Interpret the expected value of a discrete random variable.

• Interpret the expected value of a continuous random variable.

• Compute expected values of random variables for straightforward cases.

• Write down expressions for mean, variance and covariance for random vari-
ables.
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• Write out a decision tree.

You should remember:

• The definition of a random variable.

• The definition of an expected value.

• The definitions of mean, variance and covariance.

• The definition of an indicator function.

• Bayes rule.

• The definition of marginalization.

• The Markov inequality.

• The Chebyshev Inequality.

• The weak law of large numbers.

PROBLEMS

Joint and Conditional Probability for Random Variables

6.1. Define a random variable X by the following procedure. Draw a card from
a standard deck of playing cards. If the card is knave, queen, or king, then
X = 11. If the card is an ace, then X = 1; otherwise, X is the number of the
card (i.e. two through ten). Now define a second random variable Y by the
following procedure. When you evaluate X, you look at the color of the card.
If the card is red, then Y = X − 1; otherwise, Y = X + 1.
(a) What is P ({X ≤ 2})?
(b) What is P ({X ≥ 10})?
(c) What is P ({X ≥ Y })?
(d) What is the probability distribution of Y −X?
(e) What is P ({Y ≥ 12}?

6.2. Define a random variable by the following procedure. Flip a fair coin. If it
comes up heads, the value is 1. If it comes up tails, roll a die: if the outcome
is 2 or 3, the value of the random variable is 2. Otherwise, the value is 3.
(a) What is the probability distribution of this random variable?
(b) What is the cumulative distribution of this random variable?

6.3. Define three random variables, X, Y and Z by the following procedure. Roll
a six-sided die and a four-sided die. Now flip a coin. If the coin comes up
heads, then X takes the value of the six-sided die and Y takes the value of the
four-sided die. Otherwise, X takes the value of the four-sided die and Y takes
the value of the six-sided die. Z always takes the value of the sum of the dice.
(a) What is P (X), the probability distribution of this random variable?
(b) What is P (X,Y ), the joint probability distribution of these two random

variables?
(c) Are X and Y independent?
(d) Are X and Z independent?
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6.4. Define two random variables X and Y by the following procedure. Flip a fair
coin; if it comes up heads, then X = 1, otherwise X = −1. Now roll a six-sided
die, and call the value U . We define Y = U +X.
(a) What is P (Y |X = 1)?
(b) What is P (X|Y = 0)?
(c) What is P (X|Y = 7)?
(d) What is P (X|Y = 3)?
(e) Are X and Y independent?

Expected Values

6.5.
6.6. A simple coin game is as follows: we have a box, which starts empty. P1 flips

a fair coin. If it comes up heads, P2 gets the contents of the box, and the game
ends. If it comes up tails, P1 puts a dollar in the box and they flip again; this
repeats until it comes up heads
(a) With what probability will P2 win exactly 10 units?
(b) Write S∞ =

∑∞
i=0 r

i. Show that (1− r)S∞ = 1, so that

S∞ =
1

1− r

(c) Show that

∞
∑

i=0

iri = (

∞
∑

i=1

ri) + r(

∞
∑

i=1

ri) + r2(

∞
∑

i=1

ri) + . . .

(look carefully at the limits of the sums!) and so show that

∞
∑

i=0

iri =
r

(1− r)2
.

(d) What is the expected value of the game? (you may find the results of the
two previous subexercises helpful; they’re not there just for show).

(e) How much should P2 pay to play, to make the game fair?
6.7. A simple card game is as follows. P1 pays a stake of 1 to play. P1 and P2

then each draw a card. If both cards are the same color, P2 keeps the stake
and the game ends. If they are different colors, P2 pays P1 the stake and 1
extra (a total of 2).
(a) What is the expected value of the game to P1?
(b) P2 modifies the game, as follows. If both cards are court cards (that is,

knave, queen, king), then P2 keeps the stake and the game ends; otherwise,
the game works as before. Now what is the expected value of the game
to P1?

6.8. An airline company runs a flight that has six seats. Each passenger who buys
a ticket has a probability p of turning up for the flight. These events are
independent.
(a) The airline sells six tickets. What is the expected number of passengers,

if p = 0.9?
(b) How many tickets should the airline sell to ensure that the expected num-

ber of passengers is greater than six, if p = 0.7? Hint: The easiest way to



Section 6.4 What you should remember 158

do this is to write a quick program that computes the expected value of
passengers that turn up for each the number of tickets sold, then search
the number of tickets sold.

6.9. An airline company runs a flight that has 10 seats. Each passenger who buys
a ticket has a probability p of turning up for the flight. The gender of the
passengers is not known until they turn up for a flight, and women buy tickets
with the same frequency that men do. The pilot is eccentric, and will not fly
unless at least two women turn up.
(a) How many tickets should the airline sell to ensure that the expected num-

ber of passengers that turn up is greater than 10?
(b) The airline sells 10 tickets. What is the expected number of passengers

on the aircraft, given that it flies? (i.e. that at least two women turn up).
Estimate this value with a simulation.

Mean, Variance and Covariance

6.10. Show that var[kX] = k2var[X].
6.11. Show that if X and Y are independent random variables, then var[X + Y ] =

var[X] + var[Y ]. You will find it helpful to remember that, for X and Y
independent, E[XY ] = E[X]E[Y ].

Using Inequalities

6.12. The random variable X takes the values −2, −1, 0, 1, 2, but has an unknown
probability distribution. You know that E[||X ||] = 0.2. Use Markov’s inequal-
ity to give a lower bound on P ({X = 0}). Hint: Notice that P ({X = 0}) =
1− P ({||X || = 1}) − P ({||X ||} = 2).

6.13. The random variable X takes the values 1, 2, 3, 4, 5, but has unknown prob-
ability distribution. You know that E[X] = 2 and var ({X}) = 0.01. Use
Chebychev’s inequality to give a lower bound on P ({X = 2}).

Using Expectations

6.14. Imagine we have a game with two players, who are playing for a stake. There
are no draws, the winner gets the whole stake, and the loser gets nothing. The
game must end early. We decide to give each player the expected value of the
game for that player, from that state. Show that the expected values add up
to the value of the stake (i.e. there won’t be too little or too much money in
the stake.

General Exercises
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Useful Probability Distributions

In most practical problems, we observe some data, then try to infer properties
of the process or processes that produced the data. For example, we might ask what
new data would look like, or whether two datasets come from the same or different
sources. When we do this, we are usually trying to determine some properties of
the probability distribution of a random variable. The data represent values that
the random variable has taken. In many cases, the probability distribution involved
can be modelled using one of a small set of standard probability distributions. In
this chapter, I collect facts about the distributions we will use in following chapters.

7.1 DISCRETE DISTRIBUTIONS

7.1.1 The Discrete Uniform Distribution

If every value of a discrete random variable has the same probability, then the
probability distribution is the discrete uniform distribution. We have seen this
distribution before, numerous times. For example, I define a random variable by the
number that shows face-up on the throw of a die. This has a uniform distribution.
As another example, write the numbers 1-52 on the face of each card of a standard
deck of playing cards. The number on the face of the first card drawn from a
well-shuffled deck is a random variable with a uniform distribution.

One can construct expressions for the mean and variance of a discrete uniform
distribution, but they’re not usually much use (too many terms, not often used).
Keep in mind that if two random variables have a uniform distribution, their sum
and difference will not (recall example 6.3).

7.1.2 The Geometric Distribution

We have a biased coin. The probability it will land heads up, P ({H}) is given by
p. We flip this coin until the first head appears. The number of flips required is a
discrete random variable which takes integer values greater than or equal to one,
which we shall call X . To get n flips, we must have n− 1 tails followed by 1 head.
This event has probability (1 − p)(n−1)p. We can now write out the probability
distribution that n flips are required.

159
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Definition: 7.1 The Geometric Distribution

We have an experiment with a binary outcome (i.e. heads or tails; 0
or 1; and so on), with P (H) = p and P (T ) = 1 − p. We repeat this
experiment until the first head occurs. The probability distribution for
n, the number of repetitions, is the geometric distribution. It has the
form

P ({X = n}) = (1− p)(n−1)p.

for 0 ≤ p ≤ 1 and n ≥ 1; for other n it is zero. p is called the parameter
of the distribution.

Notice that the geometric distribution is non-negative everywhere. It is straight-
forward to show that it sums to one, and so is a probability distribution (exercises).

Useful Facts: 7.1 The geometric distribution

1. The mean of the geometric distribution is 1
p .

2. The variance of the geometric distribution is 1−p
p2 .

The proof of these facts requires some work with series, and is relegated
to the exercises.

7.1.3 Bernoulli Random Variables

A Bernoulli random variable models a biased coin with probability p of coming up
heads in any one flip.

Definition: 7.2 Bernoulli Random Variable

A Bernoulli random variable takes the value 1 with probability p and
0 with probability 1 − p. This is a model for a coin toss, among other
things
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Useful Facts: 7.2 Bernoulli Random Variables

1. A Bernoulli random variable has mean p.

2. A Bernoulli random variable has variance p(1− p).

Proofs are easy, and in the exercises.

7.1.4 The Binomial Probability Distribution

Assume we have a biased coin with probability p of coming up heads in any one
flip. The binomial probability distribution gives the probability that it comes up
heads h times in N flips.

Worked example 5.32 yields one way of deriving this distribution. In that
example, I showed that there are

N !/(h!(N − h)!)

outcomes of N coin flips that have h heads. These outcomes are disjoint, and
each has probability ph(1 − p)(N−h). As a result, we must have the probability
distribution below.

Definition: 7.3 The Binomial distribution

In N independent repetitions of an experiment with a binary outcome
(ie heads or tails; 0 or 1; and so on) with P (H) = p and P (T ) = 1− p,
the probability of observing a total of h H ’s and N − h T ’s is

Pb(h;N, p) =

(

N
h

)

ph(1− p)(N−h)

as long as 0 ≤ h ≤ N ; in any other case, the probability is zero.
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Useful Fact: 7.3 The binomial distribution

Write Pb(i;N, p) for the binomial distribution that one observes i H ’s
in N trials.

N
∑

i=0

Pb(i;N, p) = (p+ (1− p))N = (1)N = 1

by pattern matching to the binomial theorem. As a result,

N
∑

i=0

Pb(i;N, p) = 1

The binomial distribution satisfies a recurrence relation. We must have that

Pb(h;N, p) = pPb(h− 1;N − 1, p) + (1 − p)Pb(h;N − 1, p).

This is because can get h heads in N flips either by having h − 1 heads in N − 1
flips, then flipping another, or by having h heads in N flips then flipping a tail.
You can verify by induction that the binomial distribution satisfies this recurrence
relation.

Useful Facts: 7.4 The binomial distribution

1. The mean of Pb(i;N, p) is Np.

2. The variance of Pb(i;N, p) is Np(1− p)

The proofs are informative, and so are not banished to the exercises.
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Proof: 7.1 The binomial distribution

Notice that the number of heads in N coin tosses is can be obtained
by adding the number of heads in each toss. Write Yi for the Bernoulli
random variable representing the i’th toss. If the coin comes up heads,
Yi = 1, otherwise Yi = 0. The Yi are independent. Now

E[X ] = E





N
∑

j=1

Yi





=

N
∑

j=1

E[Yi]

= NE[Y1] because the Yi are independent

= Np.

The variance is easy, too. Each coin toss is independent, so the variance
of the sum of coin tosses is the sum of the variances. This gives

var[X ] = var





N
∑

j=1

Yi





= Nvar[Y1]

= Np(1− p)

7.1.5 Multinomial probabilities

The binomial distribution describes what happens when a coin is flipped multiple
times. But we could toss a die multiple times too. Assume this die has k sides, and
we toss it N times. The distribution of outcomes is known as the multinomial
distribution.

We can guess the form of the multinomial distribution in rather a straightfor-
ward way. The die has k sides. We toss the die N times. This gives us a sequence
of N numbers. Each toss of the die is independent. Assume that side 1 appears n1

times, side 2 appears n2 times, ... side k appears nk times. Any single sequence
with this property will appear with probability pn1

1 pn2

2 ...pnk

k , because the tosses are
independent. However, there are

N !

n1!n2!...nk!

such sequences. Using this reasoning, we arrive at the distribution below
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Definition: 7.4 Multinomial Distribution

I perform N independent repetitions of an experiment with k possible
outcomes. The i’th such outcome has probability pi. I see outcome 1 n1

times, outcome 2 n2 times, etc. Notice that n1+n2+n3+ . . .+nk = N .
The probability of observing this set of outcomes is

Pm(n1, . . . , nk;N, p1, . . . , pk) =
N !

n1!n2!...nk!
pn1

1 pn2

2 . . . pnk

k .

Worked example 7.1 Dice

I throw five fair dice. What is the probability of getting two 2’s and three 3’s?

Solution: 5!
2!3!

(1
6
)2(1

6
)3

7.1.6 The Poisson Distribution

Assume we are interested in counts that occur in an interval of time (e.g. within
a particular hour). Because they are counts, they are non-negative and integer
valued. We know these counts have two important properties. First, they occur
with some fixed average rate. Second, an observation occurs independent of the
interval since the last observation. Then the Poisson distribution is an appropriate
model.

There are numerous such cases. For example, the marketing phone calls you
receive during the day time are likely to be well modelled by a Poisson distribution.
They come at some average rate — perhaps 5 a day as I write, during the last
phases of an election year — and the probability of getting one clearly doesn’t
depend on the time since the last one arrived. Classic examples include the number
of Prussian soldiers killed by horse-kicks each year; the number of calls arriving at
a call center each minute; the number of insurance claims occurring in a given time
interval (outside of a special event like a hurricane, etc.).
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Definition: 7.5 The Poisson Distribution

A non-negative, integer valued random variable X has a Poisson distri-
bution when its probability distribution takes the form

P ({X = k}) = λke−λ

k!
,

where λ > 0 is a parameter often known as the intensity of the distri-
bution.

Notice that the Poisson distribution is a probability distribution, because it
is non-negative and because

∞
∑

i=0

λi

i!
= eλ

so that ∞
∑

k=0

λke−λ

k!
= 1

Useful Facts: 7.5 The Poisson Distribution

1. The mean of a Poisson distribution with intensity λ is λ.

2. The variance of a Poisson distribution with intensity λ is λ (no,
that’s not an accidentally repeated line or typo).

The proof of these facts requires some work with series, and is relegated
to the exercises.

I described the Poisson distribution as a natural model for counts of randomly
distributed points along a time axis. But it doesn’t really matter that this is a time
axis — it could be a space axis instead. For example, you could take a length of
road, divide it into even intervals, then count the number of road-killed animals is
in each interval. If the location of each animal is independent of the location of
any other animal, then you could expect a Poisson model to apply to the count
data. Assume that the Poisson model that best describes the data has parameter
λ. One property of such models is that if you doubled the length of the intervals,
then the resulting dataset would be described by a Poisson model with parameter
2λ; similarly, if you halved the length of the intervals, the best model would have
parameter λ/2. This corresponds to our intuition about such data; roughly, the
number of road-killed animals in two miles of road should be twice the number in
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one mile of road. This property means that no pieces of the road are “special” —
each behaves the same as the other.

We can build a really useful model of spatial randomness by observing this
fact and generalizing very slightly. A Poisson point process with intensity λ is a
set of random points with the property that the number of points in an interval of
length s is a Poisson random variable with parameter λs. Notice how this captures
our intuition that if points are “very randomly” distributed, there should be twice
as many of them in an interval that is twice as long.

This model is easily, and very usefully, extended to points on the plane, on
surfaces, and in 3D. In each case, the process is defined on a domain D (which has
to meet some very minor conditions that are of no interest to us). The number
of points in any subset s of D is a Poisson random variable, with intensity λm(s),
where m(s) is the area (resp. volume) of s. These models are useful, because they
capture the property that (a) the points are random and (b) the probability you
find a point doesn’t depend on where you are. You could reasonably believe models
like this apply to, say, dead flies on windscreens; the places where you find acorns
at the foot of an oak tree; the distribution of cowpats in a field; the distribution of
cherries in a fruitcake; and so on.

7.2 CONTINUOUS DISTRIBUTIONS

7.2.1 The Continuous Uniform Distribution

Some continuous random variables have a natural upper bound and a natural lower
bound but otherwise we know nothing about them. For example, imagine we are
given a coin of unknown properties by someone who is known to be a skillful maker
of unfair coins. The manufacturer makes no representations as to the behavior of
the coin. The probability that this coin will come up heads is a random variable,
about which we know nothing except that it has a lower bound of zero and an
upper bound of one.

If we know nothing about a random variable apart from the fact that it has
a lower and an upper bound, then a uniform distribution is a natural model.
Write l for the lower bound and u for the upper bound. The probability density
function for the uniform distribution is

p(x) =







0 x < l
1/(u− l) l ≤ x ≤ u
0 x > u

A continuous random variable whose probability distribution is the uniform distri-
bution is often called a uniform random variable.

7.2.2 The Beta Distribution

It’s hard to explain now why the Beta (or β) distribution is useful, but it will come
in useful later (section 14.1). The Beta distribution is a probability distribution for
a continuous random variable x in the range 0 ≤ x ≤ 1. There are two parameters,
α > 0 and β > 0. Recall the definition of the Γ function from section 1.1. We have
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FIGURE 7.1: Probability density functions for the Beta distribution with a variety of
different choices of α and β.

that

Pβ(x|α, β) =
Γ(α+ β)

Γ(α)Γ(β)
x(α−1)(1− x)(β−1).

From this expression, you can see that:

• Pβ(x|1, 1) is a uniform distribution on the unit interval.

• Pβ(x|α, β) has a single maximum at x = (α−1)/(α+β−2) for α > 1, β > 1)
(differentiate and set to zero).

• Generally, as α and β get larger, this peak gets narrower.

• For α = 1, β > 1 the largest value of Pβ(x|α, β) is at x = 0.

• For α > 1, β = 1 the largest value of Pβ(x|α, β) is at x = 1.

Figure 7.1 shows plots of the probability density function of the Beta distribution
for a variety of different values of α and β.

Useful Facts: 7.6 The Beta Distribution

For a Beta distribution with parameters α, β

1. The mean is α
α+β .

2. The variance is αβ
(α+β)2(α+β+1) .
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FIGURE 7.2: Probability density functions for the Gamma distribution with a variety
of different choices of α and β.

7.2.3 The Gamma Distribution

The Gamma (or γ) distribution will also come in useful later on (section 14.1). The
Gamma distribution is a probability distribution for a non-negative continuous
random variable x ≥ 0. There are two parameters, α > 0 and β > 0. The
probability density function is

Pγ(x|α, β) =
βα

Γ(α)
x(α−1)e−βx.

Figure 7.2 shows plots of the probability density function of the Gamma distribution
for a variety of different values of α and β.

Useful Facts: 7.7 The Gamma Distribution

For a Gamma distribution with parameters α, β

1. The mean is α
β .

2. The variance is α
β2 .

7.2.4 The Exponential Distribution

Assume we have an infinite interval of time or space, with points distributed on it.
Assume these points form a Poisson point process, as above. For example, we might
consider the times at which email arrives; or the times at which phone calls arrive
at a large telephone exchange; or the locations of roadkill on a road. The distance
(or span of time) between two consecutive points is a random variable X . This
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random variable takes an exponential distribution. There is a single parameter,
λ. We have that

Pexp(x|λ) =
{

λ exp−λx for x ≥ 0
0 otherwise

.

This distribution is often useful in modelling the failure of objects. We assume
that failures form a Poisson process in time; then the time to the next failure is
exponentially distributed.

Useful Facts: 7.8 The Exponential Distribution

For an exponential distribution with parameter λ

1. The mean is
1

λ
.

2. The variance is
1

λ2
.

Notice the relationship between this parameter and the parameter of the Pois-
son distribution. If (say) the phone calls are distributed with Poisson distribution
with intensity λ (per hour), then your expected number of calls per hour is λ. The
time between calls will be exponentially distributed with parameter λ, and the
expected time to the next call is 1/λ (in hours).

7.3 THE NORMAL DISTRIBUTION

7.3.1 The Standard Normal Distribution

Definition: 7.6 The Standard Normal Distribution

The probability density function

p(x) =

(

1√
2π

)

exp

(−x2

2

)

.

is known as the standard normal distribution

The first step is to plot this probability density function (Figure 7.3). You
should notice it is quite familiar from work on histograms, etc. in Chapter 14.1. It
has the shape of the histogram of standard normal data, or at least the shape that
the histogram of standard normal data aspires to.
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FIGURE 7.3: A plot of the probability density function of the standard normal dis-
tribution. Notice how probability is concentrated around zero, and how there is
relatively little probability density for numbers with large absolute values.

Useful Facts: 7.9 The standard normal distribution

1. The mean of the standard normal distribution is 0.

2. The variance of the standard normal distribution is 1.

These results are easily established by looking up (or doing!) the rele-
vant integrals; they are relegated to the exercises.

A continuous random variable is a standard normal random variable if
its probability density function is a standard normal distribution.

7.3.2 The Normal Distribution

Any probability density function that is a standard normal distribution in standard
coordinates is a normal distribution. Now write µ for the mean of a random
variable and σ for its standard deviation; we are saying that, if

x− µ

σ

has a standard normal distribution, then p(x) is a normal distribution. We can work
out the form of the probability density function of a general normal distribution in
two steps: first, we notice that for any normal distribution, we must have

p(x) ∝ exp

[

− (x− µ)2

2σ2

]

.

But, for this to be a probability density function, we must have
∫∞
−∞ p(x)dx = 1.

This yields the constant of proportionality, and we get
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Definition: 7.7 The Normal Distribution

The probability density function

p(x) =

(

1√
2πσ

)

exp

(−(x− µ)2

2σ2

)

.

is a normal distribution.

Useful Facts: 7.10 The normal distribution

The probability density function

p(x) =

(

1√
2πσ

)

exp

(−(x− µ)2

2σ2

)

.

has

1. mean µ

2. and variance σ.

These results are easily established by looking up (or doing!) the rele-
vant integrals; they are relegated to the exercises.

A continuous random variable is a normal random variable if its probability
density function is a normal distribution. Notice that it is quite usual to call
normal distributions gaussian distributions.

7.3.3 Properties of the Normal Distribution

Normal distributions are important, because one often runs into data that is well
described by a normal distribution. It turns out that anything that behaves like a
binomial distribution with a lot of trials — for example, the number of heads in
many coin tosses; as another example, the percentage of times you get the outcome
of interest in a simulation in many runs — should produce a normal distribution
(Section 7.4). For this reason, pretty much any experiment where you perform a
simulation, then count to estimate a probability or an expectation, should give you
an answer that has a normal distribution.

It is a remarkable and deep fact, known as the central limit theorem, that
adding many independent random variables produces a normal distribution pretty
much whatever the distributions of those random variables. I’ve not shown this
in detail because it’s a nuisance to prove. However, if you add together many
random variables, each of pretty much any distribution, then the answer has a
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distribution close to the normal distribution. It turns out that many of the processes
we observe add up subsidiary random variables. This means that you will see normal
distributions very often in practice.

A normal random variable tends to take values that are quite close to the
mean, measured in standard deviation units. We can demonstrate this important
fact by computing the probability that a standard normal random variable lies
between u and v. We form

∫ v

u

1√
2π

exp

(

−u2

2

)

du.

It turns out that this integral can be evaluated relatively easily using a special
function. The error function is defined by

erf(x) =
2√
π

∫ x

0

exp
(

−t2
)

dt

so that
1

2
erf

(

(
x√
2
)

)

=

∫ x

0

1√
2π

exp

(

−u2

2

)

du.

Notice that erf(x) is an odd function (i.e. erf(−x) = erf(x)). From this (and
tables for the error function, or Matlab) we get that, for a standard normal random
variable

1√
2π

∫ 1

−1

exp

(

−x2

2

)

dx ≈ 0.68

and
1√
2π

∫ 2

−2

exp

(

−x2

2

)

dx ≈ 0.95

and
1√
2π

∫ 2

−2

exp

(

−x2

2

)

dx ≈ 0.99.

These are very strong statements. They measure how often a standard normal
random variable has values that are in the range−1, 1, −2, 2, and −3, 3 respectively.
But these measurements apply to normal random variables if we recognize that they
now measure how often the normal random variable is some number of standard
deviations away from the mean. In particular, it is worth remembering that:

Useful Facts: 7.11 Normal Random Variables

• About 68% of the time, a normal random variable takes a value
within one standard deviation of the mean.

• About 95% of the time, a normal random variable takes a value
within one standard deviation of the mean.

• About 99% of the time, a normal random variable takes a value
within one standard deviation of the mean.
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7.4 APPROXIMATING BINOMIALS WITH LARGE N

The Binomial distribution appears to be a straightforward thing. We assume we
flip a coin N times, where N is a very large number. The coin has probability p of
coming up heads, and so probability q = 1 − p of coming up tails. The number of
heads h follows the binomial distribution, so

P (h) =
N !

h!(N − h)!
phq(N−h)

The mean of this distribution isNp, the variance isNpq, and the standard deviation
is
√
Npq.
Evaluating this probability distribution for large N is very difficult, because

factorials grow fast. We will construct an approximation to the binomial distribu-
tion for large N that allows us to evaluate the probability that h lies in some range.
This approximation will show that the probability that h is within one standard
deviation of the mean is approximately 68%.

This is important, because it shows that our model of probability as frequency
is consistent. Consider the probability that the number of heads you see lies within
one standard deviation of the mean. The size of that interval is 2

√
Npq. As N gets

bigger, the size of that interval, relative to the total number of flips, gets smaller.
If I flip a coin N times, in principle I could see a number of heads h that ranges
from 0 to N . However, we will establish that about 68% of the time, h will lie in
the interval within one standard deviation of the mean. The size of this interval,
relative to the total number of flips is

2

√
Npq

N
= 2

√

pq

N
.

As a result, as N → ∞,
h

N
→ p

because h will tend to land in an interval around pN that gets narrower as N gets
larger.

The main difficulty with Figure 7.4 (and with the argument above) is that
the mean and standard deviation of the binomial distribution tends to infinity as
the number of coin flips tends to infinity. This can confuse issues. For example, the
plots of Figure 7.4 show narrowing probability distributions — but is this because
the scale is compacted, or is there a real effect? It turns out there is a real effect,
and a good way to see it is to consider the normalized number of heads.

7.4.1 Large N

Recall that to normalize a dataset, you subtract the mean and divide the result
by the standard deviation. We can do the same for a random variable. We now
consider

x =
h−Np√

Npq
.
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FIGURE 7.4: Plots of the binomial distribution for p = q = 0.5 for different values
of N . You should notice that the set of values of h (the number of heads) that have
substantial probability is quite narrow compared to the range of possible values. This
set gets narrower as the number of flips increases. This is because the mean is pN
and the standard deviation is

√
Npq — so the fraction of values that is within one

standard deviation of the mean is O(1/
√
N).

The probability distribution of x can be obtained from the probability distribution
for h, because h = Np+ x

√
Npq, so

P (x) =

(

N !

(Np+ x
√
Npq)!(Nq − x

√
Npq)!

)

p(Np+x
√

Npq)q(Nq−x
√

Npq).

I have plotted this probability distribution for various values of N in Figure 7.5.
But it is hard to work with this distribution for very large N . The factorials

become very difficult to evaluate. Second, it is a discrete distribution on N points,
spaced 1/

√
Npq apart. As N becomes very large, the number of points that have

non-zero probability becomes very large, and x can be very large, or very small. For
example, there is some probability, though there may be very little indeed, on the
point where h = N , or, equivalently, x = N(p +

√
Npq). For sufficiently large N ,

we think of this probability distribution as a probability density function. We can
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FIGURE 7.5: Plots of the distribution for the normalized variable x, with P (x) given
in the text, obtained from the binomial distribution with p = q = 0.5 for different
values of N . These distributions are normalized (mean 0, variance 1. They look
increasingly like a standard normal distribution EXCEPT that the value at their
mode gets smaller as N gets bigger (there are more possible outcomes). In the text,
we will establish that the standard normal distribution is a limit, in a useful sense.

do so, for example, by spreading the probability for xi (the i’th value of x) evenly
over the interval between xi and xi+1. We then have a probability density function
that looks like a histogram, with bars that become narrower as N increases. But
what is the limit?

7.4.2 Getting Normal

To proceed, we need Stirling’s approximation, which says that, for large N ,

N ! ≈
√
2π

√
N

(

N

e

)N

.
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This yields

P (h) ≈
(

Np

h

)h(
Nq

N − h

)(N−h)
√

N

2πh(N − h)

Recall we used the normalized variable

x =
h−Np√

Npq
.

We will encounter the term
√
Npq often, and we use σ =

√
Npq as a shorthand.

We can compute h and N − h from x by the equalities

h = Np+ σx N − h = Nq − σx.

So the probability distribution written in this new variable x is

P (x) ≈
(

Np

(Np+ σx)

)(Np+σx)(
Nq

(Nq − σx)

)(Nq−σx)
√

N

2π(Np+ σx)(Nq − σx)

There are three terms to deal with here. It is easiest to work with logP . Now

log(1 + x) = x− 1

2
x2 +O(x3)

so we have

log

(

Np

(Np+ σx)

)

= − log

(

1 +
σx

Np

)

≈ − σx

Np
+ (

1

2
)(

σx

Np
)2

and

log

(

Nq

(Nq − σx)

)

≈ σx

Nq
+ (

1

2
)(
σx

Nq
)2.

From this, we have that

log

[

(

Np

Np+ σx

)(Np+σx)(
Nq

Nq − σx

)(Nq−σx)
]

≈ [Np+ σx]

[

− σx

Np
+

(

1

2

)(

σx

Np

)2
]

+

[Nq − σx]

[

σx

Nq
+

(

1

2

)(

σx

Nq

)2
]

= −
(

1

2

)

x2 +O((σx)3)

(recall σ =
√
Npq if you’re having trouble with the last step). Now we look at the

square-root term. We have

log

√

N

2π(Np+ σx)(Nq − σx)
= −1

2
(log [Np+ σx] + log [Nq − σx] − logN + log 2π)

= −1

2









logNp+O
((

σx
Np

))

+ logNq −O
((

σx
Nq

))

− logN + log 2π








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but, since N is very large compared to σx, we can ignore the O(
(

σx
Np

)

) terms. Then

this term is not a function of x. So we have

logP (x) ≈ −x2

2
+ constant.

Now because N is very large, our probability distribution P limits to a probability
density function p, with

p(x) ∝ exp

(−x2

2

)

.

We can get the constant of proportionality from integrating, to

p(x) =

(

1√
2π

)

exp

(−x2

2

)

.

This constant of proportionality deals with the effect in figure 7.5, where the mode
of the distribution gets smaller as N gets bigger. It does so because there are more
points with non-zero probability to be accounted for. But we are interested in the
limit where N tends to infinity. This must be a probability density function, so it
must integrate to one.

Review this blizzard of terms. We started with a binomial distribution, but
standardized the variables so that the mean was zero and the standard deviation
was one. We then assumed there was a very large number of coin tosses, so large
that that the distribution started to look like a continuous function. The function
we get is the standard normal distribution.

7.4.3 So What?

I have proven an extremely useful fact, which I shall now put in a box.

Useful Fact: 7.12 The Binomial Distribution for Large N

Assume h follows the binomial distribution with parameters p and q.
Write x = h−Np√

Npq
. Then, for sufficiently large N , the probability distri-

bution P (x) can be approximated by the probability density function

(

1√
2π

)

exp

(−x2

2

)

in the sense that

P ({x ∈ [a, b]}) ≈
∫ b

a

(

1√
2π

)

exp

(−u2

2

)

du
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This justifies our model of probability as frequency. I interpreted an event
having probability p to mean that, if I had a large number N of independent
repetitions of the experiment, the number that produced the event would be close
to Np, and would get closer as N got larger. We know that, for example, 68% of
the time a standard normal random variable takes a value between 1 and −1. In
this case, the standard normal random variable is

h− (Np)√
Npq

so that 68% of the time, h must take a value in the range [Np−√
Npq,Np+

√
Npq].

Equivalently, the relative frequency h/N must take a value in the range

[p− pq√
N

, p+
pq√
N

]

but as N → ∞ this range gets smaller and smaller, and h/N limits to p. So our
view of probability as a frequency is consistent.

To obtain h, we added N independent Bernoulli random variables. So you can
interpret the box as saying that the sum of many independent Bernoulli random
variables has a probability distribution that limits to the normal distribution as
the number added together gets larger. Remember that I have stated, though not
precisely, but not proved the deep and useful fact that the sum of pretty much
any independent random variables has a distribution that gets closer to a normal
distribution as the number added together gets larger.

7.5 WHAT YOU SHOULD REMEMBER

You should remember:

• The form of the uniform distribution.

• The form of the geometric distribution, and its mean and variance.

• The form of the binomial distribution, and its mean and variance.

• The form of the Poisson distribution, and its mean and variance.

• The form of the Normal distribution, and its mean and variance.

• The fact that a sum of a large number of IID binomial random variables is
normally distributed, and the mean and variance of that distribution.

• The fact that a sum of a large number of IID random variables is normally
distributed for most cases you will encounter.

PROBLEMS
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Sums and Differences of Discrete Random Variables

7.1. Assume X and Y are discrete random variables which take integer values in
the range 1 . . . 100 (inclusive). Write S = X + Y .
(a) Show that

P (S = k) =

u=100
∑

u=1

P ({{X = k − u} ∩ {Y = u}}).

(b) Show that

P (D = k) =

u=100
∑

u=1

P ({X = k + u})P ({Y = u}).

(c) Now assume that both X and Y are uniform random variables. Show that
S is not uniform by considering P (S = 2), P (S = 3), and P (S = 100).

The Geometric Distribution

7.2. Write S∞ =
∑∞

i=0 r
i. Show that (1− r)S∞ = 1, so that

S∞ =
1

1− r

7.3. Use the result of the previous exercise to show that

∞
∑

n=1

P ({X = n}) = p

∞
∑

n=1

(1− p)(n−1)

= 1

7.4. Show that ∞
∑

i=0

iri = (

∞
∑

i=1

ri) + r(

∞
∑

i=1

ri) + r2(

∞
∑

i=1

ri) + . . .

(look carefully at the limits of the sums!) and so show that

∞
∑

i=0

iri =
r

(1− r)2
.

7.5. Write S∞ =
∑∞

i=0 r
i. Show that

∞
∑

i=0

i2ri = (γ − 1) + 3r(γ − 1) + 5r2(γ − 1) + . . .

and so that ∞
∑

i=0

i2ri =
r(1 + r)

(1− r)3
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7.6. Show that, for a geometric distribution with parameter p, the mean is

∞
∑

i=1

i(1− p)(i−1)p =

∞
∑

i=0

(i+ 1)(1− p)ip.

Now by rearranging and using the previous results, show that the mean is

∞
∑

i=1

i(1− p)(i−1)p =
1

p

7.7. Show that, for a geometric distribution with parameter p, the variance is 1−p
p2 .

To do this, note the variance is E
[

X2
]

− E[X]2. Now use the results of the
previous exercises to show that

E
[

X2] =

∞
∑

i=1

i2(1− p)(i−1)p =
p

1− p

(1− p)(2− p)

p3
,

then rearrange to get the expression for variance.

Bernoulli Random Variables

7.8. Write X for a Bernoulli random variable which takes the value 1 with proba-
bility p (and 0 with probability (1− p)).
(a) Show that E[X] = p.

(b) Show that E
[

X2
]

− E[X]2 = p(1− p)

The Binomial Distribution

7.9. Show that Pb(N − i;N, p) = Pb(i;N, p) for all i.
7.10. Write hr for the number of heads obtained in r flips of a coin which has

probability p of coming up heads. Compare the following two ways to compute
the probability of getting i heads in five coin flips:

• Flip the coin three times, count h3, then flip the coin twice, count h2,
then form w = h3 + h2.

• Flip the coin five times, and count h5.

Show that the probability distribution for w is the same as the probability
distribution for h5. Do this by showing that

P ({w = i}) =
5
∑

j=0

P ({h3 = j} ∩ {h2 = i− j}) = P ({h5 = i}).

7.11. Now we will do the previous exercise in a more general form. Again, write hr
for the number of heads obtained in r flips of a coin which has probability p of
coming up heads. Compare the following two ways to compute the probability
of getting i heads in N coin flips:

• Flip the coin t times, count ht, then flip the coin N − t times, count
hN−t, then form w = ht + hN−t.

• Flip the coin N times, and count hN .
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Show that the probability distribution for w is the same as the probability
distribution for hN . Do this by showing that

P ({w = i}) =
N
∑

j=0

P ({ht = j} ∩ {hN−t = i− j}) = P ({hN = i}).

You will likely find the recurrence relation

Pb(i;N, p) = pPb(i− 1;N − 1, p) + (1− p)Pb(i;N − 1, p).

is useful.
7.12. An airline runs a regular flight with six seats on it. The airline sells six tickets.

The gender of the passengers is unknown at time of sale, but women are as
common as men in the population. All passengers always turn up for the flight.
The pilot is eccentric, and will not fly a plane unless at least one passenger is
female. What is the probability that the pilot flies?

7.13. An airline runs a regular flight with s seats on it. The airline always sells t
tickets for this flight. The probability a passenger turns up for departure is p,
and passengers do this independently. What is the probability that the plane
travels with exactly 3 empty seats?

7.14. An airline runs a regular flight with s seats on it. The airline always sells t
tickets for this flight. The probability a passenger turns up for departure is p,
and passengers do this independently. What is the probability that the plane
travels with 1 or more empty seats?

7.15. An airline runs a regular flight with 10 seats on it. The probability that a
passenger turns up for the flight is 0.95. What is the smallest number of seats
the airline should sell to ensure that the probability the flight is full (i.e. 10
or more passengers turn up) is bigger than 0.99? (you’ll probably need to use
a calculator or write a program for this).

The Multinomial Distribution

7.16. Show that the multinomial distribution

Pm(n1, . . . , nk;N, p1, . . . , nk) =
N !

n1!n2!...nk !
pn1

1 pn2

2 . . . pnk

k

must satisfy the recurrence relation

Pm(n1, . . . , nk;N, p1, . . . , pk) = p1Pm(n1 − 1, . . . , nk;N − 1, p1, . . . , pk) +

p2Pm(n1, n2 − 1, . . . , nk;N − 1, p1, . . . , pk) + . . .

pkPm(n1, n2, . . . , nk − 1;N − 1, p1, . . . , pk)

The Poisson Distribution

7.17. Compute the Taylor series for xex around x = 0. Use this and pattern match-
ing to show that the mean of the Poisson distribution with intensity parameter
λ is λ.

7.18. Compute the Taylor series for (x2 + x)ex around x = 0. Use this and pattern
matching to show that the variance of the Poisson distribution with intensity
parameter λ is λ.
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Sums of Continuous Random Variables

7.19. Write px for the probability density function of a continuous random variable
X and py for the probability density function of a continuous random variable
Y . Show that the probability density function of S = X + Y is

p(s) =

∫ ∞

−∞
px(s− u)py(u)du =

∫ ∞

−∞
px(u)py(s− u)du

The Normal Distribution

7.20. Write

f(x) =

(

1√
2π

)

exp

(

−x2

2

)

.

(a) Show that f(x) is non-negative for all x.
(b) By integration, show that

∫ ∞

−∞
f(x)dx = 1,

so that f(x) is a probability density function.
(c) Show that

∫ ∞

−∞
xf(x)dx = 0.

The easiest way to do this is to notice that f(x) = f(−x)
(d) Show that

∫ ∞

−∞
xf(x− µ)dx = µ.

The easiest way to do this is to change variables, and use the previous
two exercises.

(e) Show that
∫ ∞

−∞
x2f(x)dx = 1.

You’ll need to either do, or look up, the integral to do this exercise.
7.21. Write

g(x) = exp

[

− (x− µ)2

2σ2

]

Show that
∫ ∞

−∞
g(x)dx =

√
2πσ.

You can do this by a change of variable, and the results of the previous exer-
cises.

7.22. Write

p(x) =

(

1√
2πσ

)

exp

(

−(x− µ)2

2σ2

)

.

(a) Show that
∫ ∞

−∞
xp(x)dx = µ

using the results of the previous exercises.
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(b) Show that
∫ ∞

−∞
x2p(x)dx = σ

using the results of the previous exercises.

The Binomial Distribution for Large N

7.23. I flip a fair coin N times and count heads. We consider the probability that
h, the fraction of heads, is in some range of numbers. Hint: If you know the
range of numbers for h, you know the range for h/N .
(a) For N = 1e6, what is P ({h ∈ [49500, 50500]})?
(b) For N = 1e4, what is P ({h > 9000})?
(c) For N = 1e2, what is P ({h > 60} ∪ {h < 40})?



C H A P T E R 8

Markov Chains and Simulation

There are many situations where one must work with a sequence of random
variables. For example, consider a bus queue; people arrive at random, and so
do buses. What is the probability that the queue gets to a particular length?
and what is the expected length of the queue? As another example, we could
have a random model of purchases from a shop — under any particular rule for
restoring inventory, what is the largest (resp. smallest) amount of stock on the
shelf? what is the expected amount of stock on the shelf? It turns out that
there is a simple and powerful model that applies to many sequences of random
variables. One can often use this model to make closed-form predictions. In cases
where closed-form predictions aren’t available, one can use simulation methods to
estimate probabilities and expectations.

8.1 MARKOV CHAINS

A Markov chain is a sequence of random variables which has important indepen-
dence properties. We will describe these properties in some detail below; first, we
give some examples. Markov chains are easily represented with the language of
finite state machines. For some Markov chains, it is easy to determine probabilities
and expectations of interest in closed form using simple methods. For others, it
is tricky (straightforward, but unreasonable amounts of straightforward work). In
these cases, we can estimate the relevant probabilities and expectations by simu-
lating the finite state machine.

8.1.1 Motivating Example: Multiple Coin Flips

We start with three examples, each of which is easy to work. Each suggests a much
harder question, however, which we need new machinery to handle.

Worked example 8.1 Multiple Coin Flips - 1

You choose to flip a fair coin until you see two heads in a row, and then stop.
What is the probability that you flip the coin twice?

Solution: Because you stopped after two flips, you must have seen two heads.
So P (2 flips) = P ({HH}) = P ({H})2 = 1/4.

184
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Worked example 8.2 Multiple Coin Flips - 2

You choose to flip a fair coin until you see two heads in a row, and then stop.
What is the probability that you flip the coin three times?

Solution: Because you stopped after three flips, you must have seen T , then
H , then H ; any other sequence either doesn’t stop, or stops too early. We
write this with the last flip last, so THH . So P (3 flips) = P ({THH}) =
P ({T })P ({H})2 = 1/8.

Worked example 8.3 Multiple Coin Flips - 3

You choose to flip a fair coin until you see two heads in a row, and then stop.
What is the probability that you flip the coin four times?

Solution: This is more interesting. The last three flips must have been THH
(otherwise you’d go on too long, or end too early). But, because the second
flip must be a T , the first could be either H or T . This means there are two
sequences that work: HTHH and TTHH . So P (4 flips) = 2/8 = 1/4.

The harder question here is to ask what is P (N), for N some number (larger
than 4, because we know the answers in the other cases). It is unattractive to
work this case by case (you could try this, if you don’t believe me). One very
helpful way to think about the coin flipping experiment is as a finite state machine
(Figure 8.1). If you think of this machine as a conventional finite state machine, it
accepts any string of T , H , that (a) ends with HH , and (b) has no other HH in it.
Alternatively, you could think of this machine as encoding a probabilistic process.
At each state, an event occurs with some probability (in this case, a coin comes
up H or T , with probability (1/2)). The event causes the machine to follow the
appropriate edge. If we take this view, this machine stops when we have flipped two
heads in succession. It encodes our problem of computing the probability of flipping
a coin N times then stopping — this is just the probability that the machine hits
the end state after N transitions.

It turns out to be straightforward to construct a recurrence relation for P (N)
(i.e. an equation for P (N) in terms of P (N−1), P (N−2), and so on). This property
is quite characteristic of repeated experiments. For this example, first, notice that
P (1) = 0. Now imagine you have flipped the coin N times and stopped. We can
assume that N > 3, because we know what happens for the other cases. The last
three flips must have been THH . Write ΣN for a sequence that is: (a) N flips long;
(b) ends in HH ; and (c) contains no other subsequence HH . Equivalently, this is
a string accepted by the finite state machine of figure 8.1. We must have that any
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T

1 2

HH

T

FIGURE 8.1: A finite state machine representing the coin flip example. By conven-
tion, the end state is a double circle, and the start state has an incoming arrow. I’ve
labelled the arrows with the event that leads to the transition, but haven’t bothered
to put in the probabilities, because each is 0.5.

ΣN has either the form TΣN−1 or the form HTΣN−2. But this means that

P (N) = P (T )P (N − 1) + P (HT )P (N − 2)

= (1/2)P (N − 1) + (1/4)P (N − 2)

It is possible to solve this recurrence relation to get an explicit formula, but doing
so would take us out of our way. You will check this recurrence relation in an
exercise.

One really useful way to think of this recurrence relation is that represents
an exercise in counting. We want to count all sequences that are of length N , and
are accepted by the finite state machine of figure 8.1. This means they: (a) are
N flips long; (b) end in HH ; and (c) contain no other subsequence HH . Now
work backward along the FSM. The only way to arrive at the final state is to be in
state 1, then see HH . So you can obtain an acceptable N element sequence by (a)
prepending a T to an acceptable N − 1 element sequence or (b) prepending TH
(which takes you to 2, then back to 1) to an acceptable N − 2 element sequence.
This line of reasoning can be made much more elaborate. There are a few examples
in the exercises.

8.1.2 Motivating Example: The Gambler’s Ruin

Another useful example is known as the gambler’s ruin. Assume you bet $1 a
tossed coin will come up heads. If you win, you get $1 and your original stake back.
If you lose, you lose your stake. But this coin has the property that P (H) = p < 1/2.
We will study what happens when you bet repeatedly.

Assume you have $s when you start. You will keep betting until either (a) you
have $0 (you are ruined; you can’t borrow money) or (b) the amount of money you
have accumulated is $j, where j > s. The coin tosses are independent. We will com-
pute P (ruined, starting with s|p) the probability that you leave the table with noth-
ing, when you start with $s. For brevity, we write P (ruined, starting with s|p) = ps.
You can represent the gambler’s ruin problem with a finite state machine as well.
Figure 8.2 shows a representation of the gambler’s ruin problem.
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2 1j-1
W

L L L L

W W W

...

FIGURE 8.2: A finite state machine representing the gambler’s ruin example. I have
labelled each state with the amount of money the gambler has at that state. There
are two end states, where the gambler has zero (is ruined), or has j and decides
to leave the table. The problem we discuss is to compute the probability of being
ruined, given the start state is s. This means that any state except the end states
could be a start state. I have labelled the state transitions with “W” (for win) and
“L” for lose, but have omitted the probabilities.

Worked example 8.4 The gambler’s ruin - 1

Using the notation above, determine p0 and pj

Solution: We must have p0 = 1, because if you have $0, you leave the table.
Similarly, if you have $j, you leave the table with $j, so you don’t leave the
table with nothing, so pj = 0.

Worked example 8.5 The gambler’s ruin - 2

Using the notation above, write a recurrence relation for ps (the probability
that you leave the table with nothing when you started with $s.

Solution: Assume that you win the first bet. Then you have $s + 1, so your
probability of leaving the table with nothing now becomes ps+1. If you lose the
first bet, then you have $s − 1, so your probability of leaving the table with
nothing now becomes ps−1. The coin tosses are independent, so we can write

ps = pps+1 + (1− p)ps−1.

Some fairly lively work with series, relegated to the end of the chapter as
exercises, yields

ps =

(

1−p
p

)j

−
(

1−p
p

)s

(

1−p
p

)j

− 1

.

This expression is quite informative. Notice that, if p < 1/2, then (1 − p)/p > 1.
This means that as j → ∞, we have ps → 1. If you gamble repeatedly on an unfair
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p
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p p

q

q q

q

q

FIGURE 8.3: A virus can exist in one of 3 strains. At the end of each year, the virus
mutates. With probability α, it chooses uniformly and at random from one of the 2
other strains, and turns into that; with probability 1− α, it stays in the strain it is
in. For this figure, we have transition probabilities p = (1− α) and q = (α/2).

coin, the probability that you run out of money before you hit some threshold ($j
in this case) tends to one.

8.1.3 Motivating Example: A Virus

Problems represented with a finite state machine don’t need to have an end state.
As one example, (which I got from ACC Coolen’s lecture notes), we have a virus
that can exist in one of k strains. At the end of each year, the virus mutates.
With probability α, it chooses uniformly and at random from one of the k − 1
other strains, and turns into that; with probability 1 − α, it stays in the strain it
is in (Figure 8.3 shows an example with three strains). For that figure, we have
p = (1− α) and q = (α/2). The virus just keeps on changing, and there is no end
state. But there are a variety of very interesting questions we can try to answer.
We would like to know, for example, the expected time to see a strain a second
time, i.e. if the virus is in strain 1 at time 1, what is the expected time before it
is in strain 1 again? If the virus has mutated many times, what is the probability
that it is in each strain? and do these probabilities depend on the start strain?

8.1.4 Markov Chains

In Figure 8.1 and Figure 8.2, I showed the event that caused the state transitions.
It is more usual to write a probability on the figure, as I did in Figure 8.3, because
the probability of a state transition (rather than what caused it) is what really
matters. The underlying object is now a weighted directed graph, because we have
removed the events and replaced them with probabilities. These probabilities are
known as transition probabilities; notice that the sum of transition probabilities
over outgoing arrows must be 1.

We can now think of our process as a biased random walk on a weighted
directed graph. A bug (or any other small object you prefer) sits on one of the
graph’s nodes. At each time step, the bug chooses one of the outgoing edges at
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random. The probability of choosing an edge is given by the probabilities on the
drawing of the graph (equivalently, the transition probabilities). The bug then
follows that edge. The bug keeps doing this until it hits an end state.

This bug produces a sequence of random variables. If there are k states in the
finite state machine, we can label each state with a number, 1 . . . k. At the n’th time
step, the state of the process — the node that the bug is sitting on — is a random
variable, which we write Xn. These random variables have an important property.
The probability that Xn takes some particular value depends only on Xn−1, and
not on any other previous state. If we know where the bug is at step n− 1 in our
model, we know where it could go, and the probability of each transition. Where
it was at previous times does not affect this, as long as we know its state at step
n− 1.

A sequence of random variables Xn is a Markov chain if it has the property
that, P (Xn = j|values of all previous states) = P (Xn = j|Xn−1), or, equivalently,
only the last state matters in determining the probability of the current state. The
probabilities P (Xn = j|Xn−1 = i) are the transition probabilities. Any model
built by taking the transitions of a finite state machine and labelling them with
probabilities must be a Markov chain. However, this is not the only way to build
or represent a Markov chain.

One representation of a Markov chain uses a matrix of transition probabilities.
We define the matrix P with pij = P (Xn = j|Xn−1 = i). Notice that this matrix
has the properties that pij ≥ 0 and

∑

j

pij = 1

because at the end of each time step the model must be in some state. Equivalently,
the sum of transition probabilities for outgoing arrows is one. Non-negative matrices
with this property are stochastic matrices. By the way, you should look very
carefully at the i’s and j’s here — Markov chains are usually written in terms of
row vectors, and this choice makes sense in that context.

Worked example 8.6 Viruses

Write out the transition probability matrix for the virus of Figure 8.3, assuming
that α = 0.2.

Solution: We have P (Xn = 1|Xn−1 = 1) = (1 − α) = 0.8, and P (Xn =
2|Xn−1 = 1) = α/2 = P (Xn = 3|Xn−1 = 1); so we get





0.8 0.1 0.1
0.1 0.8 0.1
0.1 0.1 0.8




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Now imagine we do not know the initial state of the chain, but instead have
a probability distribution. This gives P (X0 = i) for each state i. It is usual to
take these k probabilities and place them in a k-dimensional row vector, which is
usually written π. For example, we might not know what the initial strain of the
virus is, but just that each strain is equally likely. So for a 3-strain virus, we would
have π = [1/3, 1/3, 1/3]. From this information, we can compute the probability
distribution over the states at time 1 by

P (X1 = j) =
∑

i

P (X1 = j,X0 = i)

=
∑

i

P (X1 = j|X0 = i)P (X0 = i)

=
∑

i

pijπi.

If we write p(n) for the row vector representing the probability distribution of the
state at step n, we can write this expression as

p(1) = πP .

Now notice that

P (X2 = j) =
∑

i

P (X2 = j,X1 = i)

=
∑

i

P (X2 = j|X1 = i)P (X1 = i)

=
∑

i

pij

(

∑

ki

pkiπk

)

.

so that
p(n) = πPn.

This expression is useful for simulation, and also allows us to deduce a variety of
interesting properties of Markov chains.
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FIGURE 8.4: Examples of finite state machines that give rise to Markov chains
that are NOT irreducible (left) and irreducible (right). To obtain Markov chains
from these drawings, we would have to give the probabilities of the events that lead
to state transitions. We’ll assume that none of the probabilities are zero; after
that, the values don’t matter for irreducibility analysis. The top left FSM is not
irreducible, because it has an end state; once the bug reaches this point, it can’t go
anywhere else. The bottom left FSM is not irreducible, because the bug can get
stuck in state 2.

Worked example 8.7 Viruses

We know that the virus of Figure 8.3 started in strain 1. After two state
transitions, what is the distribution of states when α = 0.2? when α = 0.9?
What happens after 20 state transitions? If the virus starts in strain 2, what
happens after 20 state transitions?

Solution: If the virus started in strain 1, then π = [1, 0, 0]. We must
compute π(P(α))2. This yields [0.66, 0.17, 0.17] for the case α = 0.2 and
[0.4150, 0.2925, 0.2925] for the case α = 0.9. Notice that, because the virus
with small α tends to stay in whatever state it is in, the distribution of states
after two years is still quite peaked; when α is large, the distribution of states is
quite uniform. After 20 transitions, we have [0.3339, 0.3331, 0.3331] for the case
α = 0.2 and [0.3333, 0.3333, 0.3333] for the case α = 0.9; you will get similar
numbers even if the virus starts in strain 2. After 20 transitions, the virus has
largely “forgotten” what the initial state was.

In example 8.7, the distribution of virus strains after a long interval appeared
not to depend much on the initial strain. This property is true of many Markov
chains. Assume that any state can be reached from any other state, by some
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sequence of transitions. Such chains are called irreducible; notice this means
there is no end state, like the virus example. Irreducibility also means that the
chain cannot get “stuck” in a state or a collection of states (Figure 8.4). Then
there is a unique vector s, usually referred to as the stationary distribution,
such that for any initial state distribution π,

lim
n → ∞ πP(n) = s.

Equivalently, if the chain has run through many steps, it no longer matters what
the initial distribution is. You expect that the probability distribution over states
is s.

8.1.5 Example: Particle Motion as a Markov Chain

One can find Markov chains in quite unexpected places, often with useful conse-
quences. In this example, I will obtain a Markov chain without reasoning about
graphs or finite state machines. We will investigate a particle moving under gravity,
in 3 dimensions. Write the position of the particle as p(t), its velocity as v(t), its
acceleration as a(t), its mass as m, and the gravitational force as g. Then we know
that

v(t) =
dp

dt

a(t) =
dv

dt
= g.

Now stack the position and the acceleration into a single vectorX(t) = (p(t),v(t))
T
.

We could write these equations as

dX

dt
= AX + b

where

A =

(

0 I
0 0

)

and

b =

(

0
g

)

.

Now imagine that we look at the position, velocity and acceleration of the particle
at fixed time instants, so we are really interested in Xi = X(t0+ i∆t). In this case,
we can approximate dX

dt by (Xi+1 −Xi)/∆t. We then have

Xi+1 = Xi + (∆t) (AXi + b) .

This is beginning to look like a Markov chain, because Xi+1 depends only on Xi

but not on any previous X . But there isn’t any randomness here. We can fix that
by assuming that the particle is moving in, say, a light turbulent wind. Then the
acceleration at any time consists of (a) the acceleration of gravity and (b) a small,
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random force produced by the wind. Write wi for this small, random force at time
i, and P (wi|i) for its probability distribution, which could reasonably depend on
time. We can then rewrite our equation by writing

Xi+1 = Xi + (∆t) (AXi + br) .

where

br =

(

0
g +wi

)

.

Now the Xi are clearly random variables. We could get P (Xi+1|Xi) by rearranging
terms. If I know Xi+1 and Xi, I know the value of wi; I could plug this into P (wi|i)
to yield P (Xi+1|Xi).

Using a finite state machine in this example would be a bit unnatural. This
example turns out to be surprisingly useful in applications, because (with other
algorithmic machinery we can’t go into here) it offers the basis for algorithms that
can track moving objects by predicting where they will go next. Applications are
widespread. Military applications include tracking aircraft, UFO’s, missiles, etc.
Civilian applications include surveillance in public places; games console interfaces
that track moving people; and methods that can follow experimental mice as they
move around their cages (useful for testing medicines).

8.2 SIMULATION

Many problems in probability can be worked out in closed form if one knows enough
combinatorial mathematics, or can come up with the right trick. Textbooks are
full of these, and we’ve seen some. Explicit formulas for probabilities are often
extremely useful. But it isn’t always easy or possible to find a formula for the
probability of an event in a model. An alternative strategy is to build a simulation,
run it many times, and count the fraction of outcomes where the event occurs. This
is a simulation experiment.

8.2.1 Obtaining Random Numbers

Simulation is at its most useful when we try to estimate probabilities that are hard
to calculate. Usually we have processes with some random component, and we
want to estimate the probability of a particular outcome. To do so, we will need a
supply of random numbers to simulate the random component.

Uniform Random Numbers
I will describe features in Matlab, because I’m used to Matlab. It’s a good

programming environment for numerical work, particularly for working with ma-
trices and vectors. You can expect pretty much any programming environment to
provide a random number generator that returns a number uniformly distributed in
the range [0− 1]. If you know anything about representing numbers, you’ll already
have spotted something funny. The number that comes out of the random number
generator must be represented by a small set of bits, but almost all numbers in
the interval [0− 1] require an infinite number of bits to represent. We’ll sweep this
issue under the general carpet of floating point representations; it doesn’t matter
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for anything we need to do. The Matlab function function to do this is called rand.
It can also return matrices; for example, rand(10, 20) will get you a 10× 20 table
of independent uniformly distributed random numbers in the range [0− 1].

It is useful to get a uniformly distributed random integer in a particular range
(for example, you might want to choose a random element in an array). You can
do so with a random number generator and a function (like Matlab’s floor) that
returns the largest integer smaller than its argument. If I want a discrete random
variable with uniform distribution, maximum value 100 and minimum value 7, I
habitually choose a very tiny number (for this example, say 1e− 7) and do
floor((100-7-1e-7)*rand()+7). I use the 1e − 7 because I can never remember
whether rand produces a number no larger than one, or one that is guaranteed to
be smaller than one, and I never need to care about the very tiny differences in
probability caused by the 1e-7. You might be able to do something cleaner if you
bothered checking this point.

Normal Random Numbers
In pretty much any programming environment, you would also expect to find

a random number generator that returns a normal random variable, with mean zero
and standard deviation one. In Matlab, this function is called randn. Conveniently,
randn(3, 4) will give you a 3 × 4 table of such numbers, which are independent
of each other. As you would expect from section 14.1, to change the mean of this
random number, you add a constant; to change the variance, you multiply by a
constant. So in Matlab, if you want a normal random variable with mean 3 and
standard deviation 4, you use 4*randn()+3.

8.2.2 Computing Expectations with Simulations

Simulation is also a very good way to estimate expectations. Imagine we have a
random variable X with probability distribution P (X) that takes values in some
domain D. Assume that we can easily produce independent simulations, and that
we wish to know E[f ], the expected value of the function f under the distribution
P (X).

The weak law of large numbers tells us how to proceed. Define a new random
variable F = f(X). This has a probability distribution P (F ), which might be
difficult to know. We want to estimate E[f ], the expected value of the function f
under the distribution P (X). This is the same as E[F ]. Now if we have a set of
IID samples of X , which we write xi, then we can form a set of IID samples of F
by forming f(xi) = fi. Write

FN =

∑N
i=1 fi
N

.

This is a random variable, and the weak law of large numbers gives that, for any
positive number ǫ

lim
N→∞

P ({||FN − E[F ] || > ǫ}) = 0.

You can interpret this as saying that, that for a set of IID random samples xi, the
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probability that
∑N

i=1 f(xi)

N

is very close to E[f ] is high for large N

Worked example 8.8 Computing an Expectation

Assume the random variable X is uniformly distributed in the range [0 − 1],
and the random variable Y is uniformly distributed in the range [0 − 10]. X
and Z are independent. Write Z = (Y − 5X)3 −X2. What is var ({Z})?

Solution: With enough work, one could probably work this out in closed
form. An easy program will get a good estimate. We have that var ({Z}) =

E
[

Z2
]

−E[Z]
2
. My program computed 1000 values of Z (by drawing X and Y

from the appropriate random number generator, then evaluating the function).

I then computed E[Z] by averaging those values, and E[Z]2 by averaging their
squares. For a run of my program, I got var ({Z}) = 2.76× 104.

8.2.3 Computing Probabilities with Simulations

You can compute a probability using a simulation, too, because a probability can
be computed by taking an expectation. Recall the property of indicator functions
that

E
[

I[E]
]

= P (E)
(Section 6.2.5). This means that computing the probability of an event E involves
writing a function that is 1 when the event occurs, and 0 otherwise; we then estimate
the expected value of that function.

The weak law of large numers justifies this procedure. An experiment involves
drawing a sample from the relevant probability distribution P (X), then determining
whether event E occurred or not. We define a new random variable E, which takes
the value 1 when the event E occurs during our experiment (i.e. with probability
P (E)) and 0 when it doesn’t (i.e. with probability P (Ec)). Our experiment yields
a sample of this random variable. We perform N experiments yielding a set of IID

samples of this distribution ei and compute EN =

∑

N

i=1
ei

N . From the weak law of
large numbers, we have that for any ǫ > 0,

lim
N→∞

P ({||EN − E[E] || ≥ ǫ}) = 0

meaning that for large enough N , EN will be very close to E[E] = P (E).
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Worked example 8.9 Computing a Probability for Multiple Coin Flips

You flip a fair coin three times. Use a simulation to estimate the probability
that you see three H ’s.

Solution: You really should be able to work this out in closed form. But it’s
amusing to check with a simulation. I wrote a simple program that obtained a
1000x3 table of uniformly distributed random numbers in the range [0−1]. For
each number, if it was greater than 0.5 I recorded an H and if it was smaller,
I recorded a T . Then I counted the number of rows that had 3 H ’s (i.e. the
expected value of the relevant indicator function). This yielded the estimate
0.127, which compares well to the right answer.

Worked example 8.10 Computing a Probability

Assume the random variable X is uniformly distributed in the range [0 − 1],
and the random variable Y is uniformly distributed in the range [0−10]. Write
Z = (Y − 5X)3 −X2. What is P ({Z > 3})?

Solution: With enough work, one could probably work this out in closed form.
An easy program will get a good estimate. My program computed 1000 values
of Z (by drawing X and Y from the appropriate random number generator,
then evaluating the function) and counted the fraction of Z values that was
greater than 3 (which is the relevant indicator function). For a run of my
program, I got P ({Z > 3}) ≈ 0.619

8.2.4 Simulation Results as Random Variables

The estimate of a probability or of an expectation that comes out of a simulation
experiment is a random variable, because it is a function of random numbers. If
you run the simulation again, you’ll get a different value (unless you did some-
thing silly with the random number generator). Generally, you should expect this
random variable to behave like a normal random variable. You can check this by
constructing a histogram over a large number of runs. The mean of this random
variable is the parameter you are trying to estimate. It is useful to know that this
random variable tends to be normal, because it means the standard deviation of
the random variable tells you a lot about the likely values you will observe.

Another helpful rule of thumb, which is almost always right, is that the stan-
dard deviation of this random variable behaves like

C√
N

where C is a constant that depends on the problem and can be very hard to evaluate,
and N is the number of runs of the simulation. What this means is that if you want
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FIGURE 8.5: Estimates of the probability from example 8.10, obtained from different
runs of my simulator using different numbers of samples. In each case, I used
100 runs; the number of samples is shown on the horizontal axis. You should
notice that the estimate varies pretty widely when there are only 10 samples, but
the variance (equivalently, the size of the spread) goes down sharply as the number of
samples increases to 1000. Because we expect these estimates to be roughly normally
distributed, the variance gives a good idea of how accurate the original probability
estimate is.

to (say) double the accuracy of your estimate of the probability or the expectation,
you have to run four times as many simulations. Very accurate estimates are tough
to get, because they require immense numbers of simulation runs.

Figure 8.5 shows how the result of a simulation behaves when the number of
runs changes. I used the simulation of example 8.10, and ran multiple experiments
for each of a number of different samples (i.e. 100 experiments using 10 samples;
100 using 100 samples; and so on).

Small probabilities can be rather hard to estimate, as we would expect. In
the case of example 8.10, let us estimate P ({Z > 950}). A few moments with a
computer will show that this probability is of the order of 1e-3 to 1e-4. I obtained
a million different simulated values of Z from my program, and saw 310 where
Z > 950. This means that to know this probability to, say, three digits of numerical
accuracy might involve a daunting number of samples. Notice that this does not
contradict the rule of thumb that the standard deviation of the random variable
defined by a simulation estimate behaves like C√

N
; it’s just that in this case, C is

very large indeed.
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8.3 SIMULATION EXAMPLES

Computing probabilities and expectations from simulations should be so natural to
a computer science student that it can be hard to see the magic. You estimate the
probability of an event E by writing a program that runs N independent simulations
of an experiment, counts how many times the event occurs (which we write #(E)),
and reports

#(E)
N

as an estimate of P (E). This estimate will not be exact, and may be different for
different runs of the program. It’s often a good, simple estimate.

Choosing N depends on a lot of considerations. Generally, a larger N means
a more accurate answer, and also a slower program. If N is too small, you may
find that you report 1 or 0 for the probability (think of what would happen if you
measured P (H) for a coin with one flip). One strategy is to run several simulations,
report the mean, and use the standard deviation as some guide to the accuracy.

8.3.1 Simulating Experiments

Worked example 8.11 Getting 14’s with 20-sided dice

You throw 3 fair 20-sided dice. Estimate the probability that the sum of the
faces is 14 using a simulation. Use N = [1e1, 1e2, 1e3, 1e4, 1e5, 1e6]. Which
estimate is likely to be more accurate, and why?

Solution: You need a fairly fast computer, or this will take a long time.
I ran ten versions of each experiment for N = [1e1, 1e2, 1e3, 1e4, 1e5, 1e6],
yielding ten probability estimates for each N . These were different for
each version of the experiment, because the simulations are random. I got
means of [0, 0.0030, 0.0096, 0.0100, 0.0096, 0.0098], and standard deviations of
[00.00670.00330.00090.00020.0001]. This suggests the true value is around
0.0098, and the estimate from N = 1e6 is best. The reason that the esti-
mate with N = 1e1 is 0 is that the probability is very small, so you don’t
usually observe this case at all in only ten trials.



Section 8.3 Simulation Examples 199

Worked example 8.12 Comparing simulation with computation

You throw 3 fair six-sided dice. You wish to know the probability the sum is
3. Compare the true value of this probability with estimates from six runs of
a simulation using N = 10000. What conclusions do you draw?

Solution: I ran six simulations with N = 10000, and got
[0.0038, 0.0038, 0.0053, 0.0041, 0.0056, 0.0049]. The mean is 0.00458, and the
standard deviation is 0.0007, which suggests the estimate isn’t that great, but
the right answer should be in the range [0.00388, 0.00528] with high probability.
The true value is 1/216 ≈ 0.00463. The estimate is tolerable, but not super
accurate.

8.3.2 Simulating Markov Chains

Worked example 8.13 Coin Flips with End Conditions

I flip a coin repeatedly until I encounter a sequence HTHT, at which point I
stop. What is the probability that I flip the coin nine times?

Solution: You might well be able to construct a closed form solution to this
if you follow the details of example 14.1 and do quite a lot of extra work.
A simulation is really straightforward to write; notice you can save time by
not continuing to simulate coin flips once you’ve flipped past nine times. I got
0.0411 as the mean probability over 10 runs of a simulation of 1000 experiments
each, with a standard deviation of 0.0056.
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Worked example 8.14 A Queue

A bus is supposed to arrive at a bus stop every hour for 10 hours each day. The
number of people who arrive to queue at the bus stop each hour has a Poisson
distribution, with intensity 4. If the bus stops, everyone gets on the bus and
the number of people in the queue becomes zero. However, with probability
0.1 the bus driver decides not to stop, in which case people decide to wait. If
the queue is ever longer than 15, the waiting passengers will riot (and then
immediately get dragged off by the police, so the queue length goes down to
zero). What is the expected time between riots?

Solution: I’m not sure whether one could come up with a closed form solution
to this problem. A simulation is completely straightforward to write. I get
a mean time of 441 hours between riots, with a standard deviation of 391.
It’s interesting to play around with the parameters of this problem; a less
conscientious bus driver, or a higher intensity arrival distribution, lead to much
more regular riots.

Worked example 8.15 Inventory

A store needs to control its stock of an item. It can order stocks on Fri-
day evenings, which will be delivered on Monday mornings. The store is old-
fashioned, and open only on weekdays. On each weekday, a random number of
customers comes in to buy the item. This number has a Poisson distribution,
with intensity 4. If the item is present, the customer buys it, and the store
makes $100; otherwise, the customer leaves. Each evening at closing, the store
loses $10 for each unsold item on its shelves. The store’s supplier insists that it
order a fixed number k of items (i.e. the store must order k items each week).
The store opens on a Monday with 20 items on the shelf. What k should the
store use to maximise profits?

Solution: I’m not sure whether one could come up with a closed form solution
to this problem, either. A simulation is completely straightforward to write.
To choose k, you run the simulation with different k values to see what hap-
pens. I computed accumulated profits over 100 weeks for different k values,
then ran the simulation five times to see which k was predicted. Results were
21, 19, 23, 20, 21. I’d choose 21 based on this information.

For example 8.15, you should plot accumulated profits. If k is small, the store
doesn’t lose money by storing items, but it doesn’t sell as much stuff as it could;
if k is large, then it can fill any order but it loses money by having stock on the
shelves. A little thought will convince you that k should be near 20, because that is
the expected number of customers each week, so k = 20 means the store can expect
to sell all its new stock. It may not be exactly 20, because it must depend a little
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FIGURE 8.6: A very small fraction of the web, drawn to suggest a finite state ma-
chine; each state represents a page, and each directed edge represents an outgoing
link. A random web surfer could either (a) follow an outgoing link, chosen at ran-
dom or (b) type in the URL of any page, chosen at random. Such a surfer would see
lots of pages that have many incoming links from pages that have lots of incoming
links, and so on. Pages like this are likely important, so that finding important
pages is analogous to simulating a random web surfer.

on the balance between the profit in selling an item and the cost of storing it. For
example, if the cost of storing items is very small compared to the profit, an very
large k might be a good choice. If the cost of storage is sufficiently high, it might
be better to never have anything on the shelves; this point explains the absence of
small stores selling PC’s.

8.3.3 Example: Ranking the Web by Simulating a Markov Chain

Perhaps the most valuable technical question of the last thirty years has been:
Which web pages are interesting? Some idea of the importance of this question is
that it was only really asked about 20 years ago, and at least one gigantic technology
company has been spawned by a partial answer. This answer, due to Larry Page
and Sergey Brin, and widely known as PageRank, starts with a Markov chain.

Figure 8.6 shows a picture of (a very small fraction of) the world wide web. I
have drawn the web using a visual metaphor that should strongly suggest a finite
state machine, and so a Markov chain. Each page is a state. Directed edges from
page to page represent links. I count only the first link from a page to another
page. Some pages are linked, others are not. I want to know how important each
page is.

One way to think about importance is to think about what a random web
surfer would do. The surfer can either (a) choose one of the outgoing links on a
page at random, and follow it or (b) type in the URL of a new page, and go to that
instead. As Figure 8.6 suggests, it is useful to think of this as a random walk on a
finite state machine. We expect that this random surfer should see a lot of pages
that have lots of incoming links from other pages that have lots of incoming links
that (and so on). These pages are important, because lots of pages have linked to
them.

For the moment, ignore the surfer’s option to type in a URL. Write r(i) for
the importance of the i’th page. We model importance as leaking from page to page
across outgoing links (the same way the surfer jumps). Page i receives importance
down each incoming link. The amount of importance is proportional to the amount
of importance at the other end of the link, and inversely proportional to the number
of links leaving that page. So a page with only one outgoing link transfers all its
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Orphaned page

S

FIGURE 8.7: The web isn’t really like Figure 8.6. It’s more like this figure (only
bigger). In this figure, we see sections of the web that can’t be reached by following
links from other sections (the gray boxes); orphaned pages; and pages where a ran-
dom walker would get stuck (S). Any algorithm for assigning importance must be
able to deal with these effects.

importance down that link; and the way for a page to receive a lot of importance
is for it to have a lot of important pages link to it alone. We write

r(j) =
∑

i→j

r(i)

| i |

where | i | means the total number of links pointing out of page i. We can stack the
r(j) values into a row vector r, and construct a matrix P , where

pij =

{ 1
|i| if i points to j

0 otherwise

With this notation, the importance vector has the property

r = rP

and should look a bit like the stationary distribution of a random walk to you,
except that P isn’t stochastic — there may be some rows where the row sum of P
is zero, because there are no outgoing links from that page. We can fix this easily
by replacing each row that sums to zero with (1/n)1, where n is the total number
of pages. Call the resulting matrix G (it’s quite often called the raw Google
matrix). Notice that doing this doesn’t really change anything significant; pages
with no outgoing links leak a tiny fraction of their importance to every other page.

Figure 8.6 isn’t a particularly good model of the web (and not because it’s
tiny, either). Figure 8.7 shows some of the problems that occur. There are pages
with no outgoing links (which we’ve dealt with), pages with no incoming links,
and even pages with no links at all. Worse, a random walk can get trapped (in
one of the gray boxes). One way to fix all this would be to construct a process
that wandered around the web inserting links that clean up the structure of the
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graph. This strategy is completely infeasible, because the real web is much too
big. Allowing the surfer to randomly enter a URL sorts out all of these problems,
because it inserts an edge of small weight from every node to every other node.
Now the random walk cannot get trapped.

There are a variety of possible choices for the weight of these inserted edges.
The original choice was to make each inserted edge have the same weight. Write
1 for the n dimensional column vector containing a 1 in each component, and let
0 < α < 1. We can write the matrix of transition probabilities as

G(α) = α
(11T )

n
+ (1− α)G

where G is the original Google matrix. An alternative choice is to choose a weight
for each web page, using anything from advertising revenues to page visit statistics
to thaumaturgy (Google keeps quiet about the details). Write this weight vector
v, and require that 1Tv = 1 (i.e. the coefficients sum to one). Then we could have

G(α,v) = α
(1vT )

n
+ (1 − α)G.

Now the importance vector r is the (unique, though I won’t prove this) row vector
r such that

r = rG(α,v).
How do we compute this vector? One natural algorithm is to start with some

initial estimate, and propagate it. We write r(k) for the estimated importance after
the k’th step. We define updates by

(r(k)) = (r(k−1))G(α,v).

We can’t compute this directly, either, because G(α,v) is unreasonably big so (a)
we can’t form or store G(α,v) and (b) we can’t multiply by it either. But we could
estimate r with a random walk, because r is the stationary distribution of a Markov
chain. If we simulate this walk for many steps, the probability that the simulation
is in state j should be r(j), at least approximately.

This simulation is easy to build. Imagine our random walking bug sits on a
web page. At each time step, it transitions to a new page by either (a) picking
from all existing pages at random, using v as a probability distribution on the
pages (which it does with probability α); or (b) chooses one of the outgoing links
uniformly and at random, and follows it (which it does with probability 1 − α).
The stationary distribution of this random walk is r. Another fact that I shall not
prove is that, when α is sufficiently large, this random walk very quickly “forgets”
it’s initial distribution. As a result, you can estimate the importance of web pages
by starting this random walk in a random location; letting it run for a bit; then
stopping it, and collecting the page you stopped on. The pages you see like this
are independent, identically distributed samples from r; so the ones you see more
often are more important, and the ones you see less often are less important.
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8.3.4 Example: Simulating a Complicated Game

I will build several examples around a highly simplified version of a real card game.
This game is Magic: The Gathering, and is protected by a variety of trademarks,
etc. My version — MTGDAF — isn’t very interesting as a game, but is simple
enough to be studied, and interesting enough it casts some light on the real game.
The game is played with decks of 60 cards. There are two types of card: Lands,
and Spells. Lands can be placed on the play table and stay there permanently;
Spells are played and then disappear. A Land on the table can be “tapped” or
“untapped”. Players take turns. Each player draws a hand of seven cards from a
shuffled deck. In each turn, a player first untaps any Lands on the table, then draws
a card, then plays a land onto the table (if the player has one in hand to play), then
finally can play one or more spells. Each spell has a fixed cost (of 1, . . . , 10), and
this cost is played by “tapping” a land (which is not untapped until the start of
the next turn). This means that the player can cast only cheap spells in the early
turns of the game, and expensive spells in the later turns.

Worked example 8.16 MTGDAF — The number of lands

Assume a deck of 60 cards has 24 Lands. It is properly shuffled, and you draw
seven cards. You could draw 0, . . . , 7 Lands. Estimate the probability for each,
using a simulation. Furthermore, estimate the error in your estimates.

Solution: The matlab function randperm produces a random permutation of
given length. This means you can use it to simulate a shuffle of a deck, as
in listing 8.1. I then drew 10, 000 random hands of seven cards, and counted
how many times I got each number. Finally, to get an estimate of the error,
I repeated this experiment 10 times and computed the standard deviation of
each estimate of probability. This produced

0.0218 0.1215 0.2706 0.3082 0.1956 0.0686 0.0125 0.0012

for the probabilities (for 0 to 7, increasing number of lands to the right) and

0.0015 0.0037 0.0039 0.0058 0.0027 0.0032 0.0005 0.0004

for the standard deviations of these estimates.
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Listing 8.1: Matlab code used to simulate the number of lands

s imcards=[ ones (24 , 1 ) ; zeros (36 , 1 ) ]
% 1 i f land , 0 o therw i s e
ninsim=10000;
nsims=10;
counts=zeros ( nsims , 8 ) ;
for i =1:10

for j =1:10000
s h u f f l e=randperm ( 6 0 ) ;
hand=simcards ( s h u f f l e ( 1 : 7 ) ) ;
%us e f u l matlab t r i c k here
nlands=sum( hand ) ;
%ie number o f lands
counts ( i , 1+nlands )= . . .

counts ( i , 1+nlands )+1;
% number o f lands cou ld be zero

end
end
probs=counts /ninsim ;
mean( probs )
std ( probs )
%%

Worked example 8.17 MTGDAF — The number of lands

What happens to the probability of getting different numbers of lands if you
put only 15 Lands in a deck of 60? It is properly shuffled, and you draw seven
cards. You could draw 0, . . . , 7 Lands. Estimate the probability for each, using
a simulation. Furthermore, estimate the error in your estimates.

Solution: You can change one line in the listing to get

0.1159 0.3215 0.3308 0.1749 0.0489 0.0075 0.0006 0.0000

for the probabilities (for 0 to 7, increasing number of lands to the right) and

0.0034 0.0050 0.0054 0.0047 0.0019 0.0006 0.0003 0.0000

for the standard deviations of these estimates.
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Worked example 8.18 MTGDAF — Playing spells

Assume you have a deck of 24 Lands, 10 Spells of cost 1, 10 Spells of cost 2,
10 Spells of cost 3, 2 Spells of cost 4, 2 Spells of cost 5, and 2 Spells of cost 6.
Assume you always only play the cheapest spell in your hand (i.e. you never
play two spells). What is the probability you will be able to play at least one
spell on each of the first four turns?

Solution: This simulation requires just a little more care. You draw the hand,
then simulate the first four turns. In each turn, you can only play a spell whose
cost you can pay, and only if you have it. I used the matlab of listing 8.2 and
listing 8.3; I found the probability to be 0.64 with standard deviation 0.01. Of
course, my code might be wrong....

Worked example 8.19 MTGDAF — Playing spells

Now we use a different distribution of cards. Assume you have a deck of 20
Lands, 9 Spells of cost 1, 5 Spells of cost 2, 5 Spells of cost 3, 5 Spells of cost
4, 5 Spells of cost 5, and 11 Spells of cost 6. Assume you always only play
the cheapest spell in your hand (i.e. you never play two spells). What is the
probability you will be able to play at least one spell on each of the first four
turns?

Solution: This simulation requires just a little more care. You draw the hand,
then simulate the first four turns. In each turn, you can only play a spell whose
cost you can pay, and only if you have it. I found the probability to be 0.33
with standard deviation 0.05. Of course, my code might be wrong....

One engaging feature of the real game that is revealed by these very simple
simulations is the tension between a players goals. The player would like to have
few lands — so as to have lots of spells — but doing so means that there’s a bigger
chance of not being able to play a spell. Similarly, a player would like to have lots
of powerful (=expensive) spells, but doing so means there’s a bigger chance of not
being able to play a spell. Players of the real game spend baffling amounts of time
arguing with one another about the appropriate choices for a good set of cards.
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FIGURE 8.8: Estimates of probabilities produced by simulation typically behave like
normal data. On the left, I show a histogram of probabilities of having a hand of 3
Lands in the simulation of example 8.16; these are plotted in standard coordinates.
On the right, I show a histogram of probability of playing a spell in each of the
first four turns (example 8.19), from 1000 simulation experiments; again, these are
plotted in standard coordinates. Compare these to the standard normal histograms
of the previous chapter.

Worked example 8.20 MTGDAF — How long before you can play a spell
of cost 3?

Assume you have a deck of 15 Lands, 15 Spells of cost 1, 14 Spells of cost 2,
10 Spells of cost 3, 2 Spells of cost 4, 2 Spells of cost 5, and 2 Spells of cost 6.
What is the expected number of turns before you can play a spell of cost 3?
Assume you always play a land if you can.

Solution: I get 6.3, with a standard deviation of 0.1. The problem is it can
take quite a large number of turns to get three lands out. I used the code of
listings 8.4 and 8.5

Recall that you can reasonably expect that the probability you compute from
a simulation behaves like normal data. Run a simulation experiment a large num-
ber of times and construct a data set whose entries are the probability from each
experiment. This data should be normal. This means that, if you subtract the
mean and divide by the standard deviation, you should get a histogram that looks
like the standard normal curve. Figure 8.8 shows some examples of this effect.
This effect is important, because it means that the right answer should be very few
standard deviations away from the mean you compute — the standard deviation
gives you quite a good idea of the accuracy of your estimate.

8.4 WHAT YOU SHOULD REMEMBER

You should remember:
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• A Markov chain is a sequence of random variables, with particular indepen-
dence properties. It is valuable to think of a Markov chain as being produced
by a biased random walk on a directed graph. In this view, the values of the
random variables are given by the labels at each node of the graph.

• In some Markov chains, there is a special state that the chain cannot leave
(an absorbing state). Not all chains have such states.

• Markov chains that satisfy reasonable structural assumptions have a station-
ary distribution. The random variables emitted by the chain will be samples
(but not necessarily independent samples) of that stationary distribution once
the chain has changed state often enough.

• One can often write expressions for various probabilities associated with
chains; these are usually recurrence relations.

• Simulating Markov chains is usually straightforward, and often extremely
useful.

• Simulation is a powerful method to estimate the probabilities of particular
events. The method can be used to estimate expectations as well.

• In general, one simulates a random process with a program, then counts the
different outputs encountered in a large number of runs of the simulation. In
most cases, for a sufficiently large number of runs, the number produced by a
simulation is the value of a normal random variable whose expected value is
the number sought and whose variance is k/N where k is an unknown constant
and N is the number of simulation runs. This means that the accuracy of
simulation based estimates improves increasingly slowly as N increases.

• Simulation methods can be used to estimate a wide range of useful properties,
including the importance of web documents and the value of various strategies
in games.

PROBLEMS

8.1. Multiple coin flips:
(a) For example ??, show that P (5) = (3/32) by directly writing out the

sequences of flips, and summing their probabilities.
(b) Now check the recurrence relation P (N) = (1/2)P (N−1)+(1/4)P (N−2)

for the case N = 5.
(c) What is P (7)?

8.2. Multiple die rolls: You roll a fair die until you see a 5, then a 6; after that,
you stop. Write P (N) for the probability that you roll the die N times.
(a) What is P (1)?
(b) Show that P (2) = (1/36).
(c) Draw a finite state machine encoding all the sequences of die rolls that you

could encounter. Don’t write the events on the edges; instead, write their
probabilities. There are 5 ways not to get a 5, but only one probability,
so this simplifies the drawing.

(d) Show that P (3) = (1/36).
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(e) Now use your finite state machine to argue that P (N) = (5/6)P (N −1)+
(25/36)P (N − 2).

8.3. More complicated multiple coin flips: You flip a fair coin until you see
eitherHTH or THT , and then you stop. We will compute a recurrence relation
for P (N).
(a) Figure ?? shows a finite state machine. Check that this finite state ma-

chine represents all coin sequences that you will encounter.
(b) Write ΣN for some string of lengthN accepted by this finite state machine.

Use this finite state machine to argue that SigmaN has one of four forms:

1. TTΣN−2

2. HHΣN−3

3. THHΣN−2

4. HTTΣN−3

(c) Now use this argument to show that P (N) = (1/2)P (N−2)+(1/4)P (N−
3).

8.4. The gambler’s ruin:
(a) Show that you can rearrange the recurrence relation of example 14.1 to

get

ps+1 − ps =
(1− p)

p
(ps − ps−1) .

Now show that this means that

ps+1 − ps =

(

(1− p)

p

)2

(ps−1 − ps−2)

so that

ps+1 − ps =

(

(1− p)

p

)s

(p1 − p0)

=

(

(1− p)

p

)s

(p1 − 1) .

(b) Now we need a simple result about series. Assume I have a series uk,
k ≥ 0, with the property that

uk − uk−1 = crk−1.

Show that

uk − u0 = c

(

rk − 1

r − 1

)

.

(c) Use the results of the last two steps to show that

ps − 1 = (p1 − 1)





(

1−p
p

)s

− 1
(

1−p
p

)

− 1




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(d) Use the fact that pj = 0 and the result of the last exercise to show

(p1 − 1) =
−1

(

(

1−p
p

)j−1
(

1−p

p

)

−1

) .

(e) Use the results of the previous exercises to show that

ps =

(

1−p
p

)j
−
(

1−p
p

)s

(

1−p
p

)j

− 1

.

http://luthuli.cs.uiuc.edu/ daf/courses/CS-199-BD/Notes/book-5-withbd-22-
April.pdf
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Listing 8.2: Matlab code used to simulate the four turns

s imcards=[zeros (24 , 1 ) ; ones (10 , 1 ) ; . . .
2∗ ones (10 , 1 ) ; 3 ∗ ones (10 , 1 ) ; . . .
4∗ ones (2 , 1 ) ; 5∗ ones (2 , 1 ) ; 6∗ ones (2 , 1 ) ] ;

nsims=10;
ninsim=1000;
counts=zeros ( nsims , 1 ) ;
for i =1: nsims

for j =1: ninsim
% draw a hand
s h u f f l e=randperm ( 6 0 ) ;
hand=simcards ( s h u f f l e ( 1 : 7 ) ) ;
%reorgan i z e the hand
cleanhand=zeros (7 , 1 ) ;
for k=1:7

cleanhand ( hand (k)+1)=cleanhand ( hand (k)+1)+1;
% ie count o f lands , s p e l l s , by cos t

end
l andsontab l e=0;
[ p l ayedspe l l 1 , landsontab le , cleanhand ] = . . .

playround ( landsontab le , cleanhand , s h u f f l e , . . .
s imcards , 1 ) ;

[ p l ayedspe l l 2 , landsontab le , cleanhand ] = . . .
playround ( landsontab le , cleanhand , s h u f f l e , . . .
s imcards , 2 ) ;

[ p l ayedspe l l 3 , landsontab le , cleanhand ] = . . .
playround ( landsontab le , cleanhand , s h u f f l e , . . .
s imcards , 3 ) ;

[ p l ayedspe l l 4 , landsontab le , cleanhand ] = . . .
playround ( landsontab le , cleanhand , s h u f f l e , . . .
s imcards , 4 ) ;

counts ( i )=counts ( i )+ . . .
p l a y ed sp e l l 1 ∗ p l a y ed sp e l l 2 ∗ . . .
p l a y ed sp e l l 3 ∗ p l a y ed sp e l l 4 ;

end
end
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Listing 8.3: Matlab code used to simulate playing a turn

function [ p l ayedspe l l , l andsontab le , cleanhand ] = . . .
playround ( landsontab le , cleanhand , s h u f f l e , s imcards , . . .
turn )

% draw
ncard=simcards ( s h u f f l e (7+turn ) ) ;
cleanhand ( ncard+1)=cleanhand ( ncard+1)+1;
% play land
i f cleanhand (1)>0

landsontab l e=landsontab l e+1;
cleanhand (1)= cleanhand (1)−1;

end
p l a y ed sp e l l =0;
i f l andsontab le>0

i =1; done=0;
while done==0

i f cleanhand ( i )>0
cleanhand ( i )=cleanhand ( i )−1;
p l a y ed sp e l l =1;
done=1;

else
i=i +1;
i f i>l andsontab l e

done=1;
end

end
end

end
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Listing 8.4: Matlab code used to estimate number of turns before you can play a
spell of cost 3

s imcards=[zeros (15 , 1 ) ; ones (15 , 1 ) ; . . .
2∗ ones (14 , 1 ) ; 3 ∗ ones (10 , 1 ) ; . . .
4∗ ones (2 , 1 ) ; 5∗ ones (2 , 1 ) ; 6∗ ones (2 , 1 ) ] ;

nsims=10;
ninsim=1000;
counts=zeros ( nsims , 1 ) ;
for i =1: nsims

for j =1: ninsim
% draw a hand
s h u f f l e=randperm ( 6 0 ) ;
hand=simcards ( s h u f f l e ( 1 : 7 ) ) ;
%reorgan i z e the hand
cleanhand=zeros (7 , 1 ) ;
for k=1:7

cleanhand ( hand (k)+1)=cleanhand ( hand (k)+1)+1;
% ie count o f lands , s p e l l s , by cos t

end
l andsontab l e=0;
k=0; p l a y ed3 sp e l l =0;
while p l a y ed3 sp e l l==0;

[ p l ayed3 spe l l , l andsontab le , cleanhand ] = . . .
play3round ( landsontab le , cleanhand , s h u f f l e , . . .
s imcards , k+1);

k=k+1;
end
counts ( i )=counts ( i )+k ;

end
counts ( i )=counts ( i )/ ninsim ;

end
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Listing 8.5: Matlab code used to simulate a turn to estimate the number of turns
before you can play a spell of cost 3

function [ p l ayed3 spe l l , l andsontab le , cleanhand ] = . . .
play3round ( landsontab le , cleanhand , s h u f f l e , s imcards , . . .
turn )

% draw
ncard=simcards ( s h u f f l e (7+turn ) ) ;
cleanhand ( ncard+1)=cleanhand ( ncard+1)+1;
% play land
i f cleanhand (1)>0

landsontab l e=landsontab l e+1;
cleanhand (1)= cleanhand (1)−1;

end
p l a y ed3 sp e l l =0;
i f ( landsontab le>=3)&&(cleanhand (4)>0)

p l a y ed3 sp e l l =1;
end
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Inference: Making Point Estimates

Inference is the process of drawing conclusions from data. One form of
inference is to estimate a number, or set of numbers, that describes a dataset. The
result is known as a point estimate. An alternative is to estimate an interval
within which a number lies, with some degree of certainty. Such estimates are
known as interval estimates. Finally, one might wish to assess the extent to
which a body of evidence supports rejecting an hypothesis — known as hypothesis
testing. In this chapter, we deal with point estimates. In the following chapter, we
deal with interval estimates and hypothesis testing, which require an understanding
of point estimates. There are two, somewhat distinct, situations in which we could
make point estimates.

In the first, we have a dataset {x}, and a probability model we believe applies
to that dataset. But we need to select appropriate values of the parameters to
ensure that the model describes the data. For example, we might have a set of N
coin flips which we believe to be independent and identically distributed. Of these,
k flips came up H . We know that a binomial distribution with p(H) = p is a good
model — but what value of p should we use? Your intuition is likely to suggest using
k/N , but we’d like a more robust procedure than guessing. We need an inference
procedure to obtain the unknown parameter from the data. Notice that this will be
an estimate, rather than the “true” value. As we shall see, there is more than one
possible procedure to apply, depending to some extent on the problem. In some
cases (section 9.1), we estimate parameter values based solely on data; in others
(section 9.2), we are able to use prior information about the parameters to affect
the estimate.

In the second situation, we want to know some property of a population. For
example, we may wish to know the mean weight of a person, or the mean response
of a mouse to a drug. It would be a stretch to describe this population with one of
the probability models that we have seen. In principle, the number we want is not
even necessarily random; in principle, we could measure everyone on the planet and
average the weights. In practice, this doesn’t make sense, for quite straightforward
reasons. You can’t really weigh every person, or dose every mouse, on the planet.
Instead, to estimate this property, we obtain a sample (some people; some mice;
etc.) of the population, and estimate the property from the sample. There is now
an important problem. Different samples lead to different estimates of the property.
We will arrange to have the sample drawn randomly from the population, so the
sample we see represents the value of a set of random variables. If you followed the
proof of the weak law of large numbers, you should suspect that the mean of this
sample could be a good estimate of the population mean. This turns out to be the
case (section 14.1). However, there is some random error in the estimate, and we
can tell (on average) how large the error caused by random sampling could be.

215
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9.1 ESTIMATING MODEL PARAMETERS WITH MAXIMUM LIKELIHOOD

Assume we have a dataset D = {x}, and a probability model we believe applies to
that dataset. Generally, application logic suggests the type of model (i.e. normal
probability density; Poisson probability; geometric probability; and so on). But
usually, we do not know the parameters of the model — for example, the mean and
standard deviation of a normal distribution; the intensity of a poisson distribution;
and so on. Our model will be better or worse depending on how well we choose
the parameters. We need a strategy to estimate the parameters of a model from a
sample dataset. Notice how each of the following examples fits this pattern.

Example: 9.1 Inferring p from repeated flips — binomial

We could flip the coin N times, and count the number of heads k. We
know that an appropriate probability model for a set of independent
coin flips is the binomial model P (k;N, p). But we do not know p,
which is the parameter — we need a strategy to extract a value of p
from the data.

Example: 9.2 Inferring p from repeated flips — geometric

We could flip the coin repeatedly until we see a head. We know that,
in this case, the number of flips has the geometric distribution with
parameter p. In this case, the data is a sequence of T ’s with a final H
from the coin flips. There are N flips (or terms) and the last flip is a
head. We know that an appropriate probability model is the geometric
distribution Pg(N ; p). But we do not know p, which is the parameter
— we need a strategy to extract a value of p from the data.

Example: 9.3 Inferring the intensity of spam — poisson

It is reasonable to assume that the number of spam emails one gets in
an hour has a Poisson distribution. But what is the intensity parameter
λ? We could count the number of spam emails that arrive in each of a
set of distinct hours, giving a dataset of counts D. We need a strategy
to wrestle an estimate of λ from this dataset.
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Example: 9.4 Inferring the mean and standard deviation of normal data

Imagine we know for some reason that our data is well described by
a normal distribution. We could ask what is the mean and standard
deviation of the normal distribution that best represents the data?

We can write that model as P (D|θ), where θ are parameters of the probability
mode. The model is conditioned on θ, because if we knew θ we could evaluate the
model. The expression P (D|θ) is known as the likelihood of the data, and is often
written L(θ) (or L(θ;D) if you want to remember that data is involved). Notice
that this is unlike our models to date. In chapter 7, we assumed that we knew θ,
and could then use the model to assign a probability to a data item. Here we know
the value of D. The likelihood is a function of θ.

9.1.1 The Maximum Likelihood Principle

We need a “reasonable” procedure to choose a value of θ to report. One — and
I stress this is not the only one — is the maximum likelihood principle. This
says: Choose θ such that L(θ) = P (D|θ) is maximised, as a function of θ.

For the examples we work with, the data will be independent and iden-
tically distributed or IID. This means that each data item is an idependently
obtained sample from the same probability distribution (see section ??). In turn,
this means that the likelihood is a product of terms, one for each data item, which
we can write as

L(θ) = P (D|θ) =
∏

i∈dataset

P (di|θ).

It is traditional to write θ for any set of parameters that are unknown. There
are two, distinct, important concepts we must work with. One is the unknown
parameter(s), which we will write θ. The other is the estimate of the value of that

parameter, which we will write θ̂. This estimate is the best we can do — it may
not be the “true” value of the parameter.
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Worked example 9.1 Inferring p(H) for a coin from flips using a binomial
model

In N independent coin flips, you observe k heads. Use the maximum likelihood
principle to infer p(H).

Solution: The coin has θ = p(H), which is the unknown parameter. We know
that an appropriate probability model is the binomial model P (k;N, θ). We
have that

L(θ) = P (D|θ) = Pb(k;N, θ) =

(

N
k

)

θk(1− θ)(N−k)

which is a function of θ — the unknown probability that a coin comes up
heads; k and N are known. We must find the value of θ that maximizes this
expression. Now the maximum occurs when

∂L(θ)
∂θ

= 0.

We have

∂L(θ)
∂θ

=

(

N
k

)

(

kθk−1(1− θ)(N−k) − θk(N − k)(1− θ)(n−k−1)
)

and this is zero when

kθk−1(1− θ)(N−k) = θk(N − k)(1− θ)(N−k−1)

so the maximum occurs when

k(1− θ) = θ(N − k).

This means the maximum likelihood estimate is

θ̂ =
k

N

which is what we guessed would happen, but now we know why that guess
“makes sense”.
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Worked example 9.2 Inferring p(H) from coin flips using a geometric
model

You flip a coin N times, stopping when you see a head. Use the maximum
likelihood principle to infer p(H) for the coin.

Solution: The coin has θ = p(H), which is the unknown parameter. We know
that an appropriate probability model is the geometric model Pg(N ; θ). We
have that

L(θ) = P (D|θ) = Pg(N ; θ) = (1 − θ)(N−1)θ

which is a function of θ — the unknown probability that a coin comes up heads;
N is known. We must find the value of θ that maximizes this expression. Now
the maximum occurs when

∂L(θ)
∂θ

= 0 = ((1− θ)(N−1) − (N − 1)(1− θ)(N−2)θ)

So the maximum likelihood estimate is

θ̂ =
1

N
.

We didn’t guess this.
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Worked example 9.3 Inferring die probabilities from multiple rolls and a
multinomial distribution

You throw a die N times, and see n1 ones, . . . and n6 sixes. Write p1, . . . , p6
for the probabilities that the die comes up one, . . ., six. Use the maximum
likelihood principle to estimate p1, . . . , p6.

Solution: The data are n, n1, . . . , n6. The parameters are θ = (p1, . . . , p6).
P (D|θ) comes from the multinomial distribution. In particular,

L(θ) = P (D|θ) = n!

n1! . . . n6!
pn1

1 pn2

2 . . . pn6

6

which is a function of θ = (p1, . . . , p6). Now we want to maximize this function
by choice of θ. Notice that we could do this by simply making all pi very large
— but this omits a fact, which is that p1 + p2 + p3 + p4 + p5 + p6 = 1. So we
substitute using p6 = 1− p1 − p2 − p3 − p4 − p5 (there are other, neater, ways
of dealing with this issue, but they take more background knowledge). At the
maximum, we must have that for all i,

∂L(θ)
∂pi

= 0

which means that, for pi, we must have

nip
(ni−1)
i (1−p1−p2−p3−p4−p5)

n6 −pni

i n6(1−p1−p2−p3−p4−p5)
(n6−1) = 0

so that, for each pi, we have

ni(1− p1 − p2 − p3 − p4 − p5)− n6pi = 0

or
pi

1− p1 − p2 − p3 − p4 − p5
=

ni

n6
.

You can check that this equation is solved by

θ̂ =
1

(n1 + n2 + n3 + n4 + n5 + n6)
(n1, n2, n3, n4, n5, n6)

The logarithm is a monotonic function (i.e. if x > 0, y > 0, x > y, then
log(x) > log(y)). This means that the values of θ that maximise the log-likelihood
are the same as the values that maximise the likelihood. This observation is very
useful, because it allows us to transform a product into a sum. The derivative of a
product involves numerous terms; the derivative of a sum is easy to take. We have

logP (D|θ) = log
∏

i∈dataset

P (di|θ) =
∑

i∈dataset

logP (di|θ)
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and in some cases, logP (di|θ) takes a convenient, easy form. The log-likelihood
of a dataset under a model is a function of the unknown parameters, and you will
often see it written as

logL(θ) =
∑

i∈dataset

logP (di|θ).

Worked example 9.4 Poisson distributions

You observe N intervals, each of the same, fixed length (in time, or space).
You know that, in these intervals, events occur with a Poisson distribution (for
example, you might be observing Prussian officers being kicked by horses, or
telemarketer calls...). You know also that the intensity of the Poisson distribu-
tion is the same for each observation. The number of events you observe in the
i’th interval is ni. What is the intensity, λ?

Solution: The likelihood is

L(θ) =
∏

i∈intervals

P ({ni events} |θ) =
∏

i∈intervals

θnie−θ

ni!
.

It will be easier to work with logs. The log-likelihood is

logL(θ) =
∑

i

(ni log θ − θ − logni!)

so that we must solve

∂ logL(θ)
∂θ

=
∑

i

(
ni

θ
− 1) = 0

which yields a maximum likelihood estimate of

θ̂ =

∑

i ni

N
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Worked example 9.5 The intensity of swearing

A famously sweary politician gives a talk. You listen to the talk, and for each of
30 intervals 1 minute long, you record the number of swearwords. You record
this as a histogram (i.e. you count the number of intervals with zero swear
words, with one, etc.). For the first 10 intervals, you see

no. of swear words no. of intervals

0 5
1 2
2 2
3 1
4 0

and for the following 20 intervals, you see
no. of swear words no. of intervals

0 9
1 5
2 3
3 2
4 1

Assume that the politician’s use of swearwords is Poisson. What is the intensity
using the first 10 intervals? the second 20 intervals? all the intervals? why are
they different?

Solution: Use the expression from worked example 9.4 to find

λ̂10 =
total number of swearwords

number of intervals

=
9

10

λ̂20 =
total number of swearwords

number of intervals

=
21

20

λ̂30 =
total number of swearwords

number of intervals

=
30

30
.

These are different because the maximum likelihood estimate is an estimate —
we can’t expect to recover the exact value from a dataset. Notice, however,
that the estimates are quite close.
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Worked example 9.6 Normal distributions

Assume we have x1, . . . , xN which are data that can be modelled with a normal
distribution. Use the maximum likelihood principle to estimate the mean of
that normal distribution.

Solution: The likelihood of a set of data values under the normal distribution
with unknown mean θ and standard deviation σ is

L(θ) = P (x1, . . . xN |θ, σ)
= P (x1|θ, σ)P (x2|θ, σ) . . . P (xN |θ, σ)

=

N
∏

i=1

1√
2πσ

exp

(

− (xi − θ)2

2σ2

)

and this expression is a moderate nuisance to work with. The log of the likeli-
hood is

logL(θ) =
(

N
∑

i=1

− (xi − θ)2

2σ2

)

+ term not depending on θ.

We can find the maximum by differentiating wrt θ and setting to zero, which
yields

∂ logL(θ)
∂θ

=

N
∑

i=1

2(xi − θ)

2σ2

= 0

=
1

σ2

(

N
∑

i=1

xi −Nθ

)

so the maximum likelihood estimate is

θ̂ =

∑N
i=1 xi

N

which probably isn’t all that surprising. Notice we did not have to pay attention
to σ in this derivation — we did not assume it was known, it just doesn’t do
anything.
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Worked example 9.7 Normal distributions -II

Assume we have x1, . . . , xN which are data that can be modelled with a normal
distribution. Use the maximum likelihood principle to estimate the standard
deviation of that normal distribution.

Solution: Now we have to write out the log of the likelihood in more detail.
Write µ for the mean of the normal distribution and θ for the unknown standard
deviation of the normal distribution. We get

logL(θ) =
(

N
∑

i=1

− (xi − µ)2

2θ2

)

−N log θ +Term not depending on θ

We can find the maximum by differentiating wrt θ and setting to zero, which
yields

∂ logL(θ)
∂θ

=
−2

θ3

N
∑

i=1

−(xi − µ)2

2
− N

θ
= 0

so the maximum likelihood estimate is

θ̂ =

√

∑N
i=1(xi − µ)2

N

which probably isn’t all that surprising, either.

The maximum likelihood principle has a variety of neat properties we cannot
expound. One worth knowing about is consistency; for our purposes, this means
that the maximum likelihood estimate of parameters can be made arbitrarily close
to the right answer by having a sufficiently large dataset.

9.1.2 Cautions about Maximum Likelihood

Our examples suggest some difficulties could occur in inference. The first is that
it might be hard to find the maximum of the likelihood exactly. There are strong
numerical methods for maximizing functions, and these are very helpful, but even
today there are likelihood functions where it is very hard to find the maximum.

The second is that small amounts of data can present nasty problems. There
is a body of mathematics, well outside the scope of this book, that implies that
for lots of data that is well described by our model, maximum likelihood will give
an answer very close to the “right” answer. This doesn’t apply to small datasets.
For example, in the binomial case, if we have only one flip we will estimate p as
either 1 or 0. We should find this report unconvincing. In the geometric case,
with a fair coin, there is a probability 0.5 that we will perform the estimate and
then report that the coin has p = 1. This should also worry you. As another
example, if we throw a die only a few times, we could reasonably expect that, for
some i, ni = 0. This doesn’t necessarily mean that pi = 0, though that’s what the
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maximum likelihood inference procedure will tell us.
This creates a very important technical problem — how can I estimate the

probability of events that haven’t occurred? This might seem like a slightly silly
question to you, but it isn’t. Solving this problem has really significant practical
consequences. For example, a really important part of natural language processing
involves estimating the probability of groups of three words. These groups are
usually known as “trigrams”. People typically know an awful lot of words (tens
to hundreds of thousands, depending on what you mean by a word). This means
that there are a tremendous number of trigrams, and you can expect that any real
dataset lacks almost all of them, because it isn’t big enough. Some are missing
because they don’t occur in real life, but others are not there simply because they
are unusual (eg “Atom Heart Mother” actually occurs in real life, but you may not
have seen it all that often). Modern speech recognition systems need to know how
probable every trigram is. Worse, if a trigram is modelled as having zero probability
and actually occurs, the system will make a mistake, so it is important to model all
such events as having a very small, but not zero, probability. But what probability
should I use? Maximum likelihood would say use zero, but this would generate
problems.

In summary, the maximum likelihood estimate is useful, and is consistent with
intuition, but small datasets present some worries because there is a real prospect
that the best estimate is wrong in a way that presents problems.

9.2 INCORPORATING PRIORS WITH BAYESIAN INFERENCE

Sometimes when we wish to estimate parameters of a model we have prior infor-
mation. For example, we may have good reason to believe that some parameter
is close to some value. We would like to take this information into account when
we estimate the model. One way to do so is to place a prior probability distri-
bution p(θ) on the parameters θ. Then, rather than working with the likelihood
p(D|θ), we could apply Bayes’ rule, and form the posterior p(θ|D). This posterior
represents the probability that θ takes various values, given the data D. Extracting
information from the posterior is usually called Bayesian inference. A natural
estimate of θ is the value that maximizes the posterior. This estimate is sometimes
known as a maximum a posteriori estimate or MAP estimate.

9.2.1 Constructing the Posterior

Bayes’ rule tells us that

p(θ|D) =
P (D|θ)P (θ)

P (D)

but (as we shall see) it can be hard to work out P (D). For some problems, we
might not need to know it.
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FIGURE 9.1: The curves show a function proportional to the posterior on θ, for
the two cases of example ??. Notice that this information is rather richer than the
single value we would get from maximum likelihood inference.

Worked example 9.8 Flipping a coin

We have a coin with probability θ of coming up heads when flipped. We start
knowing nothing about θ. We then flip the coin 10 times, and see 7 heads (and
3 tails). Plot a function proportional to p(θ| {7 heads and 3 tails}). What
happens if there are 3 heads and 7 tails?

Solution: We know nothing about p, except that 0 ≤ θ ≤ 1, so we choose a
uniform prior on p. We have that p({7 heads and 3 tails} |θ) is binomial. The
joint distribution is p({7 heads and 3 tails} |θ) × p(θ) but p(θ) is uniform, so
doesn’t depend on θ. So the posterior is proportional to: θ7(1 − θ)3 which is
graphed in figure 9.1. The figure also shows θ3(1 − θ)7 which is proportional
to the posterior for 3 heads and 7 tails. In each case, the evidence does not
rule out the possibility that θ = 0.5, but tends to discourage the conclusion.
Maximum likelihood would give θ = 0.7 or θ = 0.3, respectively.

In Example 9.8, it is interesting to follow how the posterior on p changes as
evidence come in, which is easy to do because the posterior is proportional to a
binomial distribution. Figure 9.2 shows a set of these posteriors for different sets
of evidence.

For other problems, we will need to marginalize out θ, by computing

P (D) =

∫

θ

P (D|θ)P (θ)dθ.

It is usually impossible to do this in closed form, so we would have to use a numerical
integral or a trick. The next section expounds one useful trick.

Conjugate priors
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FIGURE 9.2: The probability that an unknown coin will come up heads when flipped
is p(H). For these figures, I simulated coin flips from a coin with p = 0.75. I
then plotted the posterior for various data. Notice how, as we see more flips, we
get more confident about p. The vertical axis changes substantially between plots in
this figure.

In some cases, P (θ) and P (D|θ), when multiplied together, take a familiar
form. This happens when P (D|θ) and P (θ) each belong to parametric families
where there is a special relationship between the families. When a prior has this
property, it is called a conjugate prior. There are some cases worth knowing, given
in the worked examples.
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Worked example 9.9 Flipping a coin - II

We have a coin with probability θ of coming up heads when flipped. We model
the prior on θ with a Beta distribution, with parameters α > 0, β > 0. We
then flip the coin N times, and see h heads. What is P (θ|N, h, α, β)?

Solution: We have that P (N, h|θ) is binomial, and that P (θ|N, h, α, β) ∝
P (N, h|θ)P (θ|α, β). This means that

P (θ|N, h, α, β) ∝
(

N
h

)

θh(1− θ)(N−h) Γ(α+ β)

Γ(α)Γ(β)
θ(α−1)(1− θ)(β−1).

and we can write

P (θ|N, h, α, β) ∝ θ(α+h−1)(1− θ)(β+N−h−1).

Notice this has the form of a Beta distribution, so it is easy to recover the
constant of proportionality. We have

P (θ|N, h, α, β) =
Γ(α+ β +N)

Γ(α+ h)Γ(β +N − h)
θ(α+h−1)(1 − θ)(β+N−h−1).
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Worked example 9.10 More sweary politicians

Example 9.5 gives some data from a sweary politician. Assume we have only
the first 10 intervals of observations, and we wish to estimate the intensity using
a Poisson model. Write θ for this parameter. Use a Gamma distribution as a
prior, and write out the posterior.

Solution: We have that

p(D|θ) =

(

θ0e−θ

0!

)5(
θ1e−θ

1!

)2

×
(

θ2e−θ

2!

)2(
θ3e−θ

3!

)1

=
θ9e−10θ

12

and

p(θ|α, β) = βα

Γ(α)
θ(α−1)e−βθ

This means that
p(θ|D) ∝ θ(α−1+9)e−(β+10)θ.

Notice this has the form of another Gamma distribution, so we can write

p(θ|D) =
(β + 10)(α+9)

Γ(α+ 9)
θ(α−1+9)e−(β+10)θ

9.2.2 Normal Prior and Normal Likelihood

When both P (D|θ) and P (θ) are normal, some important simplifications occur.
First, the prior is conjugate to the likelihood. Second, the posterior is also normal.
And third, the mean and standard deviation of the posterior take a simple form.

We start with an example. Assume we drop a measuring device down a
borehole. It is designed to stop falling and catch onto the side of the hole after
it has fallen µ0 meters. On board is a device to measure its depth. This device
reports a known constant times the correct depth plus a zero mean normal random
variable, which we call “noise”. The device reports depth every second.

The first question to ask is what depth do we believe the device is at before
we receive any measurement? We designed the device to stop at µ0 meters, so we
are not completely ignorant about where it is. However, it may not have worked
absolutely correctly. We choose to model the depth at which it stops as µ0 meters
plus a zero mean normal random variable. The second term could be caused by error
in the braking system, etc. We could estimate the standard deviation of the second
term (which we write σ0) either by dropping devices down holes, then measuring
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with tape measures, or by analysis of likely errors in our braking system. The depth
of the object is the unknown parameter of the model; we write this depth θ. Now
the model says that θ is a normal random variable with mean µ0 and standard
deviation σ0.

Notice that this model probably isn’t exactly right — for example, there must
be some probability in the model that the object falls beyond the bottom of the
hole, which it can’t do — but it captures some important properties of our system.
The device should stop at or close to µ0 meters most of the time, and it’s unlikely
to be too far away.

Now assume we receive a single measurement — what do we now know about
the device’s depth? The first thing to notice is that there is something to do here.
Ignoring the prior and taking the measurement might not be wise. For example,
imagine that the noise in the wireless system is large, so that the measurement is
often corrupted — our original guess about the device’s location might be better
than the measurement. Write x1 for the measurement. Notice that the scale of
the measurement may not be the same as the scale of the depth, so the mean of
the measurement is c1θ, where c1 is a change of scale (for example, from inches to
meters). We have that p(x1|θ) is normal with mean c1θ and standard deviation
σn1. We would like to know p(θ|x1).

We have that

log p(θ, x1) = log p(x1|θ) + log p(θ)

= − (x1 − c1θ)
2

2σ2
n1

− (θ − µ0)
2

2σ2
0

+ terms not depending on θ or x.

We have two estimates of the position, θ, and we wish to come up with a represen-
tation of what we know about θ. One is x1, which is a measurement — we know
its value. The expected value of x1 is c1θ, so we could infer θ from x1. But we
have another estimate of the position, which is µ0. The posterior, p(θ|x1), is a
probability distribution on the variable θ; it depends on the known values x1, µ0,
σ0 and σn1. We need to determine its form. We can do so by some rearrangement
of the expression for log p(θ, x1).

Notice first that this expression is of degree 2 in θ (i.e. it has terms θ2, θ
and things that don’t depend on θ). This means that p(θ|x1) must be a normal
distribution, because we can rearrange its log into the form of the log of a normal
distribution. This yields a fact of crucial importance.

Useful Fact: 9.1 Normal distributions are conjugate

A normal prior and a normal likelihood yield a normal posterior.

Write µ1 for the mean of this distribution, and σ1 for its standard deviation.
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The log of the distribution must be

− (θ − µ1)
2

2σ2
1

+ terms not depending on θ.

The terms not depending on θ are not interesting, because if we know σ1 those
terms must add up to

log

(

1√
2πσ1

)

so that the probability density function sums to one. Our goal is to rearrange terms
into the form above. Notice that

− (θ − µ1)
2

2σ2
p

= −θ2
(

1

2σ2
1

)

+ 2θ
µ1

2σ2
p

+ term not depending on θ

We have

log p(θ|x1) = − (c1θ − x1)
2

2σ2
n1

− (θ − µ0)
2

2σ2
0

+ terms not depending on θ

= −θ2





1

2
(

σ2

n1
σ2

0

σ2

n1
+c2

1
σ2

0

)



+ 2θ

(

c1
x1

2σ2
n1

+
µ0

2σ2
0

)

+ terms not depending on θ

which means that

σ2
1 =

σ2
n1σ

2
0

σ2
n1 + c21σ

2
0

and

µ1 = 2

(

c1
x1

2σ2
n1

+
µ0

2σ2
0

)

σ2
n1σ

2
0

σ2
n1 + c21σ

2
0

=

(

c1x1σ
2
0 + µ0σ

2
n1

σ2
n1σ

2
0

)

σ2
n1σ

2
0

σ2
n1 + c21σ

2
0

=
c1x1σ

2
0 + µ0σ

2
n1

σ2
n1 + c21σ

2
0

.

These equations “make sense”. Imagine that σ0 is very small, and σn1 is very
big; then our new expected value of θ — which is µ1 — is about µ0. Equivalently,
because our prior was very accurate, and the measurement was unreliable, our
expected value is about the prior value. Similarly, if the measurement is reliable
(i.e. σn1 is small) and the prior has high variance (i.e. σ0 is large), then our
expected value of θ is about x1/c1 — i.e. the measurement, rescaled. I have put
these equations, in a more general form, in a box below.
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Useful Fact: 9.2 Normal posteriors

Assume we wish to estimate a parameter θ. The prior distribution for θ
is normal, with known mean µπ and known standard deviation σπ . We
receive a single data item x. The likelihood of this data item is normal
with mean cθ and standard deviation σm, where c and σm are known.
Then the posterior, p(θ|x, c, σm, µπ, σπ), is normal, with mean

cxσ2
π + µπσ

2
m

σ2
m + c2σ2

π

and standard deviation
√

σ2
mσ2

π

σ2
m + c2σ2

π

.

9.2.3 MAP Inference

Look at example 9.1, where we estimated the probability a coin would come up
heads with maximum likelihood. We could not change our estimate just by knowing
the coin was fair, but we could come up with a number for θ = p(H) (rather than,
say, a posterior distribution). A natural way to produce a point estimate for θ that

incorporates prior information is to choose θ̂ such that

θ̂ =
argmax

θ
P (θ|D) =

argmax
θ

P (θ,D)

P (D)

This is the MAP estimate. If we wish to perform MAP inference, P (D) doesn’t
matter (it changes the value, but not the location, of the maximum). This means
we can work with P (θ,D), often called the joint distribution.
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Worked example 9.11 Flipping a coin - II

We have a coin with probability θ of coming up heads when flipped. We model
the prior on θ with a Beta distribution, with parameters α > 0, β > 0. We
then flip the coin N times, and see h heads. What is the MAP estimate of θ?

Solution: We have that

P (θ|N, h, α, β) =
Γ(α+ β +N)

Γ(α+ h)Γ(β +N − h)
θ(α+h−1)(1 − θ)(β+N−h−1).

You can get the MAP estimate by differentiating and setting to 0, yielding

θ̂ =
α− 1 + h

α+ β − 2 +N
.

This has rather a nice interpretation. You can see α and β as extra counts of
heads (resp. tails) that are added to the observed counts. So, for example, if
you were fairly sure that the coin should be fair, you might make α and β large
and equal. When α = 1 and β = 1, we have a uniform prior as in the previous
examples.

Worked example 9.12 More sweary politicians

We observe our swearing politician for N intervals, seeing ni swear words in
the i’th interval. We model the swearing with a Poisson model. We wish to
estimate the intensity, which we write θ. We use a Gamma distribution for the
prior on θ. What is the MAP estimate of θ?

Solution: Write T =
∑N

i=1. We have that

p(θ|D) =
(β +N)(α+T )

Γ(α+ T )
θ(α−1+T )e−(β+T )θ

and the MAP estimate is

θ̂ =
(α− 1 + T )

(β +N)

(which you can get by differentiating with respect to θ, then setting to zero).
Notice that if β is close to zero, you can interpret α as extra counts; if β is large,
then it strongly discourages large values of θ̂, even if the counts are large.

9.2.4 Filtering

We can make online estimates of the maximum likelihood value of mean and stan-
dard deviation for a normal distribution. Assume, rather than seeing N elements
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of a dataset in one go, you get to see each one once, and you cannot store them.
Assume that this dataset is modelled as normal data. Write µ̂k for the maximum
likelihood estimate of the mean based on data items 1 . . . k (and σ̂k for the maximum
likelihood estimate of the standard deviation, etc.). Notice that

µ̂k+1 =
(kµ̂k) + xk+1

(k + 1)

and that

σ̂k+1 =

√

(kσ̂2
k) + (xk+1 − µ̂k+1)2

(k + 1)

This means that you can incorporate new data into your estimate as it arrives
without keeping all the data. This process of updating a representation of a dataset
as new data arrives is known as filtering.

This is particularly useful in the case of normal posteriors. Recall that if we
have a normal prior and a normal likelihood, the posterior is normal. Now consider
a stream of incoming measurements. Our initial representation of the parameters
we are trying to estimate is the prior, which is normal. We allow ourselves to see
one measurement, which has normal likelihood; then the posterior is normal. You
can think of this posterior as a prior for the parameter estimate based on the next
measurement. But we know what to do with a normal prior, a normal likelihood,
and a measurement; so we can incorporate the measurement and go again. This
means we can exploit our expression for the posterior mean and standard deviation
in the case of normal likelihood and normal prior and a single measurement to deal
with multiple measurements very easily.

Assume a second measurement, x2 arrives. We know that p(x2|θ, c2, σn2) is
normal with mean c2θ and standard deviation σn2. In the example, we have a new
measurement of depth — perhaps in a new, known, scale — with new noise (which
might have larger, or smaller, standard deviation than the old noise) added. Then
we can use p(θ|x1, c1, σn1) as a prior to get a posterior p(θ|x1, x2, c1, c2, σn1, σn2).
Each is normal, by useful fact 9.1. Not only that, but we can easily obtain the
expressions for the mean µ2 and the standard deviation σ2 recursively as functions
of µ1 and σ1.

Applying useful fact 9.2, we have

µ2 =
c2x2σ

2
1 + µ1σ

2
n2

σ2
n2 + c22σ

2
1

and

σ2
2 =

σ2
n2σ

2
1

σ2
n2 + c22σ

2
1

.

But what works for 2 and 1 will work for k+1 and k. We know the posterior after
k measurements will be normal, with mean µk and standard deviation σk. The
k+1’th measurement xk+1 arrives, and we have p(xk+1|θ, ck+1, σn(k+1)) is normal.
Then the posterior is normal, and we can write the mean µk+1 and the standard
deviation σk+1 recursively as functions of µk and σk. The result is worth putting
in a box.
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Useful Fact: 9.3 Online updating of normal posteriors

Assume we wish to estimate a parameter θ. The prior distribution for θ
is normal, with known mean µπ and known standard deviation σπ . All
data is normal conditioned on θ. We have already received k data items.
The posterior p(θ|x1, . . . , xk, c1, . . . , ck, σn1, . . . , σnk, µπ, σπ) is normal,
with mean µk and standard deviation σk. We receive a new data item
xk+1. The likelihood of this data item is normal with mean cθ and stan-
dard deviation σn(k+1), where ck+1 and σn(k+1) are known. Then the
posterior, p(θ|x1, . . . , xk+1, c1, . . . , ck, ck+1, σn1, . . . , σn(k+1), µπ, σπ), is
normal, with mean

µk+1 =
ck+1xk+1σ

2
k + µkσ

2
n(k+1)

σ2
n(k+1) + c2k+1σ

2
k

and

σ2
k+1 =

σ2
n(k+1)σ

2
k

σ2
n(k+1) + c2k+1σ

2
k

.

Again, notice the very useful fact that, if everything is normal, we can update
our posterior representation when new data arrives using a very simple recursive
form.

Worked example 9.13 Normal data

Assume you see N datapoints xi which are modelled by a normal distribution
with unknown mean θ and with known standard deviation σ. You model the
prior on θ using a normal distribution with mean µ0 and standard deviation
σ0. What is the MAP estimate of the mean?

Solution: Recall that the maximum value of a normal distribution occurs at
its mean. Now problem is covered by useful fact 9.2, but in this case we have
ci = 1 for each data point, and σi = σ. We can write

µN =
xNσ2

N−1 + µN−1σ
2

σ2 + σ2
N−1

and

σ2
N =

σ2σ2
N−1

σ2 + σ2
N−1

.

and evaluate the recursion down to µ0, σ0.
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9.2.5 Cautions about Bayesian Inference

Just like maximum likelihood inference, bayesian inference is not a recipe that can
be applied without thought. It turns out that, when there is a lot of data, the
prior has little inference on the outcome of the inference, and the MAP solution
looks a lot like the maximum likelihood solution. So the difference between the two
approaches is most interesting when there is little data, where the prior matters.
The difficulty is that it might be hard to know what to use as a good prior. In
the examples, I emphasized mathematical convenience, choosing priors that lead
to clean posteriors. There is no reason to believe that nature uses conjugate priors
(even though conjugacy is a neat property). How should one choose a prior for a
real problem?

This isn’t an easy point. If there is little data, then the choice could really
affect the inference. Sometimes we’re lucky, and the logic of the problem dictates
a choice of prior. Mostly, we have to choose and live with the consequences of the
choice. Often, doing so is succesful in applications.

The fact we can’t necessarily justify a choice of prior seems to be one of life’s
inconveniences, but it represents a significant philosophical problem. It’s been at
the core of a long series of protracted, often quite intense, arguments about the
philosophical basis of statistics. I haven’t followed these arguments closely enough
to summarize them; they seem to have largely died down without any particular
consensus being reached.

9.3 SAMPLES, URNS AND POPULATIONS

Very often the data we see is a small part of the data we could have seen, if we’d
been able to collect enough data. We need to know how the measurements we make
on the dataset relate to the measurements we could have made, if we had all the
data. This situation occurs very often. For example, imagine we wish to know the
average weight of a rat. This isn’t random; you could weigh every rat on the planet,
and then average the answers. But doing so would absurd (among other things,
you’d have to weigh them all at the same time, which would be tricky). Instead,
we weigh a small set of rats, chosen rather carefully. If we have chosen sufficiently
carefully, then the answer from the small set is quite a good representation of the
answer from the whole set.

The data we could have observed, if we could have seen everything, is the
population. The data we actually have is the sample. We would like to know
the mean of the population, but can see only the sample; surprisingly, we can say
a great deal from the sample alone, assuming that it is chosen appropriately.

9.3.1 Estimating the Population Mean from a Sample

Assume we have a population {x}, for i = 1, . . . , Np. Notice the subscript here —
this is the number of items in the population. The population could be unreasonably
big: for example, it could consist of all the people in the world. We want to know
the mean of this dataset, but we do not get to see the whole dataset. Instead, we
see the sample.

How the sample is obtained is key to describing the population. We will focus
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on only one model (there are lots of others). In our model, the sample is obtained by
choosing a fixed number of data items. Write k for the number of data items in the
sample. We expect k is a lot smaller than Np. Each item is chosen independently,
and fairly. This means that each time we choose, we choose one from the entire
set of Np data items, and each has the same probability of being chosen. This is
sometimes referred to as “sampling with replacement”.

One natural way to think about sampling with replacement is to imagine the
data items as being written on tickets, which are placed in an urn (old-fashioned
word for a jar, now used mainly by statisticians and morticians). You obtain the
sample by repeating the following experiment k times: shake the urn; take a ticket
from the urn and write down the data on the ticket; put it back in the urn. Notice
that, in this case, each sample is drawn from the same urn. This is important, and
makes the analysis easier. If we had not put the ticket back, the urn would change
between samples.

We summarize the whole dataset with its mean, which we write popmean ({x}).
This is known as the population mean. The notation is just to drive home the
facts that it’s the mean of the whole population, and that we don’t, and can’t,
know it. The whole point of this exercise is to estimate this mean.

We would like to estimate the mean of the whole dataset from the items that
we actually see. Imagine we draw k tickets from the urn as above, and average the
values. The result is a random variable, because different draws of k tickets will
give us different values. Write X(k) for this random variable, which is referred to
as the sample mean. Because expectations are linear, we must have that

E

[

X(k)
]

=
1

k

(

E

[

X(1)
]

+ . . .+ E

[

X(1)
])

= E

[

X(1)
]

(where X(1) is the random variable whose value is obtained by drawing one ticket
from the urn). Now

E

[

X(1)
]

=
∑

i∈1,...Np

xip(i)

=
∑

i∈1,...Np

xi
1

Np
because we draw fairly from the urn

=

∑

i∈1,...Np
xi

Np

= popmean ({x})

which is the mean value of the items in the urn. This means that

E

[

X(k)
]

= popmean ({xi}).

Under our sampling model, the expected value of the sample mean is the population
mean.
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Useful Facts: 9.4 Sample means and population means

The sample mean is a random variable. It is random, because different
samples from the population will have different values of the sample
mean. The expected value of this random variable is the population
mean.

We will not get the same value of X(k) each time we perform the experiment,
because we see different data items in each sample. So X(k) has variance, and this
variance is important. If it is large, then each estimate is quite different. If it is
small, then the estimates cluster. Knowing the variance of X(k) would tell us how
accurate our estimate of the population mean is.

9.3.2 The Variance of the Sample Mean

We write popsd ({x}) for the standard deviation of the whole population of {x}.
Again, we write it like this to keep track of the facts that (a) it’s for the whole
population and (b) we don’t — and usually can’t — know it.

We can compute the variance of X(k) (the sample mean) easily. We have

var
[

X(k)
]

= E

[

(X(k))2
]

− E

[

X(k)
]2

= E

[

(X(k))2
]

− (popmean ({x}))2

so we need to know E
[

(X(k))2
]

. We can compute this by writing

X(k) =
1

k
(X1 +X2 + . . .Xk)

where X1 is the value of the first ticket drawn from the urn, etc. We then have

X(k)2 =

(

1

k

)2(
X2

1 +X2
2 + . . . X2

k +X1X2 + . . .
X1Xk +X2X1 + . . . X2Xk + . . . Xk−1Xk

)

.

Expectations are linear, so we have that

E

[

(X(k))2
]

=

(

1

k

)2(
E
[

X2
1

]

+ E
[

X2
2

]

+ . . .E
[

X2
k

]

+ E[X1X2]+
. . .E[X1Xk] + E[X2X1] + . . .E[X2Xk] + . . .E[Xk−1Xk]

)

.

The order in which the tickets are drawn from the urn doesn’t matter, because
each time we draw a ticket we draw from the same urn. This means that E

[

X2
1

]

=

E
[

X2
2

]

= . . .E
[

X2
k

]

. You can think of this term as the expected value of the
random variable generated by: drawing a single number out of the urn; squaring
that number; and reporting the square. Notice that E

[

X2
1

]

= E
[

(X(1))2
]

(look at

the definition of X(1)).
Because the order doesn’t matter, we also have that E[X1X2] = E[X1X3] =

. . .E[Xk−1Xk]. You can think of this term as the expected value of the random
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variable generated by: drawing a number out of the urn; writing it down; returning
it to the urn; then drawing a second number from the urn; and reporting the
product of these two numbers. So we can write

E

[

X(k)2
]

= (
1

k
)2
(

kE
[

(X(1))2
]

+ k(k − 1)E[X1X2]
)

and these two terms are quite easy to evaluate.

Worked example 9.14 Urn variances

Show that

E

[

(X(1))2
]

=

∑Np

i=1 x
2
i

Np
= popsd ({x})2 + popmean ({x})2

Solution: First, we have (X(1))2 is the number obtained by taking a ticket
out of the urn and squaring its data item. Now

popsd ({x})2 = E

[

(X(1))2
]

− E

[

X(1)
]2

= E

[

(X(1))2
]

− popmean ({x})2

so
E

[

(X(1))2
]

= popsd ({x})2 + popmean ({x})2

Worked example 9.15 Urn variances

Show that
E[X1X2] = popmean ({x})2

Solution: This looks hard, but isn’t. Recall from the facts in chapter 6
(useful facts 6.3, page 133) that if X and Y are independent random variables,
E[XY ] = E[X ]E[Y ]. But X1 and X2 are independent — they are different
random draws from the same urn. So

E[X1X2] = E[X1]E[X2]

but E[X1] = E[X2] (they are draws from the same urn) and E[X ] =
popmean ({x}). So

E[X1X2] = popmean ({x})2.
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Now

E

[

(X(k))2
]

=
kE
[

(X(1))2
]

+ k(k − 1)E[X1X2]

k2

=
E
[

(X(1))2
]

+ (k − 1)E[X1X2]

k

=
(popsd ({x})2 + popmean ({x})2) + (k − 1)popmean ({x})2

k

=
popsd ({x})2

k
+ popmean ({x})2

so we have

var
[

X(k)
]

= E

[

(X(k))2
]

− E

[

X(k)
]2

=
popsd ({x})2

k
+ popmean ({x})2 − popmean ({x})2

=
popsd ({x})2

k
.

This is a very useful result which is well worth remembering together with our facts
on the sample mean, so we’ll put them in a box together.

Useful Fact: 9.5 The sample mean

The sample mean is a random variable. Write X(k) for the mean of k
samples. We have that:

E

[

X(k)
]

= popmean ({x})

var
[

X(k)
]

=
popsd ({x})2

k

std
(

X(k)
)

=
popsd ({x})√

k

The consequence is this: If you draw k samples, the standard deviation of
your estimate of the mean is

popsd ({x})√
k

which means that (a) the more samples you draw, the better your estimate becomes
and (b) the estimate improves rather slowly — for example, to halve the standard
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deviation in your estimate, you need to draw four times as many samples. The
standard deviation of the estimate of the mean is often known as the standard
error of the mean. This allows us to draw a helpful distinction: the population
has a standard deviation, and our estimate of its mean (or other things — but we
won’t go into this) has a standard error.

Notice we cannot state the standard error of our estimate exactly, because we
do not know popsd ({x}). But we could make a good estimate of popsd ({x}), by
computing the standard deviation of the examples that we have. It is now helpful
to have some notation for the particular sample we have. I will write

∑

i∈sample
for a sum over the sample items, and we will use

mean ({x}) =
∑

i∈sample xi

k

for the mean of the sample — that is, the mean of the data we actually see; this is
consistent with our old notation, but there’s a little reindexing to keep track of the
fact we don’t see all of the population. Similarly, I will write

std (x) =

√

∑

i∈sample(xi −mean ({xi}))2
k

for the sample standard deviation. Again, this is the standard deviation of the data
we actually see; and again, this is consistent with our old notation, again with a
little reindexing to keep track of the fact we don’t see all of the population. We
could estimate

popsd ({x}) ≈ std (x)

and as long as we have enough examples, this estimate is good. If the number of
samples k is small, it is better to use

popsd ({x}) ≈

√

∑

i∈sample(xi −mean ({x}))2
k − 1

.

In fact, much more is known about the distribution of X(k).

9.3.3 The Probability Distribution of the Sample Mean

The sample mean is a random variable. We know an expression for its mean, and
we can estimate its variance. In fact, we can determine its probability distribution,
though I won’t do this rigorously. In section 7.4.3, I mentioned that adding a
number of independent random variables almost always got you a normal random
variable, a fact sometimes known as the central limit theorem. I didn’t prove it,
and I’m not going to now. But when we form X(k), we’re adding random variables.
This means that X(k) is a normal random variable, for sufficiently big k (for some
reason, k > 30 is usually seen as right).

This is important, because it has the following consequence. Draw a large
number of different samples of k elements from the population. Each is a dataset of
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k items. Compute mean ({x}) for each, and regard the resulting numbers e1, . . . , er
as data items. Convert the ei to standard coordinates si, where

si =
(ei −mean ({ei}))

std (ei)

(i.e. by subtracting the mean of the ei, and dividing by their standard deviation).
Now construct a construct a histogram of the s. If r is sufficiently large, the
histogram will be close to the standard normal curve.

9.3.4 When The Urn Model Works

In our model, there was a population of Np data items xi, and we saw k of them,
chosen at random. In particular, each choice was fair (in the sense that each data
item had the same probability of being chosen) and independent. These assump-
tions are very important for our analysis to apply. If our data does not have these
properties, bad things can happen.

For example, assume we wish to estimate the percentage of the population
that has beards. This is a mean (the data items take the value 1 for a person with
a beard, and 0 without a beard). If we select people according to our model, then
ask them whether they have a beard, then our estimate of the percentage of beards
should behave as above.

The first thing that should strike you is that it isn’t at all easy to select people
according to this model. For example, we might select phone numbers at random,
then call and ask the first person to answer the phone whether they have a beard;
but many children won’t answer the phone because they are too small. The next
important problem is that errors in selecting people can lead to massive errors in
your estimate. For example, imagine you decide to survey all of the people at a
kindergarten on a particular day; or all of the people in a women’s clothing store;
or everyone attending a beard growing competition (they do exist). In each case,
you will get an answer that is a very poor estimate of the right answer, and the
standard error might look very small. Of course, it is easy to tell that these cases
are a bad choice.

It may not be easy to tell what a good choice is. You should notice the sim-
ilarity between estimating the percentage of the population that wears a beard,
and estimating the percentage that will vote for a particular candidate. There is
a famous example of a survey that mispredicted the result of the Dewey-Truman
presidential election in 1948; poll-takers phoned random phone numbers, and asked
for an opinion. But at that time, telephones tended to be owned by a small per-
centage of rather comfortable households, who tended to prefer one candidate, and
so the polls mispredicted the result rather badly.

Sometimes, we don’t really have a choice of samples. For example, we might
be presented with a small dataset of (say) human body temperatures. If we can be
satisfied that the people were selected rather randomly, we might be able to use this
dataset to predict expected body temperature. But if we knew that the subjects
had their temperatures measured because they presented themselves at the doctor
with a suspected fever, then we most likely cannot use it to predict expected body
temperature.
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One important and valuable case where this model works is in simulation. If you
can guarantee that your simulations are independent (which isn’t always easy), this model
applies to estimates obtained from a simulation. Notice that it is usually straightforward to
build a simulation so that the i’th simulation reports an xi where popmean ({x}) gives you
the thing you want to measure. For example, imagine you wish to measure the probability
of winning a game; then the simulation should report one when the game is won, and zero
when it is lost. As another example, imagine you wish to measure the expected number of
turns before a game is won; then your simulation should report the number of turns elapsed
before the game was won.

9.4 WHAT YOU SHOULD REMEMBER

You should be able to:

• Write out the likelihood for a set of independent data items produced by
models from chapter 7 (at least Normal, Binomial, Multinomial, Poisson,
Beta, Gamma, Exponential).

• Write out the log likelihood for a set of independent data items produced
by models from chapter 7 (at least Normal, Binomial, Multinomial, Poisson,
Beta, Gamma, Exponential).

• Find maximum likelihood solutions for parameters of these models from a set
of independent data items.

• Describe situations where maximum likelihood estimates might not be reli-
able.

• Describe the difference between maximum likelihood estimation and Bayesian
inference.

• Write an expression for the posterior or log-posterior of model parameters
given a set of independent data items.

• Compute the MAP estimate for the cases shown in the worked examples.

• Compute on-line estimates of the maximum likelihood estimate of the mean
and standard deviation of a normal model.

• Compute on-line estimates of the MAP estimate of the mean and standard
deviation in the case of a normal prior and a normal likelihood.

• Estimate the population mean from a sample mean.

• Estimate the standard error of the estimate of a population mean.

You should remember:

• The strategy underlying maximum likelihood estimation.

• The strategy underlying MAP estimation.

• How to estimate a population mean.
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• The meaning of standard error.

• The distribution of error made by estimating a population mean using a
sample mean is normal, for a big enough sample. The mean is zero and the
standard deviation is given by the standard error.

PROBLEMS

Maximum Likelihood Methods

9.1. Fitting a Normal Distribution: You are given a dataset of N numbers.
Write xi for the i’th number. You wish to model this dataset with a normal
distribution.
(a) Show the maximum likelihood estimate of the mean of this distribution is

mean ({x}).
(b) Show the maximum likelihood estimate of the standard deviation of this

distribution is std (x).
(c) Now assume that all of these numbers take the same value - what happens

to your estimate of the standard deviation?
9.2. Fitting a Poisson Distribution: You count the number of times that the

annoying “MacSweeper” popup window appears per hour when you surf the
web. You wish to model these counts with a Poisson distribution. On day 1,
you surf for 4 hours, and see counts of 3, 1, 4, 2 (in hours 1 through 4 respec-
tively). On day 2, you surf for 3 hours, and observe counts of 2, 1, 2. On day
3, you surf for 5 hours, and observe counts of 3, 2, 2, 1, 4. On day 4, you surf
for 6 hours, but keep only the count for all six hours, which is 13. You wish
to model the intensity in counts per hour.
(a) What is the maximum likelihood estimate of the intensity for each of days

1, 2, and 3 separately?
(b) What is the maximum likelihood estimate of the intensity for day 4?
(c) What is the maximum likelihood estimate of the intensity for all days

taken together?
9.3. Fitting a Geometric Model: You wish to determine the number of zeros on

a roulette wheel without looking at the wheel. You will do so with a geometric
model. Recall that when a ball on a roulette wheel falls into a non-zero slot,
odd/even bets are paid; when it falls into a zero slot, they are not paid. There
are 36 non-zero slots on the wheel.
(a) Assume you observe a total of r odd/even bets being paid before you see

a bet not being paid. What is the maximum likelihood estimate of the
number of slots on the wheel?

(b) How reliable is this estimate? Why?
(c) You decide to watch the wheel k times to make an estimate. In the first

experiment, you see r1 odd/even bets being paid before you see a bet not
being paid; in the second, r2; and in the third, r3. What is the maximum
likelihood estimate of the number of slots on the wheel?

9.4. Fitting a Binomial Model: You encounter a deck of Martian playing cards.
There are 87 cards in the deck. You cannot read Martian, and so the meaning
of the cards is mysterious. However, you notice that some cards are blue, and
others are yellow.
(a) You shuffle the deck, and draw one card. It is yellow. What is the maxi-

mum likelihood estimate of the fraction of blue cards in the deck?
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(b) You repeat the previous exercise 10 times, replacing the card you drew
each time before shuffling. You see 7 yellow and 3 blue cards in the deck.
What is the maximum likelihood estimate of the fraction of blue cards in
the deck?

Bayesian Methods

9.5. Zeros on a Roulette Wheel: We now wish to make a more sophisticated
estimate of the number of zeros on a roulette wheel without looking at the
wheel. We will do so with Bayesian inference. Recall that when a ball on a
roulette wheel falls into a non-zero slot, odd/even bets are paid; when it falls
into a zero slot, they are not paid. There are 36 non-zero slots on the wheel.
We assume that thenumber of zeros is one of {0, 1, 2, 3}. We assume that these
cases have prior probability {0.1, 0.2, 0.4, 0.3}.
(a) Write n for the event that, in a single spin of the wheel, an odd/even bet

will not be paid (equivalently, the ball lands in one of the zeros). Write
z for the number of zeros in the wheel. What is P (n|z) for each of the
possible values of z (i.e. each of {0, 1, 2, 3})?

(b) Under what circumstances is P (z = 0|observations) NOT 0?
(c) You observe 36 independent spins of the same wheel. A zero comes up in

2 of these spins. What is P (z|observations)?
9.6. A Normal Distribution: You are given a dataset of 3 numbers, −1, 0, 20.

You wish to model this dataset with a normal distribution with unknown mean
µ and standard deviation 1. You will make an MAP estimate of µ. The prior
on µ is normal, with mean 0 and standard deviation 10.
(a) What is the MAP estimate of µ?
(b) A new datapoint, with value 1, arrives. What is the new MAP estimate

of µ?

Samples and Populations

9.7. The Average Mouse: You wish to estimate the average weight of a mouse.
You obtain 10 mice, sampled uniformly at random and with replacement
from the mouse population. Their weights are 21, 23, 27, 19, 17, 18, 20, 15, 17, 22
grams respectively.
(a) What is the best estimate for the average weight of a mouse, from this

data?
(b) What is the standard error of this estimate?
(c) How many mice would you need to reduce the standard error to 0.1?

9.8. Sample Variance and Standard Error: You encounter a deck of Martian
playing cards. There are 87 cards in the deck. You cannot read Martian, and
so the meaning of the cards is mysterious. However, you notice that some
cards are blue, and others are yellow.
(a) You shuffle the deck, and draw one card. You repeat this exercise 10 times,

replacing the card you drew each time before shuffling. You see 7 yellow
and 3 blue cards in the deck. As you know, the maximum likelihood
estimate of the fraction of blue cards in the deck is 0.3. What is the
standard error of this estimate?

(b) How many times would you need to repeat the exercise to reduce the
standard error to 0.05?
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Inference: Intervals and Testing

Although a point estimate is the best estimate available, it could still be
wrong. This doesn’t always matter. But in some applications, it can be important
to know what range a parameter could take, and still be consistent with the data.
We have seen this possibility before, in example 9.8, where I graphed the posterior
— you could look at that graph and see that p could be in a fairly large range of
values.

Being able to estimate an interval of values is important, particularly when
there are safety or legal considerations to worry about. Imagine you have a machine
that fills cereal boxes. Each box gets a quantity of cereal that is random, but has
low variance. If the weight of cereal in any box is below the amount printed on
the label, you might be in trouble. When you choose the amount to print, a point
estimate of the mean weight of cereal might not be particularly helpful. If that
estimate is a little low, you could have problems. Instead, what you’d like to know
is an interval that the mean lies in with very high probability, so you can print a
number that is smaller than the smallest in the interval.

Such intervals are usually known as confidence intervals. There are a
variety of techniques for estimating them, depending on the particular problem.
In section 10.1, I describe straightforward methods to construct confidence inter-
vals. Confidence intervals for sample means are easily constructed using our un-
derstanding of standard error. Similarly, the posterior yields confidence intervals
in a straightforward way when we use Bayesian inference. In other cases we might
not have a good estimate of standard error; but we can use simulation to construct
one (section 10.2). That section also shows how to exploit simulation methods to
estimate confidence intervals for maximum likelihood parameter estimates.

Now imagine we hypothesize that (say) a population has a given mean. We
can then ask how large a confidence interval we have to draw around the sample
mean to include the hypothesis. If that interval is very large, then we would have to
have drawn a very unusual sample to see the sample mean that we see. This means
that our data does not support the hypothesis. This is an extremely fruitful line
of reasoning, because it allows us to evaluate evidence in support of a hypothesis.
Section 10.3 describes methods to do so. In fact, we can evaluate evidence in
support of a model, too, and section 10.4 shows how to do this.

10.1 STRAIGHTFORWARD CONSTRUCTIONS OF CONFIDENCE INTERVALS

A statistic is a function of a dataset. One example of a statistic is the mean
of a sample. Yet another is the MAP estimate of a parameter (which you get
by computing some numbers from the dataset alone). We observe the value of
a statistic, which we can compute from our dataset. But the dataset is random,
because it is either a sample from a population or an IID sample from a distribution
mode. This means that we should think of the statistic as the observed value of a

246
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random variable — if we had a different sample from the same population (resp.
IID sample from the same distribution) we would compute a different value. In
these two cases, we know the observed value of the statistic and a model for the
probability distribution of the statistic, as a random variable. This means we can
construct confidence intervals relatively easily.

10.1.1 Confidence Intervals for Population Means

Assume we have a population, and we wish to know a confidence interval for its
mean. We draw a sample {x} of k items, and compute the sample mean. This
is the value of a random variable — random, because it depends on the randomly
drawn sample — whose probability distribution we know. This knowledge is very
powerful, because it tells us how close to the true mean our estimate is likely to be.
The reasoning looks like this. Our estimate of the unknown number popmean ({x})
is the mean of the sample we have, which we write mean ({x}). We know that the
error — which is

mean ({x})− popmean ({x})
— is a normal random variable, with mean 0 and standard deviation popsd({x})√

k
. We

estimate this standard deviation as std(x)√
k

. We can scale the error by the standard

deviation to get

M̂ =
mean ({x})− popmean ({x})

(

popsd({x})√
k

) ≈ mean ({x})− popmean ({x})
(

std(x)√
k

)

which is a standard normal random variable. But we know rather a lot about the
behaviour of standard normal random variables. In particular, we have that:

• About 68% of the time, the value of a standard normal random variable is
within one standard deviation of the mean.

• About 95% of the time, the value of a standard normal random variable is
within two standard deviations of the mean.

• About 99% of the time, the value of a standard normal random variable is
within three standard deviations of the mean.

In turn, this means that

• About 68% of the time, abs (mean ({x})− popmean ({x})) ≤ popsd({x})
k .

• About 95% of the time, abs (mean ({x})− popmean ({x})) ≤ 2 popsd({x})
k .

• About 99% of the time, abs (mean ({x})− popmean ({x})) ≤ 3 popsd({x})
k .

This means that we can construct a confidence interval for our estimate. For
about 68% of samples, the sample mean will lie in the interval between mean ({x})−
std(x)

k and mean ({x}) + std(x)
k , and so on. Notice that we have just accepted that

the approximation std (x) ≈ popsd ({x}) is harmless, which it is. We can plot the
confidence interval by drawing error bars — draw a bar one (or two, or three)
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FIGURE 10.1: I took the heights dataset. I then formed sampled elements with re-
placement to form random subsets of sizes (2, 4, 9, 16, . . . , 100). For each of 100
subsets of each size, I computed the sample mean — these are shown as x’s on
the plot. I then computed the population mean, and the standard error as mea-
sured by the population standard deviation. The x to the side of each column is the
population mean, and the vertical bars are one standard error above and below the
population mean. Notice how (a) the sample means vary less as the sample gets
bigger and (b) the sample means largely lie within the error bars.

standard deviations up and down from the estimate. We interpret this interval as
representing the effect of sampling uncertainty on our estimate. If the urn model
really did apply, then the confidence intervals have the property that the true mean
lies inside the interval for about 68% of possible samples (for one standard error
error bars; or 95% for two; etc.).

It is quite straightforward, and informative, to verify these ideas with a
simulation. I used the heights column from the bodyfat dataset (from http:

//www2.stetson.edu/~jrasp/data.htm; look for bodyfat.xls). I removed the sin-
gle height outlier. I simulated the population using the whole dataset (251 items),
then drew numerous samples of various sizes, with replacement. I computed the
mean of each of these sets of samples. Figure 10.1 shows a scatter plot of sample
means for different samples, using a set of sizes (2, 4, 9, 16, . . . , 100). I have also
plotted the population mean, and the true 1-standard error bars (i.e. using the
population standard deviation) for each of these sample sizes. Notice how most
sample means lie within the 1-standard error bars, as they should.

Figure 10.2 shows a sample mean and the computed standard error bars for a
set of different sized samples. I have also shown the population mean. Notice how
the population mean is usually within the computed standard error bars. Notice
also how the computed standard error bars (i.e. using the sample standard devia-
tion) are a bit small for small samples, but compare well with the true values for
large samples. The problem here is that, for small samples, the sample standard
deviation can be a fairly poor estimate of the population standard deviation. In
the figure, I show a scatter plot of standard error estimated using sample standard
deviation against standard error evaluated using population standard deviation.
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FIGURE 10.2: On the right, I chose one sample at random of each size; the sample
mean is shown as a *. There are error bars (one standard error above and below)
around the sample mean. These error bars are computed from the sample standard
deviation. The population mean is the x. Notice how the population mean is within
the error bars most, but not all, of the time (about 68% of the time, as they should
be). The sample mean is rather a good estimate of the population mean, and the
standard error is quite a reliable estimate of how well the sample mean represents
the population mean when the sample is large enough. When the sample is small,
the estimate is poor, as you can see on the right. This is a scatter plot of the true
standard error (using the population standard deviation) against the estimate (using
the sample standard deviation). When the sample is small, the standard error is
big, and the estimate is poor.

When the standard error is small (because the sample is large), the two are quite
close; when it is large (because the sample is small), they can be quite different.
This suggests, correctly, that accurate inference from small samples can be tricky.
The right thing to do is get more data — it is optimistic to hope for a good estimate
of average human height from two people, after all.

Now we might reasonably ask another question. We should like to know a
confidence interval such that the true mean lies within it for p of the samples. This
is equivalent to asking what is the u such that

∫ u

−u

1√
2π

exp (−x2/2)dx = p

(i.e. what is the range of values about zero such that p% of standard normal random
variables lies in this range). Such numbers can be extracted from the inverse of the
error function (which is known as the inverse error function). An alternative is
to look in statistical tables, which usually give u values for a useful set of p’s.
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Worked example 10.1 Speed of light

Give a 95% confidence interval for the time of a light transit across a fixed dis-
tance, based on the dataset at http://lib.stat.cmu.edu/DASL/Datafiles/
SpeedofLight.html.

Solution: The first thing to notice about this dataset is it seems to contain
two negative times; but this is illusory. Look closely by tracking down on the
web the paper referred to in the story (Stigler, S.M., “Do robust estimators
work with real data?” Annals of Statistics, 5 (1977), pp. 1055-1078.). You will
find that Newcomb measured the the passage of time for light to cross a fixed
distance. He then subtracted a constant, and reported the result. Write t for
the true measurement of time, in microseconds, and n for the number in the
dataset. We have is

t = 24.8 + n× 1e− 3.

Newcomb omitted the smallest value in the dataset, which is very different from
all others. Omitting the smallest value gives a mean of 24.82729, a standard
deviation of 0.0062, and a standard error of 0.00078. So with 95% confidence
the value lies between 24.82573 and 24.82885. Keeping the smallest value
gives a mean of 24.8262, a standard deviation of 0.0107 and a standard error of
0.0013. So with 95% confidence the value lies between 24.8236 and 24.8288.

Notice the temptation to drop an outlier in example 10.1- it really makes
the measurement look better. These days, the speed of light is known precisely.
It’s used to define the metre, so we would take the position that Newcomb was
measuring the distance of the transit.

10.1.2 Bayesian Confidence Intervals

We can use the posterior to evaluate the probability that the true value of a pa-
rameter lies within an interval. Assume we want to know for a < b, the probability
that the parameter θ lies in that interval. In many cases, we can compute

∫ b

a

p(θ|D)dθ,

which supplies the relevant probability.
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Worked example 10.2 Flipping a coin - II

We have a coin with probability θ of coming up heads when flipped. We start
knowing nothing about θ except that, being a probability, 0 ≤ θ ≤ 1. We use
a uniform prior on θ. We then flip the coin 10 times, and see 7 heads (and 3
tails). What is P ({θ ∈ [0.5, 0.8]} |D)?

Solution: We could answer this question by computing

∫ 0.8

0.5

p(θ|D)dθ.

Recall that a Beta distribution with α = β = 1 is uniform, and look at example
9.11. The posterior is

P (θ|10, 7, 1, 1) = Γ(12)

Γ(8)Γ(4)
θ7(1− θ)3.

I evaluated this integral numerically, and got 0.73.

In example 10.2, I determined that P ({θ ∈ [0.5, 0.8]} |D) was 0.73 Instead,
I might wish to specify 0 ≤ u < 0.5, and then find an interval [a, b] such that
P ({θ ∈ [a, b]} |D) = 1− 2u. Notice that this interval is not unique. Notice that

P ({θ ∈ [a, b]} |D) = 1− P ({θ ≤ a} |D)− P ({θ ≥ b} |D)

We will choose a such that

P ({θ ≤ a}) =
∫ a

−∞
P (θ|D)dθ = u

and b such that

P ({θ ≥ b} |D) =

∫ ∞

b

P (θ|D)dθ = u.

Actually obtaining values for a and b might be quite difficult. One strategy is to
search a range of values.
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Worked example 10.3 Flipping a coin - II

We have a coin with probability θ of coming up heads when flipped. We start
knowing nothing about θ except that, being a probability, 0 ≤ θ ≤ 1. We
use a uniform prior on θ. We then flip the coin 10 times, and see 7 heads
(and 3 tails). Construct an interval [a, b] such that P ({θ ≤ a}|D) ≈ 0.05 and
P ({θ ≥ b}|D) ≈ 0.05.

Solution: I wrote a brief program to compute the relevant integrals numeri-
cally, then searched using interval halving. I found P ({θ ≤ 0.435}|D) ≈ 0.05
and P ({θ ≥ 0.865}|D) ≈ 0.05; this means the interval is [0.435, 0.865].

10.2 USING SIMULATION TO CONSTRUCT INTERVALS

The analysis of some problems is difficult. But the idea of a confidence interval is
naturally associated with repeated experiments. We can use simulations to estimate
confidence intervals when analysis is difficult. Generally, we see the dataset as one of
many possible dataset we could have seen. We must then assess what our estimate
would be like for the other possible datasets. But what are those possible datasets
to be?

When the data is explained by a parametric probability model, we can use
that model to produce other possible datasets. If we compute a maximum likelihood
estimate θ̂ of the parameters of the model, we can draw IID samples from the model.
We then look at the estimate from that new dataset; the spread of the estimates
yields our confidence interval.

When we have no applicable probability model of the dataset, we can resample
the dataset to simulate the effects of sampling error. This strategy allows us to build
confidence intervals for properties like medians.

10.2.1 Constructing Confidence Intervals for Parametric Models

Assume we have a dataset D = {x}, and a probability model we believe applies to
that dataset. We can estimate model parameters, we can maximize the likelihood
function L(θ).

A (1 − 2α) confidence interval for a parameter is an interval [cα, c(1−α)]. We
construct the interval such that, if we were to perform a very large number of
repetitions of our original experiment then estimate a parameter value for each, cα
would be the α quantile and c(1−α) would be the (1−α) quantile of those parameter
values. We interpret this to mean that, with confidence (1− 2α), the correct value
of our parameter lies in this interval. This definition isn’t really watertight. How
do we perform a very large number of repetitions? If we don’t, how can we tell
how good the confidence interval is? Nonetheless, we can construct intervals that
illustrate how sensitive our original inference is to the data that we have.

There are a variety of methods to construct confidence intervals. We will focus
on simulation. The algorithm should feel so natural to you that you may already
have guessed what to do. First, we compute the maximum likelihood estimate
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of the parameters, θ̂. We assume this estimate is right, but need to see how our
estimates of θ̂ would vary with different collections of data from our model with
that parameter value. So we compute a collection of simulated datasets, Di, each
the same size as the original dataset. We obtain these by simulating P (d|θ̂). Next,
we compute a maximum likelihood estimate for each of these simulated datasets,
θ̂i. Finally, we compute the relevant percentiles of these datasets. The result is our
interval.

Procedure: 10.1 Estimating Confidence Intervals for Maximum Likeli-
hood Estimates using Simulation

Assume we have a dataset D = {x} of N items. We have a parametric
model of this data p(x|θ), and write the likelihood L(θ;D) = P (D|θ).
We construct (1− 2α) confidence intervals using the following steps.

1. Compute the maximum likelihood estimate of the parameter, θ̂ =
argmax

θ
L(θ;D).

2. Construct R simulated datasets Di, each consisting of N IID sam-
ples drawn from p(x|θ̂).

3. For each such dataset, compute θ̂i =
argmax

θ
L(θ;D).

4. Obtain cα(θ̂i), the α’th quantile of the collection θ̂i and c(1−α)(θ̂i),

the 1− α’th quantile of the collection θ̂i.

The confidence interval is [cα, c(1−α)].

Figure 10.3 shows an example. In this case, I worked with simulated data from
a normal distribution. In each case, the normal distribution had mean 0, but there
are four different standard deviations (1, 4, 7, and 10). I simulated 10 different
datasets from each of these distributions, containing 10, 40, 90, . . . , 810, 1000 data
items. For each, I computed the maximum likelihood estimate of the mean. This
isn’t zero, even though the data was drawn from a zero-mean distribution, because
the dataset is finite. I then estimated the confidence intervals for each using 10, 000
simulated datasets of the same size. I show 95% confidence intervals for the cases
σ = 1, σ = 4, σ = 10 in the figure, plotted against dataset size. Notice that these
aren’t symmetric about zero, because the maximum likelihood estimate isn’t zero.
They shrink as the dataset grows, but slowly. They are bigger when the standard
deviation is bigger. It should seem reasonable that you can’t expect an accurate
estimate of the mean of a normal distribution with large standard deviation using
only a few data points. One can demonstrate using statistical theory that would
take us rather out of our way that the size of these intervals should behave like

σ√
N
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FIGURE 10.3: Confidence intervals computed for simulated normal data; details in
the text.

and Figure 10.3 suggests that they do. I plotted 1/size2; you can see this grows
linearly as N grows, and falls very fast as σ grows.
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Worked example 10.4 Confidence Intervals by Simulation - II

Construct a 90% confidence interval for the intensity estimate for the data
of example 9.5 for the cases of 10 observations, 20 observations, and all 30
observations.

Solution: Recall from that example the maximum likelihood estimates of the
intensity are 7/10, 22/20, and 29/30 in the three cases. I used the Matlab
function poissrnd to get 10000 replicates of a dataset of 10 (resp. 20, 30)
items from a Poisson distribution with the relevant intensities. I then used
prctile to get the 5% and 95% percentiles, yielding the intervals

[0.3, 1.2] for 10 observations
[0.75, 1.5] for 20 observations

[0.6667, 1.2667] for 30 observations
Notice how having more observations makes the confidence interval smaller.

10.2.2 Estimating Standard Error

We were able to produce convenient and useful estimates of standard error for
sample means. But what happens if we want to, say, reason about the median
of a population? It turns out that estimating standard error becomes difficult
mathematically. This is an important problem, because if we had standard error
estimates, we could use our methods for building confidence intervals and for testing
hypotheses. It turns out that quite simple simulation methods give very good
estimates.

For Figure 10.4, I assumed that all 253 weight measurements represented
the entire population, then simulated what would happen for different random
samples (with replacement) of different sizes. Figure 10.4 suggests that the sample
median behaves quite like the sample mean as the random sample changes. Different
samples have different medians, but the distribution of values looks fairly normal.
When there are more elements in the sample, the standard deviation of median
values is smaller. But we have no method to compute this standard deviation. The
method I used here doesn’t apply in practice, because we don’t usually have the
whole population.

There is a method, known as the bootstrap, which gives a very good estimate
of the standard error of any statistic. Assume we wish to estimate the standard
error of a statistic S({x}), which is a function of our dataset {x} of N data items.
We compute r bootstrap replicates of this sample. Each replicate is obtained
by sampling the dataset uniformly, and with replacement. One helpful way to
think of this is that we are modelling our dataset as a sample of a probability
distribution. This distribution, sometimes known as the empirical distribution,
has probability 1/N at each of the data items we see, and zero elsewhere. Now
to obtain replicates, we simply draw new sets of IID samples from this probability
distribution.

Notice that the bootstrap replicates are not a random permutation of the
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FIGURE 10.4: I took the weights dataset used all 253 measurements to represent a
population. Rather than compute the median of the whole population, I chose to
compute the median of a randomly chosen sample. The figures show a histogram
of 1000 different values of the median, computed for 1000 different samples (of size
20 on the left, and of size 100 on the right). Notice that (a) there is a moderate
amount of variation in the median of the sample; (b) these histograms look normal,
and appear to have about the same median; (c) increasing the size of the sample
has reduced the spread of the histogram.

dataset; instead, we select one data item fairly and at random from the whole
dataset N times. This means we expect a particular bootstrap replicate will have
multiple copies of some data items, and no copies of others.

We write {x}i for the i’th bootstrap replicate of the dataset. We now compute

S =

∑

i S({x}i)
r

and the standard error estimate for S is given by:

stderr ({S}) =

√

∑

i

[

S({x}i)− S
]

r − 1
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Procedure: 10.2 The bootstrap

Estimate the standard error for a statistic S evaluated on a dataset of
N items {x}.

1. Compute r bootstrap replicates of the dataset. Write the i’th
replicate {x}i Obtain each by:

(a) Building a uniform probability distribution on the numbers
1 . . .N .

(b) Drawing N independent samples from this distribution.
Write s(i) for the i’th such sample.

(c) Building a new dataset
{

xs(1), . . . , xs(N)

}

.

2. For each replicate, compute
∑

i S({x}i).
3. Compute

S =

∑

i S({x}i)
r

4. The standard error estimate for S is given by:

stderr ({S}) =

√

∑

i

[

S({x}i)− S
]

r − 1

Worked example 10.5 The bootstrap standard error of the median

You can find a dataset giving the salaries of CEO’s at small firms in 1993 at
http://lib.stat.cmu.edu/DASL/Datafiles/ceodat.html. Construct a 90%
confidence interval for the median salary.

Solution: Salaries are in thousands of dollars, and one salary isn’t given
(we omit this value in what follows). Figure ?? shows a histogram of the
salaries; notice there are some values that look like outliers. This justifies
using a median. The median of the dataset is 350 (i.e. $ 350, 000 — this is
1993 data!). I constructed 10, 000 bootstrap replicates. Figure 10.5 shows a
histogram of the medians of the replicates. I used the matlab prctile function
to extract the 5% and 95% percentiles of these medians, yielding the interval
between 298 and 390. This means that we can expect that, for 90% of samples
of CEO salaries for small companies, the median salar will be in the given
range.
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FIGURE 10.5: On the left, a histogram of salaries for CEO’s of small compa-
nies in 1993, from the dataset of http: // lib. stat.cmu. edu/ DASL/Datafiles/
ceodat.html . On the right, a histogram of the medians of 10, 000 bootstrap repli-
cates of this data. This simulates the effect of sampling variation on the median;
see worked example 10.5.

Worked example 10.6 Are Brinks collectors different from city collectors?
- I

Using the dataset of http://lib.stat.cmu.edu/DASL/Datafiles/brinkdat.
html, test whether Brinks coin collectors are different from city coin collectors
(read the story, at that URL).

Solution: There are two types of parking meter in this story (which you
should have read!). One is close to the city hall, and is always collected by
city employees. The other is far, and for some months was collected by Brinks
employees and for some months collected by city employees. I ignored the
figures for month 10, because there was a missing digit in the number (don’t
know how or why). For the meters that are far, coins were collected for 22
months by city employees and for 24 months by Brinks employees.
For the far meters, I constructed 10, 000 bootstrap replicates of each case.
Figure 10.6 compares the two sets of replicates, showing the histogram of means
for city collections vs Brinks collections. Notice how the means of the two
histograms are quite separated, compared to their variance. This suggests,
quite strongly, that the Brinks collections are different (the difference between
the means is about 1.6 standard deviations). I used the nearby meter figures to
check whether there was something special about the months on which Brinks
employees collected coins. Again, I constructed 10, 000 bootstrap replicates of
each case (nearby coins in a Brinks month vs. nearby coins in a city month).
This is plotted in figure 10.6. There’s nothing special about the months, from
the figure.
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FIGURE 10.6: On the left, two histograms comparing the means of bootstrap repli-
cates of the coins collected by Brinks employees and those collected by city employ-
ees. Notice how the two histograms are quite separated, compared to their width.
This is fairly strong evidence that the two cases are different. The difference is not
explained by the months in which the coins are collected. On the right, two his-
tograms comparing the means of bootstrap replicates of coins collected from nearby
meters. These coins were collected by city employees, but I have separated Brinks
months from city months. There is no evidence the months are different.

10.3 USING THE STANDARD ERROR TO EVALUATE HYPOTHESES

Assume we have a hypothesis to work with. For example, we believe that women
and men have the same body temperature. We should like to assess the extent
to which the evidence we have contradicts the hypothesis. At first glance, this
may seem strange to you — surely one wants to assess the extent to which the
evidence supports the hypothesis — but in fact it’s natural. You can’t prove that
a scientific hypothesis is true; you can only fail to show that it’s false. Just one
piece of evidence can destroy a scientific hypothesis, but no amount of evidence can
remove all doubt.

In our example, we measure the temperatures of a sample of women and of
a sample of men. We cannot expect that the sample means are the same, because
these are affected by the choice of sample. However, we have a good model of these
sample means as random variables; in particular, we know the standard error. We
can use this to assess the extent to which the difference in temperatures can be
explained solely by the choice of sample. If it is easy to explain the difference
in temperatures by choice of sample, then the evidence does not contradict the
hypothesis; alternatively, if the difference in temperatures is hard to explain by
choice of sample, the evidence contradicts the hypothesis.

There is an important, quite general, line of reasoning here. It is a bad idea
to try and explain data using a hypothesis that makes the data you observed a rare
event.
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Example: 10.1 Patriot missiles

I got this example from “Dueling idiots”, a nice book by P.J. Nahin,
Princeton University Press. Apparently in 1992, the Boston Globe of
Jan 24 reported on this controversy. The pentagon claimed that the
patriot missile successfully engaged SCUD missiles in 80% of encoun-
ters. An MIT physicist, Theodore Postol, pointed out there was a
problem. He viewed tapes of 14 patriot/SCUD encounters, with one
hit and 13 misses. We can reasonably assume each encounter is in-
dependent. We can extract the probability of getting one hit and 13
misses if P (hit) = 0.8 from the binomial model, to get a number around
1e-8. Now you could look at this information and make several argu-
ments: (a) the pentagon is right and the probability really is 0.8, but
Postol looked at a really unlucky set of videotapes; (b) the probabil-
ity is not 0.8, because you would need to fire 14 patriots at 14 SCUD
missiles about 1e8 times to see this set of videotapes once; (c) for some
reason, the videotapes are not independent — perhaps only unsuccess-
ful encounters get filmed. If Postol viewed tapes at random (i.e. he
didn’t select only unsuccessful tapes, etc.), then argument (a) is easily
dismissed, because the pentagon would have had to be unreasonably
unlucky — it’s a bad idea to try to explain data with a hypothesis that
makes the data very unlikely.

Example: 10.2 MTG and Shuffling

You build a deck of 24 lands and 36 spells. You shuffle this deck,
and draw a hand of seven cards. You get no lands. You repeat the
experiment, and still get no lands. On a third try, you still get no
lands. By example 8.16, this event (three shuffles and draws with no
lands in each hand) has probability about 8e-6. You could draw several
conclusions: (a) you got unlucky; (b) you miscounted lands somehow;
(c) you’re shuffling the cards badly (i.e. the cards stick together, or you
are bad at shuffling). Conclusion (a) is unattractive, because you would
need to have been very unlucky (you’d see this outcome once in roughly
1e5 experiments, where each consists of shuffling and drawing three
hands). It’s a bad idea to try to explain data with a hypothesis that
makes the data very unlikely, so conclusions (b) and (c) have become
more plausible.
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10.3.1 Does this Population have this Mean?

Imagine we hypothesize that the average human body temperature is 95o. Write T
for the random variable evaluated by: collecting a random sample of people, mea-
suring their temperatures, and computing the average of these temperatures. The
mean of this random variable is the population mean, and the standard deviation
of this random variable is the standard error, which we write s. Now consider the
random variable

G =
(T − 95o)

s
.

This is a standard normal random variable, if our hypothesis is true.
In practice, we have already chosen a single sample. We can compute the

mean temperature of this sample, which we write t. This represents an observed
value of T . If you’re puzzled by the relationship between the two, use an analogy
with rolling a die. The random variable is what you could get if you rolled a die;
the value is the face that came up when you did roll it. Similarly, T is what you
could get by choosing a sample, and t is the value you did get with the sample you
have. In turn, we obtain a value for G, which is

g =
(t− 95o)

s
.

Now G is a standard normal random variable, if our hypothesis is true. We can
interpret this to mean that for 68% of possible samples, g will take a value between
−1 and 1 (etc.), if our hypothesis is true. Equivalently G will take a value between
g and −g, for a fraction f of all possible samples of the population, where

f =

∫ g

−g

exp

(−u2

2

)

du.

Now assume we see a very large (or very small) value of g. The value of f will be
close to one, which implies that most samples from the population will have a g
value closer to zero if the hypothesis were true. Equivalently, this says that, if the
hypothesis were true, our sample is highly unusual, which implies the data fails to
support the hypothesis.

It is easy to think about p = 1 − f than about f . You should think of p as
representing the fraction of samples that would give a larger absolute value of g, if
the null hypothesis was true. If this fraction is very small, then there is significant
evidence against the null hypothesis. We have that p — the fraction of experiments
that would give us a larger absolute value of g than the one we saw — is given by

p = (1− f) = (1−
∫ g

−g

exp

(−u2

2

)

du) = P ({G > | ĝ |}) ∪ P ({G < −| ĝ |})

and we can compute this number easily, because we know the distribution of G is
normal (or nearly so). The fraction is sometimes referred to as a p-value.

Once we have the p-value, testing is straightforward. A small value of the
fraction means that the outcome we see would be rare if the null hypothesis is
true. The fraction that we compute should be interpreted an assessment of the
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significance of the evidence against the null hypothesis. The p-value is smaller
when the evidence against the null hypothesis is stronger; we get to decide how
small a p-value means we should reject the null hypothesis.

It is conventional to reject the null hypothesis when the p-value is less than
0.05. This is sometimes called “a significance level of 5%”. You should interpret
a p-value of 0.05 as meaning that you would see evidence this unusual in about
one experiment in twenty if the null hypothesis was true. Sometimes, the p-value is
even smaller, and this can be interpreted as very strong evidence the null hypothesis
is wrong. A p-value of less than 0.01 allows one to reject the null hypothesis at
“a significance level of 1%”. Similarly, you should interpret a p-value of 0.01 as
meaning that you would see evidence this unusual in about one experiment in a
hundred if the null hypothesis was true. We now have a general recipe for testing
whether a population has a particular mean, which belongs in a box:
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Procedure: 10.3 Testing whether a population has a given mean, based
on a sample

The initial hypothesis is that the population has a known mean, which
we write µ. Write {x} for the sample, and k for the sample size.

• Compute the sample mean, which we write mean ({x}).

• Estimate the standard error se using

se =
std (x)√

k
.

• Compute the test statistic using

s =
(µ−mean ({x}))

se
.

• Compute the p-value, using

p = (1 − f) = (1−
∫ s

−s

exp

(−u2

2

)

du)

Equivalently, compute the probability that a standard normal ran-
dom variable X takes a value greater than s or less than −s, using
the expression

P ({X > |s |}) ∪ P ({X < −|s |}).

• The p-value summarizes the extent to which the data contradicts
the hypothesis. A small p-value implies that, if the hypothesis
is true, the sample is very unusual. The smaller the p-value, the
more strongly the evidence contradicts the hypothesis.

It is common to think that a hypothesis can be rejected only if the
p-value is less than 5% (or some number). You should not think this
way; the p-value summarizes the extent to which the data contradicts
the hypothesis, and your particular application logic affects how you
interpret it.
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Worked example 10.7 Average Human Body Weight

Assess the null hypothesis that the average human body weight is 175 lb, using
the height and weight data set of http://www2.stetson.edu/~jrasp/data.
htm (called bodyfat.xls).

Solution: The dataset contains 252 samples; the average weight is 178.9lb.
We know this average is an estimate of the mean of the original large set of all
people. This estimate is a normal random variable whose mean is the mean of
the population, and whose standard deviation is given by the standard error.
Our sample is large (which usually means over 30 elements) and so we can
estimate the standard error as

standard deviation of sample√
number in sample

=
29.4

15.9
= 1.9,

where the units are lb. The test statistic is

sample mean− hypothesized population mean

standard error
=

178.9− 175

1.9
= 2.05.

This is the value of a standard normal random variable. We must compute
the fraction of outcomes where the test statistic would be larger than 2.05, or
smaller than -2.05. This is

2 ∗ 1√
2π

∫ ∞

2.05

exp

(−x2

2

)

dx = 0.02

so the p-value is 0.02. We can interpret this as quite strong evidence that the
average human body weight is not, in fact, 175lb. This p-value says that, if
(a) the average human body weight is 175lb and (b) we repeat the experiment
(weigh 252 people and average their weights) 50 times, we would see a number
as big as the one we see about once.
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Worked example 10.8 Average BMI

The BMI (body mass index) is a number intended to capture how much a
person’s weight deviates from the usual for their height. Assess the null hy-
pothesis that the average human BMI is 27, using the height and weight data
set of http://www2.stetson.edu/~jrasp/data.htm; bodyfat.xls.

Solution: BMI is computed using

BMI =
weight in lb

(height in in)2
× 703.

I did excluded two possible outliers in this dataset (entry 39 has weight 363 and
height 72.25; entry 42 has weight 205 and height 29.5). I found a mean BMI of
25.3, and a standard deviation of 3.35. There are 250 items in the dataset, so
the standard error is 0.21. The test statistic is

sample mean− hypothesized population mean

standard error
=

25.3− 27

2.1
= −8.1

so the p-value is the probability that a standard normal random variable would
take a value larger than -8.1 or smaller than 8.1. There is no particular reason
to care about the difference between this (extremely small, about 1e-16) number
and zero. The evidence is very strongly against the hypothesis.
If one keeps the outliers, one gets a mean BMI of 25.9, and a standard deviation
of 9.56. There are 252 items in the dataset, so the standard error is 0.60. Now
the p-value is 0.08, suggesting that the evidence is against the hypothesis, but
not overwhelmingly. Notice the significant effect of just two datapoints. We
might need more data to be sure we could reject the hypothesis.

You should notice an important relationship between our test and the material
of section 10.1. When we constructed a confidence interval, we knew the distribution
that the sample mean would take as we randomly chose different samples from the
population. In turn, this meant we could plot (for example) the range of possible
values the population mean would take for (say) 95% of possible samples. When we
test a hypothesis about the mean, we are asking what kind of confidence interval
we would have to draw around the hypothesized mean to encompass the observed
sample mean.

10.3.2 Do Two Populations have the same Mean?

We have two samples, and we need to know whether they come from the same, or
different, populations. For example, we might observe people using two different
interfaces, measure how quickly they perform a task, then ask are their perfor-
mances different? As another example, we might run an application with no other
applications running, and test how long it takes to run some standard tasks. Be-
cause we don’t know what the operating system, cache, etc. are up to, this number
behaves a bit like a random variable, so it is worthwhile to do several experiments,
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yielding one set of samples. We now do this with other applications running as well,
yielding another set of samples — is this set different from the first set? For real-
istic datasets, the answer is always yes, because they’re random samples. A better
question is could the differences be the result of chance, or are these datasets really
samples of two different populations?

We will ask if the population means are different. It turns out we can answer
this rather easily, using some tricks about normal random variables. Assume that
the samples are large enough (30 seems to be the magic number here). Write {x}
for the first dataset, which has size kx, and {y} for the second, which has size ky.
These datasets need not be of the same size Each dataset is a random sample,
drawn with replacement, from a population. We should like to assess the evidence
that these two populations have the same mean. To do so, we need some simple
facts about normal random variables.

Useful Facts: 10.1 Sums and differences of normal random variables

Let X1 be a normal random variable with mean µ1 and standard de-
viation σ1. Let X2 be a normal random variable with mean µ2 and
standard deviation σ2. Let X1 and X2 be independent. Then we have
that:

• for any constant c1 6= 0, c1X1 is a normal random variable with
mean c1µ1 and standard deviation c1σ1;

• for any constant c2, X1 + c2 is a normal random variable with
mean µ1 + c2 and standard deviation σ1;

• X1 + X2 is a normal random variable with mean µ1 + µ2 and
standard deviation

√

σ2
1 + σ2

2 .

I will not prove these facts; we already know the expressions for means
and standard deviations from our results on expectations. The only
open question is to show that the distributions are normal. This is
easy for the first two results. The third requires a bit of integration
that isn’t worth our trouble; you could do reconstruct the proof from
section 14.1’s notes on sums of random variables and some work with
tables of integrals.

Write X(kx) for the random variable obtained by: drawing a random sample
with replacement of kx elements from the first population, then averaging this
sample. Write Y (ky) for the random variable obtained by: drawing a random
sample with replacement of ky elements from the first population, then averaging
this sample. From section 9.3, we know that each random variable is normal, and
we know the means and standard deviations of these random variables. In turn,
this means that X(kx) − Y (ky) is a normal random variable.
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Now write D for X(kx) − Y (ky). If the two populations have the same mean,
then E[D] = 0. Furthermore,

std (D) =

√

std
(

X(kx)
)2

+ std
(

X(ky)
)2
.

We know how to estimate var
[

X(kx)
]

— it is the standard error of the sample, and

we can estimate it as std (x)/
√
kx. So we have can estimate std (D) as

std (D) ≈

√

√

√

√

(

std (x)√
kx

)2

+

(

std (y)
√

ky

)2

.

We can now use the same reasoning we used to test the hypothesis that a population
had a particular, known mean. We have identified a number we can compute from
the two samples. We know how this number would vary under random choices
of sample. If the value we observe is too many standard deviations away from
the mean, the evidence is against our hypothesis. If we wanted to believe the
hypothesis, we would be forced to believe that the sample is extremely strange. I
have summarized this reasoning in box 10.4.
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Procedure: 10.4 Testing whether two populations have a given mean,
based on a sample of each

The initial hypothesis is that the populations have the same, unknown,
mean. Write {x} for the sample of the first population, {y} for the
sample of the second population, and kx, ky for the sample sizes.

• Compute the sample means for each population, mean ({x}) and
mean ({y}).

• Estimate the standard error se for each population, using

sex =
std (x)√

k
, sey =

std (y)√
k

.

• Compute the standard error for the difference between the means,

sed =
√

s2ex + s2ey .

• Compute the test statistic using

s =
(mean ({x})−mean ({y}))

sed
.

• Compute the p-value, using

p = (1 − f) = (1−
∫ s

−s

exp

(−u2

2

)

du)

Equivalently, compute the probability that a standard normal ran-
dom variable X takes a value greater than s or less than −s, using
the expression

P ({X > |s |}) ∪ P ({X < −|s |}).

• The p-value summarizes the extent to which the data contradicts
the hypothesis. A small p-value implies that, if the hypothesis
is true, the sample is very unusual. The smaller the p-value, the
more strongly the evidence contradicts the hypothesis.

It is common to think that a hypothesis can be rejected only if the
p-value is less than 5% (or some number). You should not think this
way; the p-value summarizes the extent to which the data contradicts
the hypothesis, and your particular application logic affects how you
interpret it.
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Worked example 10.9 Are US and Japanese cars different

At http://www.itl.nist.gov/div898/handbook/eda/section3/eda3531.

htm you can find a dataset, published by NIST, giving measurements of miles
per gallon for Japanese and US cars. Assess the evidence these two populations
have the same mean MPG.

Solution: There are 249 measurements for Japanese cars, and 79 for US cars.
The mean for Japanese cars is 20.1446, and for US cars is 30.4810. The standard
error for Japanese cars is 0.4065, and for US cars is 0.6872. The value of the
test statistic is

(mean ({x})−mean ({y}))
sed

= 10.33/0.7984 = 12.94

and the p-value is the probability of encountering a standard normal random
variable of this value or greater. This is so close to zero I had trouble getting
sensible numbers out of MATLAB; the evidence very strongly rejects this hy-
pothesis. A version of this example, using the more complex two-sample t-test,
is worked in the NIST/SEMATECH e-Handbook of Statistical Methods, at
http://www.itl.nist.gov/div898/handbook/, as of 2013.

Worked example 10.10 Do women and men have the same body temper-
ature?

Using the dataset of human temperatures at , assess the evidence against the
hypothesis that gender 1 has the same mean temperature as gender 2

Solution: We compute the mean temperatures and standard errors shown

in the table.

Gender: 1 2
Mean: 98.10 98.39
Std Error: 0.0867 0.0922

The null hypothesis is that these

two are the same, so the test statistic is

difference

std error
=

98.39− 98.10√
0.08672 + 0.09222

= 2.285

and we must ask what is the probability of getting a number with absolute
value this big, or bigger, from a normal distribution (two-sided test). This is
0.0223. The evidence in this data set does not support the null hypothesis.
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10.3.3 Variants on the Basic Test

The test of procedure 10.3 is usually referred to as a two-sided test. This is
because it computes

P ({X > |s |}) ∪ P ({X < −|s |}).
This is the fraction of samples that would produce a value that is larger than |s | or
smaller than −|s |. In some cases, we can expect that only the larger (or smaller)
value is of interest. This yields a one-sided test; the relevant expression is either

P ({X > s})

or
P ({X < s}).

Generally, it is more conservative to use a two-sided test, and one should do so unless
there is a good reason not to. Very often, authors use one-sided tests because they
result in smaller p-values, and small p-values are often a requirement for publication.

Z-Tests and T-Tests
Our procedure works because we were able to identify a random variable

where: (a) the random variable represents the effect of drawing a sample of a popu-
lation at random; (b) we knew the distribution of the random variable conditioned
on the hypothesis; (c) we can evaluate the random variable for our particular sam-
ple. Now use the notation of procedure 10.3. In that procedure, we computed

P ({X > |s |}) ∪ P ({X < −|s |}).

When we have a large sample, the sample mean is a normal random variable whose
mean is the population mean and whose standard deviation is the standard error.
This means that we know its distribution. In this case, the test is known as a
z-test.

An important difficulty with this procedure is we assumed we know the stan-
dard error. As figure 10.2 suggested, estimating standard error with std (x)/

√
k

works fine for large k, but is less successful for small k. Usually, practical advice
suggests that one should use a Z-test only if the sample has at least 30 elements.

When the sample is small, the sample standard deviation is a poor estimate of
the population standard deviation. The value of the sample mean that we compute
minimizes the sample standard deviation, which means that the estimate tends to
be a little too small. In turn, the standard error is a little too small, and there is
slightly more probability that the sample mean is far from the population mean
than the normal model allows for. This can be corrected for. Instead of using the
standard deviation of the sample to form the standard error, we use

√

∑

i(xi −mean ({xi}))2
k − 1

.

When we test, instead of using the normal distribution to compute probabilities, we
use Student’s t-distribution. This is a family of probability distributions. There
are two parameters; the observed value s, and the number of degrees of freedom.
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The number of degrees of freedom is k − 1 for our purposes. When the number
of degrees of freedom is small, the t-distribution has rather heavier tails than the
normal distribution, so the test takes into account that the standard error may be
larger than we think (because the population standard deviation is larger than we
expected). When the number of degrees of freedom is large, the t-distribution is
very similar to the normal distribution. One can get p-values from tables, or by
the Matlab function ttest.

10.4 χ2 TESTS: IS DATA CONSISTENT WITH A MODEL?

Sometimes we have a model, and we would like to know whether the data is consis-
tent with that model. For example, imagine we have a six-sided die. We throw it
many times, and record which number comes up each time. We would like to know
if the die is fair (i.e. is the data consistent with the model that the die is fair). It
is highly unlikely that each face comes up the same number of times, even if the
die is fair. Instead, there will be some variation in the frequencies observed; with
what probability is that variation, or bigger, the result of chance effects?

As another example, we decide that the number of calls by a telemarketer in
each hour is distributed with a Poisson distribution. We don’t know the intensity.
We could collect call data, and use maximum likelihood to determine the intensity.
Once we have the best estimate of the intensity, we still want to know whether the
model is consistent with the data.

In each case, the model predicts the frequencies of events. For the six-sided
die case, the model tells us how often we expect to see each side. For the call case,
the model predicts how often we would see no calls, one call, two calls, three calls,
etc. in each hour. To tell whether the model fits the data, we need to compare the
frequencies we observed with theoretical frequencies.

The appropriate test is a χ2 (say “khi-squared”) test. Assume we have a set of
disjoint events E1, . . . , Ek which cover the space of outcomes (i.e. any outcome lies
in one of these events). Assume we perform k experiments, and record the number
of times each event occurs. We have a null hypothesis regarding the probability
of events. We can take the probability of each event and multiply by k to get a
frequency under the null hypothesis. Now write fo(Ei) for the observed frequency of
event i; ft(Ei) for the theoretical frequency of the event under the null hypothesis.
We form the statistic

∑

i

(fo(Ei)− ft(Ei)2
ft(Ei)

which compares the observed and actual frequency of events. It turns out that this
statistic has a distribution very close to a known form, called the χ2 distribution, as
long as each count is 5 or more. The distribution has two parameters; the statistic,
and the number of degrees of freedom. The number of degrees of freedom to use
for a straightforward test is k− 1; if one has to estimate a total of p parameters for
the null hypothesis, this number is k − p− 1.

After this, things follow the usual recipe. We compute the statistic; we then
look at tables, or use the matlab function chi2cdf, to find the probability that the
statistic takes this value or greater under the null hypothesis. If this is small, then
we reject the null hypothesis.
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Worked example 10.11 χ2 test for dice

I throw a die 100 times. I record the outcomes, in the table below. Is this a
fair die?
face count

1 46
2 13
3 12
4 11
5 9
6 9

Solution: The expected frequency is 100/6 for each face. The χ2 statistic has
the value 62.7, and there are 5 degrees of freedom. We get the significance as
1-chi2cdf(62.7, 5), which is (basically) 3e-12. You would have to run this
experiment 3e11 times to see a table as skewed as this once, by chance. The
die is not fair. Notice the most important bit of this example, which is how to
get the number out of matlab.
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Worked example 10.12 Is swearing Poisson?

A famously sweary politician gives a talk. You listen to the talk, and for each of
30 intervals 1 minute long, you record the number of swearwords. You record
this as a histogram (i.e. you count the number of intervals with zero swear

words, with one, etc.).

no. of swear words no. of intervals

0 13
1 9
2 8
3 5
4 5

The null hypothesis is that the politician’s swearing is Poisson distributed, with
intensity (λ) one. Can you reject this null hypothesis?

Solution: If the null hypothesis is true, then the probability of getting n swear

words in a fixed length interval would be λne−λ

n! . There are 10 intervals, so the
theoretical frequencies are 10 times the following probabilities
number of swear words probability

0 0.368
1 0.368
2 0.184
3 0.061
4 0.015

so the χ2 statistic takes the value 243.1 and there are 4 degrees of freedom. The
significance 1-chi2cdf(243.1, 4) is indistinguishable from zero by matlab, so
you can firmly reject the null hypothesis. Of course, the intensity may be wrong;
but we don’t know how to deal with that, and will have to discuss that question
in the next chapter.
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Worked example 10.13 Is gender 2 temperature normal?

Recall we used body temperature data for two genders in earlier examples. The
gender 2 data looked as though it might not be normal. Use a χ2 test to tell
whether it is normal with mean 98.4o and standard deviation 0.743 or not.

Solution: The null hypothesis is that the data is normal with mean 98.4o and
standard deviation 0.743. We break up the range into five buckets (less than
97.65 = 98.4 − 0.74; between 97.65 and 98 = 98.4 − 0.743/2; between 98 and
98.76 = 98.4 + 0.743/2; and greater than 99.14). With a little work with error
functions, we get that the theoretical frequency in each bucket under the null
hypothesis is (10.3126; 9.7423; 24.8901; 9.7423; 10.3126). The actual frequencies
are (7; 13; 26; 12; 7). The χ2 statistic is about 4e3, and the significance level is
essentially zero. This data isn’t normal with the parameters given (though it
might be normal with a different mean and a different standard deviation).
Looking at the frequencies suggests the problem; there are far too few temper-
atures far away from the mean for this to be normal, and far too many in the
center bucket.

10.5 WHAT YOU SHOULD REMEMBER - NEED SOMETHING

PROBLEMS

Confidence Intervals

10.1. The Weight of Mice You wish to estimate the average weight of a mouse.
You obtain 10 mice, sampled uniformly at random and with replacement
from the mouse population. Their weights are 21, 23, 27, 19, 17, 18, 20, 15, 17, 22
grams respectively.
(a) Give a 68% confidence interval for the weight of a mouse, from this data.
(b) Give a 99% confidence interval for the weight of a mouse, from this data.

10.2. The Weight of Rats You wish to estimate the average weight of a pet
rat. You obtain 40 rats (easily and cheaply done; keep them, because they’re
excellent pets), sampled uniformly at random and with replacement from the
pet rat population. The mean weight is 340 grams, with a standard deviation
of 75 grams.
(a) Give a 68% confidence interval for the weight of a pet rat, from this data.
(b) Give a 99% confidence interval for the weight of a pet rat, from this data.

Hypothesis Testing

10.3. Yet more Mouse-weighing I claim the average weight of a mouse is 25
grams. You decide to evaluate the evidence in support of this claim. You
obtain 10 mice, sampled uniformly at random and with replacement from the
mouse population. Their weights are 21, 23, 27, 19, 17, 18, 20, 15, 17, 22 grams
respectively. Does the evidence support my claim? to what extent? Why?

10.4. How big are Parktown Prawns? The Parktown prawn is an impressively
repellent large insect, common in Johannesburg (look them up on the Web).
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I claim that their average length is 10cm. You collect 100 Parktown prawns
(this will take about 10 mins, in the right places in Johannesburg; more difficult
from here). The mean length of these prawns is 7cm. The standard deviation
is 1cm. Assess the evidence against my claim.

10.5. Two Populations of Rats Zucker rats are specially bred to have curious
weight properties, related to their genetics (look them up on the Web). You
measure 30 lean Zucker rats, obtaining an average weight of 500 grams with a
standard deviation of 50 grams. You measure 20 fatty Zucker rats, obtaining
an average weight of 1000 grams with a standard deviation of 100 grams.
Assess the evidence against the claim that these populuations have the same
weight.

10.6. Male and Female pet Rats Zucker rats are specially bred to have curious
weight properties, related to their genetics (look them up on the Web). You
measure 25 female pet rats, obtaining an average weight of 300 grams with a
standard deviation of 30 grams. You measure 20 male pet rats, obtaining an
average weight of 400 grams with a standard deviation of 100 grams. Assess
the evidence against the claim that these populations have the same weight.
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Extracting Important Relationships
in High Dimensions

Chapter 4 described methods to explore the relationship between two elements
in a dataset. We could extract a pair of elements and construct various plots.
For vector data, we could also compute the correlation between different pairs of
elements. But if each data item is d-dimensional, there could be a lot of pairs to
deal with.

We will think of our dataset as a collection of d dimensional vectors. It turns
out that there are easy generalizations of our summaries. However, is hard to
plot d-dimensional vectors. We need to find some way to make them fit on a 2-
dimensional plot. Some simple methods can offer insights, but to really get what
is going on we need methods that can at all pairs of relationships in a dataset in
one go.

These methods visualize the dataset as a “blob” in a d-dimensional space.
Many such blobs are flattened in some directions, because components of the data
are strongly correlated. Finding the directions in which the blobs are flat yields
methods to compute lower dimensional representations of the dataset.

11.1 SUMMARIES AND SIMPLE PLOTS

In this chapter, we assume that our data items are vectors. This means that we can
add and subtract values and multiply values by a scalar without any distress. This
is an important assumption, but it doesn’t necessarily mean that data is continuous
(for example, you can meaningfully add the number of children in one family to the
number of children in another family). It does rule out a lot of discrete data. For
example, you can’t add “sports” to “grades” and expect a sensible answer.

Notation: Our data items are vectors, and we write a vector as x. The
data items are d-dimensional, and there are N of them. The entire data set is {x}.
When we need to refer to the i’th data item, we write xi. We write {xi} for a new
dataset made up of N items, where the i’th item is xi. If we need to refer to the

j’th component of a vector xi, we will write x
(j)
i (notice this isn’t in bold, because

it is a component not a vector, and the j is in parentheses because it isn’t a power).
Vectors are always column vectors.

11.1.1 The Mean

For one-dimensional data, we wrote

mean ({x}) =
∑

i xi

N
.

276
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FIGURE 11.1: Left: A parallel plot of the bodyfat dataset, including all data points.
I have named the components on the horizontal axis. It is easy to see that large
values of bodyfat correspond to small values of density, and vice versa. Notice that
one datapoint has height very different from all others; similarly, one datapoint
has weight very different from all others. Right: A plot with those data items
removed, so that those components are renormalized. Two datapoints have rather
distinct ankle measurements. Generally, you can see that large knees go with large
ankles and large biceps (the v structure).

This expression is meaningful for vectors, too, because we can add vectors and
divide by scalars. We write

mean ({x}) =
∑

i xi

N

and call this the mean of the data. Notice that each component of mean ({x}) is the
mean of that component of the data. There is not an easy analogue of the median,
however (how do you order high dimensional data?) and this is a nuisance. Notice
that, just as for the one-dimensional mean, we have

mean ({x−mean ({x})}) = 0

(i.e. if you subtract the mean from a data set, the resulting data set has zero mean).

11.1.2 Parallel Plots

Parallel plots can sometimes reveal information, particularly when the dimension
of the dataset is low. To construct a parallel plot, you compute a normalized
representation of each component of each data item. The component is normalized
by translating and scaling so that the minimum value over the dataset is zero, and
the maximum value over the dataset is one. Now write the i’th normalised data
item as (n1, n2, . . . , nd). For this data item, you plot a broken line joining (1, n1)
to (2, n2) to (3, n3, etc. These plots are superimposed on one another. In the case
of the bodyfat dataset, this yields the plot of figure 11.1.

Some structures in the parallel plot are revealing. Outliers often stick out (in
figure 11.1, it’s pretty clear that there’s a data point with a very low height value,
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FIGURE 11.2: On the left, a “blob” in two dimensions. This is a set of data points
that lie somewhat clustered around a single center, given by the mean. I have
plotted the mean of these data points with a ’+’. On the right, a data set that is
best thought of as a collection of five blobs. I have plotted the mean of each with a
’+’. We could compute the mean and covariance of this data, but it would be less
revealing than the mean and covariance of a single blob. In chapter 14.1, I will
describe automatic methods to describe this dataset as a series of blobs.

and also one with a very large weight value). Outliers affect the scaling, and so
make other structures difficult to spot. I have removed them for figure 11.1. In this
figure, you can see that two negatively correlated components next to one another
produce a butterfly like shape (bodyfat and density). In this plot, you can also see
that there are still several data points that are very different from others (two data
items have ankle values that are very different from the others, for example).

11.1.3 Blobs

When we plotted histograms, we saw that mean and variance were a very helpful
description of data that had a unimodal histogram. If the histogram had more
than one mode, one needed to be somewhat careful to interpret the mean and
variance; in the pizza example, we plotted diameters for different manufacturers to
try and see the data as a collection of unimodal histograms. In higher dimensions,
the analogue of a unimodal histogram is a “blob” — a group of data points that
clusters nicely together and should be understood together.

Generally, mean and covariance are a good description of data that lies in a
“blob” (Figure 11.2). You might not believe that “blob” is a technical term, but it’s
quite widely used. This is because it is relatively easy to understand a single blob
of data. There are good summary representations (mean and covariance, which I
describe below). If a dataset forms multiple blobs, we can usually coerce it into a
representation as a collection of blobs (using the methods of chapter 12). But many
datasets really are single blobs, and we concentrate on such data here. There are
quite useful tricks for understanding blobs of low dimension by plotting them, which
I describe below. To understand a high dimensional blob, we will need to think
about the coordinate transformations that places it into a particularly convenient
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FIGURE 11.3: Left: a 3D scatterplot for the famous Iris data, originally due to ***.
I have chosen three variables from the four, and have plotted each species with a
different marker. You can see from the plot that the species cluster quite tightly,
and are different from one another. Right: a scatterplot matrix for the famous Iris
data, originally due to ***. There are four variables, measured for each of three
species of iris. I have plotted each species with a different marker. You can see from
the plot that the species cluster quite tightly, and are different from one another.

form; I’ll cover this in the next section.

11.1.4 Understanding Blobs with Scatterplot Matrices

Plotting high dimensional data is tricky. If there are relatively few dimensions, you
could just choose three of them and produce a scatterplot. Figure 11.3 shows such a
scatterplot, for data that was originally four dimensional. This dataset is a famous
dataset to do with the botanical classification of irises. I found a copy at the UC
Irvine repository of datasets that are important in machine learning. You can find
the repository at http://archive.ics.uci.edu/ml/index.html.

Another strategy that is very useful when there aren’t too many dimensions
is to use a scatterplot matrix. To build one, you lay out scatterplots for each pair
of variables in a matrix. On the diagonal, you name the variable that is the vertical
axis for each plot in the row, and the horizontal axis in the column. This sounds
more complicated than it is; look at the example of figure 11.3, which shows a
scatterplot matrix for the iris data of figure 11.3.

Figure 11.4 shows a scatter plot matrix for four of the variables in the height
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FIGURE 11.4: This is a scatterplot matrix for four of the variables in the height
weight dataset of http:// www2.stetson.edu/ ~ jrasp/data.htm . Each plot is
a scatterplot of a pair of variables. The name of the variable for the horizontal axis
is obtained by running your eye down the column; for the vertical axis, along the
row. Although this plot is redundant (half of the plots are just flipped versions of
the other half), that redundancy makes it easier to follow points by eye. You can
look at a column, move down to a row, move across to a column, etc. Notice how
you can spot correlations between variables and outliers (the arrows).

weight dataset of http://www2.stetson.edu/~jrasp/data.htm; look for body-
fat.xls at that URL). This is originally a 16-dimensional dataset, but a 16 by 16
scatterplot matrix is squashed and hard to interpret. What is nice about this kind
of plot is that it’s quite easy to spot correlations between pairs of variables, though
you do need to take into account the coordinates have not been normalized. For
figure 11.4, you can see that weight and adiposity appear to show quite strong cor-
relations, but weight and age are pretty weakly correlated. Height and age seem
to have a low correlation. It is also easy to visualize unusual data points. Usually
one has an interactive process to do so — you can move a “brush” over the plot
to change the color of data points under the brush. To show what might happen,
figure 11.5 shows a scatter plot matrix with some points shown as circles. Notice
how they lie inside the “blob” of data in some views, and outside in others. This
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FIGURE 11.5: You should compare this figure with figure 11.4. I have marked two
data points with circles in this figure; notice that in some panels these are far from
the rest of the data, in others close by. A “brush” in an interactive application can
be used to mark data like this to allow a user to explore a dataset.

is an effect of projection.

11.1.5 Using Covariance to encode Variance and Correlation

Variance, standard deviation and correlation can each be seen as an instance of a
more general operation on data. Assume that we have two one dimensional data
sets {x} and {y}. Then we can define the covariance of {x} and {y}.
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Definition: 11.1 Covariance

Assume we have two sets of N data items, {x} and {y}. We compute
the covariance by

cov ({x} , {y}) =
∑

i(xi −mean ({x}))(yi −mean ({y}))
N

Covariance measures the tendency of corresponding elements of {x} and of {y}
to be larger than (resp. smaller than) the mean. Just like mean, standard deviation
and variance, covariance can refer either to a property of a dataset (as in the
definition here) or a particular expectation (as in chapter 6). The correspondence
is defined by the order of elements in the data set, so that x1 corresponds to y1,
x2 corresponds to y2, and so on. If {x} tends to be larger (resp. smaller) than its
mean for data points where {y} is also larger (resp. smaller) than its mean, then
the covariance should be positive. If {x} tends to be larger (resp. smaller) than its
mean for data points where {y} is smaller (resp. larger) than its mean, then the
covariance should be negative.

From this description, it should be clear we have seen examples of covariance
already. Notice that

std (x)
2
= var ({x}) = cov ({x} , {x})

which you can prove by substituting the expressions. Recall that variance measures
the tendency of a dataset to be different from the mean, so the covariance of a
dataset with itself is a measure of its tendency not to be constant.

More important, notice that

corr ({(x, y)}) = cov ({x} , {y})
√

cov ({x} , {x})
√

cov ({y} , {y})
.

This is occasionally a useful way to think about correlation. It says that the corre-
lation measures the tendency of {x} and {y} to be larger (resp. smaller) than their
means for the same data points, compared to how much they change on their own.

Working with covariance (rather than correlation) allows us to unify some
ideas. In particular, for data items which are d dimensional vectors, it is straight-
forward to compute a single matrix that captures all covariances between all pairs
of components — this is the covariance matrix.
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Definition: 11.2 Covariance Matrix

The covariance matrix is:

Covmat ({x}) =
∑

i(xi −mean ({x}))(xi −mean ({x}))T
N

Notice that it is quite usual to write a covariance matrix as Σ, and we
will follow this convention.

Properties of the Covariance Matrix Covariance matrices are often
written as Σ, whatever the dataset (you get to figure out precisely which dataset is
intended, from context). Generally, when we want to refer to the j, k’th entry of
a matrix A, we will write Ajk, so Σjk is the covariance between the j’th and k’th
components of the data.

• The j, k’th entry of the covariance matrix is the covariance of the j’th and
the k’th components of x, which we write cov

({

x(j)
}

,
{

x(k)
})

.

• The j, j’th entry of the covariance matrix is the variance of the j’th compo-
nent of x.

• The covariance matrix is symmetric.

• The covariance matrix is always positive semi-definite; it is positive definite,
unless there is some vector a such that aT (xi −mean ({xi}) = 0 for all i.

Proposition:

Covmat ({x})jk = cov
({

x(j)
}

,
{

x(k)
})

Proof: Recall

Covmat ({x}) =
∑

i(xi −mean ({x}))(xi −mean ({x}))T
N

and the j, k’th entry in this matrix will be

∑

i(x
(j)
i −mean

({

x(j)
})

)(x
(k)
i −mean

({

x(k)
})

)T

N

which is cov
({

x(j)
}

,
{

x(k)
})

.
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Proposition:

Covmat ({xi})jj = Σjj = var
({

x(j)
})

Proof:

Covmat ({x})jj = cov
({

x(j)
}

,
{

x(j)
})

= var
({

x(j)
})

Proposition:
Covmat ({x}) = Covmat ({x})T

Proof: We have

Covmat ({x})jk = cov
({

x(j)
}

,
{

x(k)
})

= cov
({

x(k)
}

,
{

x(j)
})

= Covmat ({x})kj
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Proposition: Write Σ = Covmat ({x}). If there is no vector a such that
aT (xi−mean ({x})) = 0 for all i, then for any vector u, such that ||u || > 0,

uTΣu > 0.

If there is such a vector a, then

uTΣu ≥ 0.

Proof: We have

uTΣu =
1

N

∑

i

[

uT (xi −mean ({x}))
] [

(xi −mean ({x}))Tu
]

=
1

N

∑

i

[

uT (xi −mean ({x}))
]2

.

Now this is a sum of squares. If there is some a such that aT (xi −
mean ({x})) = 0 for every i, then the covariance matrix must be positive
semidefinite (because the sum of squares could be zero in this case).
Otherwise, it is positive definite, because the sum of squares will always
be positive.

11.2 BLOB ANALYSIS OF HIGH-DIMENSIONAL DATA

11.2.1 Transforming High Dimensional Data

Assume we apply an affine transformation to our data set {x}, to obtain a new
dataset {u}, where ui = Axi + b. Here A is any matrix (it doesn’t have to be
square, or symmetric, or anything else; it just has to have second dimension d). It
is easy to compute the mean and covariance of {u}. We have

mean ({u}) = mean ({Ax+ b})
= Amean ({x}) + b,

so you get the new mean by multiplying the original mean by A and adding b.
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Translate center to origin

FIGURE 11.6: On the left, a “blob” in two dimensions. This is a set of data points
that lie somewhat clustered around a single center, given by the mean. I have plotted
the mean of these data points with a hollow square (it’s easier to see when there is
a lot of data). To translate the blob to the origin, we just subtract the mean from
each datapoint, yielding the blob on the right.

The new covariance matrix is easy to compute as well. We have:

Covmat ({u}) = Covmat ({Ax+ b})

=

∑

i(ui −mean ({u}))(ui −mean ({u}))T
N

=

∑

i(Axi + b−Amean ({x})− b)(Axi + b−Amean ({x})− b)T

N

=
A∑i(xi −mean ({x}))(xi −mean ({x}))TAT

N

= ACovmat ({x})AT .

11.2.2 Transforming Blobs

The trick to interpreting high dimensional data is to use the mean and covariance
to understand the blob. Figure 11.6 shows a two-dimensional data set. Notice that
there is obviously some correlation between the x and y coordinates (it’s a diagonal
blob), and that neither x nor y has zero mean. We can easily compute the mean
and subtract it from the data points, and this translates the blob so that the origin
is at the center (Figure 11.6). In coordinates, this means we compute the new
dataset {u} from the old dataset {x} by the rule ui = xi −mean ({x}). This new
dataset has been translated so that the mean is zero.

Once this blob is translated (Figure 11.7, left), we can rotate it as well. It
is natural to try to rotate the blob so that there is no correlation between distinct
pairs of dimensions. We can do so by diagonalizing the covariance matrix. In
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Rotate to diagonalize 

covariance

FIGURE 11.7: On the left, the translated blob of figure 11.6. This blob lies somewhat
diagonally, because the vertical and horizontal components are correlated. On the
right, that blob of data rotated so that there is no correlation between these compo-
nents. We can now describe the blob by the vertical and horizontal variances alone,
as long as we do so in the new coordinate system. In this coordinate system, the
vertical variance is significantly larger than the horizontal variance — the blob is
short and wide.

particular, let U be the matrix formed by stacking the eigenvectors of Covmat ({x})
into a matrix (i.e. U = [v1, . . . ,vd], where vj are eigenvectors of the covariance
matrix). We now form the dataset {n}, using the rule

ni = UTui = UT (xi −mean ({x})).
The mean of this new dataset is clearly 0. The covariance of this dataset is

Covmat ({n}) = Covmat
({

UTx
})

= UTCovmat ({x})U
= Λ,

where Λ is a diagonal matrix of eigenvalues of Covmat ({x}). Remember that, in
describing diagonalization, we adopted the convention that the eigenvectors of the
matrix being diagonalized were ordered so that the eigenvalues are sorted in de-
scending order along the diagonal of Λ. We now have two very useful facts about
{n}: (a) every pair of distinct components has covariance zero, and so has correla-
tion zero; (b) the first component has the highest variance, the second component
has the second highest variance, and so on. We can rotate and translate any blob
into a coordinate system that has these properties. In this coordinate system, we
can describe the blob simply by giving the variances of each component — the
covariances are zero.

Translating a blob of data doesn’t change the scatterplot matrix in any inter-
esting way (the axes change, but the picture doesn’t). Rotating a blob produces
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Scale this direction

FIGURE 11.8: On the left, the translated and rotated blob of figure 11.7. This blob is
stretched — one direction has more variance than another. Because all covariances
are zero, it is easy to scale the blob so that all variances are one (the blob on the
right). You can think of this as a standard blob. All blobs can be reduced to a
standard blob, by relatively straightforward linear algebra.

really interesting results, however. Figure 11.9 shows the dataset of figure 11.4,
translated to the origin and rotated to diagonalize it. Now we do not have names
for each component of the data (they’re linear combinations of the original compo-
nents), but each pair is now not correlated. This blob has some interesting shape
features. Figure 11.9 shows the gross shape of the blob best. Each panel of this
figure has the same scale in each direction. You can see the blob extends about 80
units in direction 1, but only about 15 units in direction 2, and much less in the
other two directions. You should think of this blob as being rather cigar-shaped;
it’s long in one direction, but there isn’t much in the others. The cigar metaphor
isn’t perfect because there aren’t any 4 dimensional cigars, but it’s helpful. You
can think of each panel of this figure as showing views down each of the four axes
of the cigar.

Now look at figure 11.10. This shows the same rotation of the same blob
of data, but now the scales on the axis have changed to get the best look at the
detailed shape of the blob. First, you can see that blob is a little curved (look at
the projection onto direction 2 and direction 4). There might be some effect here
worth studying. Second, you can see that some points seem to lie away from the
main blob. I have plotted each data point with a dot, and the interesting points
with a number. These points are clearly special in some way.

We could now scale the data in this new coordinate system so that all the
variances are either one (if there is any variation in that direction) or zero (directions
where the data doesn’t vary — these occur only if some directions are functions of
others). Figure 11.8 shows the final scaling. The result is a standard blob. Our
approach applies to any dimension — I gave 2D figures because they’re much easier
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FIGURE 11.9: A panel plot of the bodyfat dataset of figure 11.4, now rotated so
that the covariance between all pairs of distinct dimensions is zero. Now we do
not know names for the directions — they’re linear combinations of the original
variables. Each scatterplot is on the same set of axes, so you can see that the
dataset extends more in some directions than in others.

to understand. There is a crucial point here: we can reduce any blob of data, in any
dimension, to a standard blob of that dimension. All blobs are the same, except
for some stretching, some rotation, and some translation. This is why blobs are so
well-liked.

11.2.3 Whitening Data

It is sometimes useful to actually reduce a dataset to a standard blob. Doing so is
known as whitening the data (for reasons I find obscure). This can be a sensible
thing to do when we don’t have a clear sense of the relative scales of the components
of each data vector. For example, if we have a dataset where one component ranges
from 1e5 to 2e5, and the other component ranges from -1e-5 to 1e-5, we are likely
to face numerical problems in many computations (adding small numbers to big
numbers is often unwise). Often, this kind of thing follows from a poor choice of
units, rather than any kind of useful property of the data. In such a case, it could
be quite helpful to whiten the data. Another reason to whiten the data might
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FIGURE 11.10: A panel plot of the bodyfat dataset of figure 11.4, now rotated so that
the covariance between all pairs of distinct dimensions is zero. Now we do not know
names for the directions — they’re linear combinations of the original variables. I
have scaled the axes so you can see details; notice that the blob is a little curved,
and there are several data points that seem to lie some way away from the blob,
which I have numbered.

be that we know relatively little about the meaning of each component. In this
case, the original choice of coordinate system was somewhat arbitrary anyhow, and
transforming data to a uniform blob could be helpful.
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Useful Facts: 11.1 Whitening a dataset

For a dataset {x}, compute:

• U , the matrix of eigenvectors of Covmat ({x});

• and mean ({x}).

Now compute {n} using the rule

ni = UT (xi −mean ({x})).

Then mean ({n}) = 0 and Covmat ({n}) is diagonal.
Now write Λ for the diagonal matrix of eigenvalues of Covmat ({x}) (so
that Covmat ({x})U = UΛ). Assume that each of the diagonal entries
of Λ is greater than zero (otherwise there is a redundant dimension in
the data). Write λi for the i’th diagonal entry of Λ, and write Λ−(1/2)

for the diagonal matrix whose i’th diagonal entry is 1/
√
λi. Compute

{z} using the rule

zi = Λ(−1/2)U(xi −mean ({x})).

We have that mean ({z}) = 0 and Covmat ({z}) = I. The dataset {z}
is often known as whitened data.

It isn’t always a good idea to whiten data. In some circumstances, each
separate component is meaningful, and in a meaningful set of units. For example,
one of the components might be a length using a natural scale and the other might
be a time on a natural scale. When this happens, we might be reluctant to transform
the data, either because we don’t want to add lengths to times or because we want
to preserve the scales.

11.3 PRINCIPAL COMPONENTS ANALYSIS

Mostly, when one deals with high dimensional data, it isn’t clear which individ-
ual components are important. As we have seen with the height weight dataset
(for example, in the case of density and weight) some components can be quite
strongly correlated. Equivalently, as in Figure 14.1, the blob is not aligned with
the coordinate axes.

11.3.1 The Blob Coordinate System and Smoothing

We can use the fact that we could rotate, translate and scale the blob to define
a coordinate system within the blob. The origin of that coordinate system is the
mean of the data, and the coordinate axes are given by the eigenvectors of the
covariance matrix. These are orthonormal, so they form a set of unit basis vectors
at right angles to one another (i.e. a coordinate system). You should think of these
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Translation

“Blob” coordinates

FIGURE 11.11: A 2D blob, with its natural blob coordinate system. The origin of this
coordinate system is at the mean of the data. The coordinate axes are (a) at right
angles to one another and (b) are directions that have no covariance.

as blob coordinates; Figure 11.11 illustrates a set of blob coordinates.
The blob coordinate system is important because, once we know the blob

coordinate system, we can identify important scales of variation in the data. For
example, if you look at Figure 11.11, you can see that this blob is extended much
further along one direction than along the other. We can use this information to
identify the most significant forms of variation in very high dimensional data. In
some directions in the blob coordinate system, the blob will be spread out — ie
have large variance — but in others, it might not be.

Equivalently, imagine we choose to represent each data item in blob coordi-
nates. Then the mean over the dataset will be zero. Each pair of distinct coordi-
nates will be uncorrelated. Some coordinates — corresponding to directions where
the blob is spread out — will have a large range of values. Other coordinates —
directions in which the blob is small — will have a small range of values. We could
choose to replace these coordinates with zeros, with little significant loss in accu-
racy. The advantage of doing so is that we would have lower dimensional data to
deal with.

However, it isn’t particularly natural to work in blob coordinates. Each com-
ponent of a data item may have a distinct meaning and scale (i.e. feet, pounds,
and so on), but this is not preserved in any easy way in blob coordinates. Instead,
we should like to (a) compute a lower dimensional representation in blob coordi-
nates then (b) transform that representation into the original coordinate system of
the data item. Doing so is a form of smoothing — suppressing small, irrelevant
variations by exploiting multiple data items.

For example, look at Figure 11.12. Imagine we transform the blob on the left
to blob coordinates. The covariance matrix in these coordinates is a 3× 3 diagonal
matrix. One of the values on the diagonal is large, because the blob is extended on
one direction; but the other two are small. This means that, in blob coordinates, the
data varies significantly in one direction, but very little in the other two directions.

Now imagine we project the data points onto the high-variation direction;
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FIGURE 11.12: On the left, a blob of 3D data that has very low variance in two
directions in the blob coordinates. As a result, all the data points are very close to
a 1D blob. Experience shows that this is a common phenomenon. Although there
might be many components in the data items, all data points are very close to a
much lower dimensional object in the high dimensional space. When this is the
case, we could obtain a lower dimensional representation of the data by working in
blob coordinates, or we could smooth the data (as on the right), by projecting each
data point onto the lower dimensional space.

equivalently, we set the other two directions to zero for each data point. Each
of the new data points is very close to the corresponding old data point, because
by setting the small directions to zero we haven’t moved the point very much.
In blob coordinates, the covariance matrix of this new dataset has changed very
little. It is again a 3 × 3 diagonal matrix, but now two of the diagonal values are
zero, because there isn’t any variance in those directions. The third value is large,
because the blob is extended in that direction. We take the new dataset, and rotate
and translate it into the original coordinate system. Each point must lie close to the
corresponding point in the original dataset. However, the new dataset lies along a
straight line (because it lay on a straight line in the blob coordinates). This process
gets us the blob on the right in Figure 11.12. This blob is a smoothed version of
the original blob.

Smoothing works because when two data items are strongly correlated, the
value of one is a good guide to the value of the other. This principle works for
more than two data items. Section 14.1 describes an example where the data
items have dimension 101, but all values are extremely tightly correlated. In a
case like this, there may be very few dimensions in blob coordinates that have
any significant variation (3-6 for this case, depending on some details of what one
believes is a small number, and so on). The components are so strongly correlated
in this case that the 101-dimensional blob really looks like a slightly thickened 3



Section 11.3 Principal Components Analysis 294

(or slightly more) dimensional blob that has been inserted into a 101-dimensional
space (Figure 11.12). If we project the 101-dimensional data onto that structure
in the original, 101-dimensional space, we may get much better estimates of the
components of each data item than the original measuring device can supply. This
occurs because each component is now estimated using correlations between all the
measurements.

11.3.2 The Low-Dimensional Representation of a Blob

We wish to construct an r dimensional representation of a blob, where we have
chosen r in advance. First, we compute {v} by translating the blob so its mean is
at the origin, so that vi = xi − mean ({x}). Now write V = [v1,v2, . . . ,vN ]. The
covariance matrix of {v} is then

Covmat ({v}) = 1

N
VVT = Covmat ({x}).

Now write Λ for the diagonal matrix of eigenvalues of Covmat ({x}) and U for the
matrix of eigenvectors, so that Covmat ({x})U = UΛ. We assume that the elements
of Λ are sorted in decreasing order along the diagonal. The covariance matrix for
the dataset transformed into blob coordinates will be Λ. Notice that

Λ = UTCovmat ({x})U
= UTVVTU
= (UTV)(UTV)T .

This means we can interpret (UTV) as a new dataset {b}. This is our data, rotated
into blob coordinates.

Now write Πr for the d× d matrix
[

Ir 0
0 0

]

which projects a d dimensional vector onto its first r components, and replaces the
others with zeros. Then we have that

Λr = ΠrΛΠ
T
r

is the covariance matrix for the reduced dimensional data in blob coordinates.
Notice that Λr keeps the r largest eigenvalues on the diagonal of Λ, and replaces
all others with zero.

We have

Λr = ΠrΛΠ
T
r

= ΠrUTCovmat ({x})UΠT
r

= (ΠrUTV)(VTUΠT
r )

= PPT

where P = (ΠrUTV). This represents our data, rotated into blob coordinates,
and then projected down to r dimensions, with remaining terms replaced by zeros.
Write {br} for this new dataset.
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FIGURE 11.13: Computing a low dimensional representation for principal compo-
nents analysis.

Occasionally, we need to refer to this representation, and we give it a special
name. Write

pcaproj (xi, r, {x}) = ΠrUT (xi −mean ({x}))
where the notation seeks to explicitly keep track of the fact that the low dimensional
representation of a particular data item depends on the whole dataset (because you
have to be able to compute the mean, and the eigenvectors of the covariance).
Notice that pcaproj (xi, r, {x}) is a representation of the dataset with important
properties:

• The representation is r-dimensional (i.e. the last d− r components are zero).

• Each pair of distinct components of {pcaproj (xi, r, {x})} has zero covariance.
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FIGURE 11.14: Smoothing data with principal components analysis.

• The first component of {pcaproj (xi, r, {x})} has largest variance; the second
component has second largest variance; and so on.

11.3.3 Smoothing Data with a Low-Dimensional Representation

We would now like to construct a low dimensional representation of the blob, in
the original coordinates. We do so by rotating the low-dimensional representation
back to the original coordinate system, then adding back the mean to translate the
origin back to where it started. We can write this as

pcasmooth (xi, r, {x}) = UΠT
r

(

ΠrUT (xi −mean ({x}))
)

+mean ({x})
= UΠT

r pcaproj (xi, r, {x}) +mean ({x})

we have a new representation of the i’th data item in the original space (Fig-
ure 14.1). Now consider the dataset obtained by smoothing each of our data items.
We write this dataset as {pcasmooth (xi, r, {x})}.

You should think of {pcasmooth (xi, r, {x})} as a smoothed version of the
original data. One way to think of this process is that we have chosen a low-
dimensional basis that represents the main variance in the data rather well. It is
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quite usual to think of a data item as being given by a the mean plus a weighted
sum of these basis elements. In this view, the first weight has larger variance than
the second, and so on. By construction, this dataset lies in an r dimensional affine
subspace of the original space. We constructed this r-dimensional space to preserve
the largest variance directions of the data. Each column of this matrix is known as
a principal component. In particular, we have constructed this dataset so that

• mean ({pcasmooth (xi, r, {x})}) = mean ({x});

• Covmat ({pcasmooth (xi, r, {x})}) has rank r;

• Covmat ({pcasmooth (xi, r, {x})}) is the best approximation of Covmat ({x})
with rank r.

Figure 11.14 gives a visualization of the smoothing process. By comparing
figures 11.9 and 11.15, you can see that a real dataset can lose several dimensions
without much significant going wrong. As we shall see in the examples, some
datasets can lose many dimensions without anything bad happening.

Procedure: 11.1 Principal Components Analysis

Assume we have a general data set xi, consisting of N d-dimensional
vectors. Now write Σ = Covmat ({x}) for the covariance matrix.
Form U , Λ, such that ΣU = UΛ (these are the eigenvectors and eigen-
values of Σ). Ensure that the entries of Λ are sorted in decreasing order.
Choose r, the number of dimensions you wish to represent. Typically,
we do this by plotting the eigenvalues and looking for a “knee” (Fig-
ure ??). It is quite usual to do this by hand.
Constructing a low-dimensional representation: Form Ur, a
matrix consisting of the first r columns of U . Now compute
{pcaproj (xi, r, {x})} = {(ΠrUT (xi − mean ({x})))}. This is a set of
data vectors which are r dimensional, and where each component is
independent of each other component (i.e. the covariances of distinct
components are zero).
Smoothing the data: Form {pcasmooth (xi, r, {x})} =
{(Urpcaproj (xi, r, {x}) + mean ({x}))}. These are d dimensional
vectors that lie in a r-dimensional subspace of d-dimensional space.
The “missing dimensions” have the lowest variance, and are indepen-
dent.

11.3.4 The Error of the Low-Dimensional Representation

We took a dataset, {x}, and constructed a d-dimensional dataset {b} in blob coor-
dinates. We did so by translating, then rotating, the data, so no information was
lost; we could reconstruct our original dataset by rotating, then translating {b}.
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FIGURE 11.15: A panel plot of the bodyfat dataset of figure 11.4, with the dimension
reduced to two using principal components analysis. Compare this figure to figure
11.9, which is on the same set of axes. You can see that the blob has been squashed
in direction 3 and direction 4. But not much has really happened, because there
wasn’t very much variation in those directions in the first place.

But in blob coordinates we projected each data item down to the first r components
to get an r-dimensional dataset {br}. We then reconstructed a smoothed dataset
by rotating, then translating, {br}. Information has been lost here, but how much?

The answer is easy to get if you recall that rotations and translations do not
change lengths. This means that

||xi − pcasmooth (xi, r, {x}) ||2 = ||bi − br,i ||2.

This expression is easy to evaluate, because bi and br,i agree in their first r com-
ponents. The remaining d− r components of br,i are zero. So we can write

||xi − pcasmooth (xi, r, {x}) ||2 =

d
∑

u=r+1

(b
(u)
i )2.

Now a natural measure of error is the average over the dataset of this term. We
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FIGURE 11.16: On the top left, the mean spectral reflectance of a dataset of 1995
spectral reflectances, collected by Kobus Barnard (at http:// www.cs. sfu.ca/

~ colour/data/ ). On the top right, eigenvalues of the covariance matrix of spec-
tral reflectance data, from a dataset of 1995 spectral reflectances, collected by Kobus
Barnard (at http:// www. cs. sfu. ca/ ~ colour/data/ ). Notice how the first few
eigenvalues are large, but most are very small; this suggests that a good represen-
tation using few principal components is available. The bottom row shows the
first three principal components. A linear combination of these, with appropriate
weights, added to the mean of figure ??, gives a good representation of the dataset.

have that

1

N

d
∑

u=r+1

(b
(u)
i )2 =

d
∑

u=r+1

var
({

b(u)
})

which is easy to evaluate, because we know these variances — they are the values
of the d−r eigenvalues that we decided to ignore. So the mean error can be written
as

1T (Λ− Λr)1.

Now we could choose r by identifying how much error we can tolerate. More usual
is to plot the eigenvalues of the covariance matrix, and look for a “knee”, like that
in Figure 14.1. You can see that the sum of remaining eigenvalues is small.
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FIGURE 11.17: On the left, a spectral reflectance curve (dashed) and approximations
using the mean, the mean and 3 principal components, the mean and 5 principal
components, and the mean and 7 principal components. Notice the mean is a rela-
tively poor approximation, but as the number of principal components goes up, the
error falls rather quickly. On the right is the error for these approximations. Fig-
ure plotted from a dataset of 1995 spectral reflectances, collected by Kobus Barnard
(at http: // www. cs. sfu. ca/ ~ colour/data/ ).

11.3.5 Example: Representing Spectral Reflectances

Diffuse surfaces reflect light uniformly in all directions. Examples of diffuse surfaces
include matte paint, many styles of cloth, many rough materials (bark, cement,
stone, etc.). One way to tell a diffuse surface is that it does not look brighter
(or darker) when you look at it along different directions. Diffuse surfaces can
be colored, because the surface reflects different fractions of the light falling on it
at different wavelengths. This effect can be represented by measuring the spectral
reflectance of a surface, which is the fraction of light the surface reflects as a function
of wavelength. This is usually measured in the visual range of wavelengths (about
380nm to about 770 nm). Typical measurements are every few nm, depending on
the measurement device. I obtained data for 1995 different surfaces from http:

//www.cs.sfu.ca/~colour/data/ (there are a variety of great datasets here, from
Kobus Barnard).

Each spectrum has 101 measurements, which are spaced 4nm apart. This
represents surface properties to far greater precision than is really useful. Physical
properties of surfaces suggest that the reflectance can’t change too fast from wave-
length to wavelength. It turns out that very few principal components are sufficient
to describe almost any spectral reflectance function. Figure 11.16 shows the mean
spectral reflectance of this dataset, and Figure 11.16 shows the eigenvalues of the
covariance matrix.

This is tremendously useful in practice. One should think of a spectral re-
flectance as a function, usually written ρ(λ). What the principal components anal-
ysis tells us is that we can represent this function rather accurately on a (really
small) finite dimensional basis. This basis is shown in figure 11.16. This means
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FIGURE 11.18: On the left,the eigenvalues of the covariance of the Japanese facial
expression dataset; there are 4096, so it’s hard to see the curve (which is packed
to the left). On the right, a zoomed version of the curve, showing how quickly the
values of the eigenvalues get small.

that there is a mean function r(λ) and k functions φm(λ) such that, for any ρ(λ),

ρ(λ) = r(λ) +

k
∑

i=1

ciφi(λ) + e(λ)

where e(λ) is the error of the representation, which we know is small (because it
consists of all the other principal components, which have tiny variance). In the
case of spectral reflectances, using a value of k around 3-5 works fine for most ap-
plications (Figure 11.17). This is useful, because when we want to predict what
a particular object will look like under a particular light, we don’t need to use a
detailed spectral reflectance model; instead, it’s enough to know the ci for that
object. This comes in useful in a variety of rendering applications in computer
graphics. It is also the key step in an important computer vision problem, called
color constancy. In this problem, we see a picture of a world of colored ob-
jects under unknown colored lights, and must determine what color the objects
are. Modern color constancy systems are quite accurate, even though the problem
sounds underconstrained. This is because they are able to exploit the fact that
relatively few ci are enough to accurately describe a surface reflectance.

11.3.6 Example: Representing Faces with Principal Components

An image is usually represented as an array of values. We will consider intensity
images, so there is a single intensity value in each cell. You can turn the image
into a vector by rearranging it, for example stacking the columns onto one another
(use reshape in Matlab). This means you can take the principal components of a
set of images. Doing so was something of a fashionable pastime in computer vision
for a while, though there are some reasons that this is not a great representation of
pictures. However, the representation yields pictures that can give great intuition
into a dataset.
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FIGURE 11.19: The mean and first 16 principal components of the Japanese facial
expression dataset.

Figure ?? shows the mean of a set of face images encoding facial expressions of
Japanese women (available at http://www.kasrl.org/jaffe.html; there are tons
of face datasets at http://www.face-rec.org/databases/). I reduced the images
to 64x64, which gives a 4096 dimensional vector. The eigenvalues of the covariance
of this dataset are shown in figure 11.18; there are 4096 of them, so it’s hard to see
a trend, but the zoomed figure suggests that the first couple of hundred contain
most of the variance. Once we have constructed the principal components, they
can be rearranged into images; these images are shown in figure 11.19. Principal
components give quite good approximations to real images (figure 11.20).

The principal components sketch out the main kinds of variation in facial
expression. Notice how the mean face in Figure 11.19 looks like a relaxed face, but
with fuzzy boundaries. This is because the faces can’t be precisely aligned, because
each face has a slightly different shape. The way to interpret the components is to
remember one adjusts the mean towards a data point by adding (or subtracting)
some scale times the component. So the first few principal components have to
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FIGURE 11.20: Approximating a face image by the mean and some principal compo-
nents; notice how good the approximation becomes with relatively few components.

do with the shape of the haircut; by the fourth, we are dealing with taller/shorter
faces; then several components have to do with the height of the eyebrows, the
shape of the chin, and the position of the mouth; and so on. These are all images of
women who are not wearing spectacles. In face pictures taken from a wider set of
models, moustaches, beards and spectacles all typically appear in the first couple
of dozen principal components.

11.4 MULTI-DIMENSIONAL SCALING

One way to get insight into a dataset is to plot it. But choosing what to plot for
a high dimensional dataset could be difficult. Assume we must plot the dataset
in two dimensions (by far the most common choice). We wish to build a scatter
plot in two dimensions — but where should we plot each data point? One natural
requirement is that the points be laid out in two dimensions in a way that reflects
how they sit in many dimensions. In particular, we would like points that are far
apart in the high dimensional space to be far apart in the plot, and points that are
close in the high dimensional space to be close in the plot.

11.4.1 Principal Coordinate Analysis

We will plot the high dimensional point xi at vi, which is a two-dimensional vector.
Now the squared distance between points i and j in the high dimensional space is

D
(2)
ij (x) = (xi − xj)

T (xi − xj)

(where the superscript is to remind you that this is a squared distance). We could
build an N × N matrix of squared distances, which we write D(2)(x). The i, j’th

entry in this matrix is D
(2)
ij (x), and the x argument means that the distances are
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between points in the high-dimensional space. Now we could choose the vi to make

∑

ij

(

D
(2)
i j(x)−D

(2)
ij (v)

)2

as small as possible. Doing so should mean that points that are far apart in the
high dimensional space are far apart in the plot, and that points that are close in
the high dimensional space are close in the plot.

In its current form, the expression is difficult to deal with, but we can refine
it. Because translation does not change the distances between points, it cannot
change either of the D(2) matrices. So it is enough to solve the case when the mean
of the points xi is zero. We can assume that 1

N

∑

i xi = 0. Now write 1 for the
n-dimensional vector containing all ones, and I for the identity matrix. Notice that

D
(2)
ij = (xi − xj)

T (xi − xj) = xi · xi − 2xi · xj + xj · xj .

Now write

A =

[

I − 1

N
11T

]

.

Using this expression, you can show that the matrix M, defined below,

M(x) = −1

2
AD(2)(x)AT

has i, jth entry xi · xj (exercises). I now argue that, to make D(2)(v) is close to
D(2)(x), it is enough to make M(v) close to M(x). Proving this will take us out
of our way unnecessarily, so I omit a proof.

We can choose a set of vi that makes D(2)(v) close to D(2)(x) quite easily,
using the method of the previous section. Take the dataset of N d-dimensional
column vectors xi, and form a matrix X by stacking the vectors, so

X = [x1,x2, . . . ,xN ] .

In this notation, we have
M(x) = X TX .

This matrix is symmetric, and it is positive semidefinite. It can’t be positive defi-
nite, because the data is zero mean, so M(x)1 = 0. The M(v) we seek must (a)
be as close as possible to M(x) and (b) have rank 2. It must have rank 2 because
there must be some V which is 2 × N so that M(v) = VTV . The columns of this
V are our vi.

We can use the method of section 18.1.1 to construct M(v) and V . As usual,
we write U for the matrix of eigenvectors of M(x), Λ for the diagonal matrix of
eigenvalues sorted in descending order, Λ2 for the 2 × 2 upper left hand block of

Λ, and Λ
(1/2)
2 for the matrix of positive square roots of the eigenvalues. Then our

methods yield

M(v) = U2Λ
(1/2)
2 Λ

(1/2)
2 UT

2

and
V = Λ

(1/2)
2 UT

2
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FIGURE 11.21: On the left, a public domain map of South Africa,
obtained from http:// commons.wikimedia.org/ wiki/File: Map_of_ South_

Africa.svg , and edited to remove surrounding countries. On the right, the lo-
cations of the cities inferred by multidimensional scaling, rotated, translated and
scaled to allow a comparison to the map by eye. The map doesn’t have all the
provincial capitals on it, but it’s easy to see that MDS has placed the ones that are
there in the right places (use a piece of ruled tracing paper to check).

and we can plot these vi (example in section 14.1). This method for constructing
a plot is known as principal coordinate analysis.

This plot might not be perfect, because reducing the dimension of the data
points should cause some distortions. In many cases, the distortions are tolerable.
In other cases, we might need to use a more sophisticated scoring system that
penalizes some kinds of distortion more strongly than others. There are many ways
to do this; the general problem is known as multidimensional scaling.

Procedure: 11.2 Principal Coordinate Analysis

Assume we have a matrix D(2) consisting of the squared differences
between each pair of N points. We do not need to know the points. We
wish to compute a set of points in r dimensions, such that the distances
between these points are as similar as possible to the distances in D(2).
Form A =

[

I − 1
N 11T

]

. Form W = 1
2AD(2)AT . Form U , Λ, such that

WU = UΛ (these are the eigenvectors and eigenvalues of W). Ensure
that the entries of Λ are sorted in decreasing order. Choose r, the
number of dimensions you wish to represent. Form Λr, the top left

r × r block of Λ. Form Λ
(1/2)
r , whose entries are the positive square

roots of Λr. Form Ur, the matrix consisting of the first r columns of U .
Then V = Λ

(1/2)
2 UT

2 = [v1, . . . ,vN ] is the set of points to plot.
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FIGURE 11.22: Two views of the spectral data of section 11.3.5, plotted as a scatter
plot by applying principal coordinate analysis to obtain a 3D set of points. Notice
that the data spreads out in 3D, but seems to lie on some structure; it certainly isn’t
a single blob. This suggests that further investigation would be fruitful.

11.4.2 Example: Mapping with Multidimensional Scaling

Multidimensional scaling gets positions (the V of section 11.4.1) from distances
(the D(2)(x) of section 11.4.1). This means we can use the method to build maps
from distances alone. I collected distance information from the web (I used http:

//www.distancefromto.net, but a google search on “city distances” yields a wide
range of possible sources), then apply multidimensional scaling. Table 11.2 shows
distances between the South African provincial capitals, in kilometers, rounded to
the nearest kilometer. I then used principal coordinate analysis to find positions
for each capital, and rotated, translated and scaled the resulting plot to check it
against a real map (Figure 11.21).

One natural use of principal coordinate analysis is to see if one can spot
any structure in a dataset. Does the dataset form a blob, or is it clumpy? This
isn’t a perfect test, but it’s a good way to look and see if anything interesting is
happening. In figure 11.22, I show a 3D plot of the spectral data, reduced to three
dimensions using principal coordinate analysis. The plot is quite interesting. You
should notice that the data points are spread out in 3D, but actually seem to lie on
a complicated curved surface — they very clearly don’t form a uniform blob. To
me, the structure looks somewhat like a butterfly. I don’t know why this occurs, but
it certainly suggests that something worth investigating is going on. Perhaps the
choice of samples that were measured is funny; perhaps the measuring instrument
doesn’t make certain kinds of measurement; or perhaps there are physical processes
that prevent the data from spreading out over the space.

Our algorithm has one really interesting property. In some cases, we do not
actually know the datapoints as vectors. Instead, we just know distances between
the datapoints. This happens often in the social sciences, but there are important
cases in computer science as well. As a rather contrived example, one could survey
people about breakfast foods (say, eggs, bacon, cereal, oatmeal, pancakes, toast,
muffins, kippers and sausages for a total of 9 items). We ask each person to rate the
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FIGURE 11.23: A map of country similarity, prepared from the data of figure 11.1.
The map is often interpreted as showing a variation in development or wealth (poor-
est at bottom left to richest at top right); and freedom (most repressed at top left
and freeest at bottom right). I haven’t plotted these axes, because the interpretation
wouldn’t be consistent with current intuition (the similarity data is forty years old,
and quite a lot has happened in that time).

similarity of each pair of distinct items on some scale. We advise people that similar
items are ones where, if they were offered both, they would have no particular
preference; but, for dissimilar items, they would have a strong preference for one
over the other. The scale might be “very similar”, “quite similar”, “similar”, “quite
dissimilar”, and “very dissimilar” (scales like this are often called Likert scales).
We collect these similarities from many people for each pair of distinct items, and
then average the similarity over all respondents. We compute distances from the
similarities in a way that makes very similar items close and very dissimilar items
distant. Now we have a table of distances between items, and can compute a V
and produce a scatter plot. This plot is quite revealing, because items that most
people think are easily substituted appear close together, and items that are hard
to substitute are far apart. The neat trick here is that we did not start with a X ,
but with just a set of distances; but we were able to associate a vector with “eggs”,
and produce a meaningful plot.

Table 11.1 shows data from one such example. Students were interviewed
(in 1971! things may have changed since then) about their perceptions of the
similarity of countries. The averaged perceived similarity is shown in table 11.1.
Large numbers reflect high similarity, so we can’t use these numbers directly. It
is reasonable to turn these numbers into distances by (a) using 0 as the distance
between a country and itself and (b) using e−sij as the distance between countries
i and j (where sij is the similarity between them). Once we have distances, we
can apply the procedure of section 11.4.1 to get points, then plot a scatter plot
(Figure 11.23).
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FIGURE 11.24: Two views of a multidimensional scaling to three dimensions of the
height-weight dataset. Notice how the data seems to lie in a flat structure in 3D,
with one outlying data point. This means that the distances between data points can
be (largely) explained by a 2D representation.

11.5 EXAMPLE: UNDERSTANDING HEIGHT AND WEIGHT

Recall the height-weight data set of section ?? (from http://www2.stetson.edu/

~jrasp/data.htm; look for bodyfat.xls at that URL). This is, in fact, a 16-dimensional
dataset. The entries are (in this order): bodyfat; density; age; weight; height; adi-
posity; neck; chest; abdomen; hip; thigh; knee; ankle; biceps; forearm; wrist. We
know already that many of these entries are correlated, but it’s hard to grasp a 16
dimensional dataset in one go. The first step is to investigate with a multidimen-
sional scaling.

−500 −400 −300 −200
−100

−50

0

50
Height−Weight 2D MDS

FIGURE 11.25: A multidimensional scaling to two dimensions of the height-weight
dataset. One data point is clearly special, and another looks pretty special. The
data seems to form a blob, with one axis quite a lot more important than another.

Figure ?? shows a multidimensional scaling of this dataset down to three
dimensions. The dataset seems to lie on a (fairly) flat structure in 3D, meaning
that inter-point distances are relatively well explained by a 2D representation. Two
points seem to be special, and lie far away from the flat structure. The structure
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isn’t perfectly flat, so there will be small errors in a 2D representation; but it’s clear
that a lot of dimensions are redundant. Figure 11.25 shows a 2D representation of
these points. They form a blob that is stretched along one axis, and there is no sign
of multiple blobs. There’s still at least one special point, which we shall ignore but
might be worth investigating further. The distortions involved in squashing this
dataset down to 2D seem to have made the second special point less obvious than
it was in figure ??.
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FIGURE 11.26: The mean of the bodyfat.xls dataset. Each component is likely in a
different unit (though I don’t know the units), making it difficult to plot the data
without being misleading. I’ve adopted one solution here, by plotting each component
as a vertical bar, and labelling the bar. You shouldn’t try to compare the values to
one another. Instead, think of this plot as a compact version of a table.

The next step is to try a principal component analysis. Figure 11.26 shows
the mean of the dataset. The components of the dataset have different units, and
shouldn’t really be compared. But it is difficult to interpret a table of 16 numbers, so
I have plotted the mean by showing a vertical bar for each component. Figure 11.27
shows the eigenvalues of the covariance for this dataset. Notice how one dimension is
very important, and after the third principal component, the contributions become
small. Of course, I could have said “fourth”, or “fifth”, or whatever — the precise
choice depends on how small a number you think is “small”.

Figure 11.27 also shows the first principal component. The eigenvalues justify
thinking of each data item as (roughly) the mean plus some weight times this
principal component. From this plot you can see that data items with a larger
value of weight will also have larger values of most other measurements, except age
and density. You can also see how much larger; if the weight goes up by 8.5 units,
then the abdomen will go up by 3 units, and so on. This explains the main variation
in the dataset.

In the rotated coordinate system, the components are not correlated, and they
have different variances (which are the eigenvalues of the covariance matrix). You
can get some sense of the data by adding these variances; in this case, we get 1404.
This means that, in the translated and rotated coordinate system, the average data
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FIGURE 11.27: On the left, the eigenvalues of the covariance matrix for the bodyfat
data set. Notice how fast the eigenvalues fall off; this means that most principal
components have very small variance, so that data can be represented well with a
small number of principal components. On the right, the first principal component
for this dataset, plotted using the same convention as for figure 11.26.

0 2 4 6 8 10 12 14 16 18
−0.2

0

0.2

0.4

0.6

0.8

bodyfat

density

age

weight
height

adiposityneck

chest

abdomen

hip
thigh

kneeanklebicepsforearm

wrist

Height−Weight second principal component

0 2 4 6 8 10 12 14 16 18
−0.4

−0.2

0

0.2

0.4

0.6

bodyfat

density

ageweightheight

adiposity

neck

chest

abdomen

hipthigh

kneeanklebicepsforearmwrist

Height−Weight third principal component

FIGURE 11.28: On the left, the second principal component, and on the right the
third principal component of the height-weight dataset.

point is about 37 =
√
1404 units away from the center (the origin). Translations

and rotations do not change distances, so the average data point is about 37 units
from the center in the original dataset, too. If we represent a datapoint by using
the mean and the first three principal components, there will be some error. We
can estimate the average error from the component variances. In this case, the sum
of the first three eigenvalues is 1357, so the mean square error in representing a
datapoint by the first three principal components is

√

(1404− 1357), or 6.8. The
relative error is 6.8/37 = 0.18. Another way to represent this information, which is
more widely used, is to say that the first three principal components explain all but
(1404− 1357)/1404 = 0.034, or 3.4% of the variance; notice that this is the square
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of the relative error, which will be a much smaller number.
All this means that explaining a data point as the mean and the first three

principal components produces relatively small errors. Figure 11.29 shows the sec-
ond and third principal component of the data. These two principal components
suggest some further conclusions. As age gets larger, height and weight get slightly
smaller, but the weight is redistributed; abdomen gets larger, whereas thigh gets
smaller. A smaller effect (the third principal component) links bodyfat and ab-
domen. As bodyfat goes up, so does abdomen.

11.6 WHAT YOU SHOULD REMEMBER - NEED SOMETHING

PROBLEMS

Summaries

11.1. You have a dataset {x} of N vectors, xi, each of which is d-dimensional. We
will consider a linear function of this dataset. Write a for a constant vector;
then the value of this linear function evaluated on the i’th data item is aTxi.
Write fi = aTxi. We can make a new dataset {f} out of the values of this
linear function.
(a) Show that mean ({f}) = aTmean ({x}) (easy).
(b) Show that var ({f}) = aTCovmat ({x})a (harder, but just push it through

the definition).
(c) Assume the dataset has the special property that there exists some a so

that aTCovmat ({x})a. Show that this means that the dataset lies on a
hyperplane.
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FIGURE 11.29: Figure for the question

11.2. On Figure 11.29, mark the mean of the dataset, the first principal component,
and the second principal component.

11.3. You have a dataset {x} of N vectors, xi, each of which is d-dimensional.
Assume that Covmat ({x}) has one non-zero eigenvalue. Assume that x1 and
x2 do not have the same value.
(a) Show that you can choose a set of ti so that you can represent every data

item xi exactly

xi = x1 + ti(x2 − x1).
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B Co Cu E F In Is J C USSR USA Y
Brazil
Congo 4.83
Cuba 5.28 4.56
Egypt 3.44 5.00 5.17
France 4.72 4.00 4.11 4.78
India 4.50 4.83 4.00 5.83 3.44
Israel 3.83 3.33 3.61 4.67 4.00 4.11
Japan 3.50 3.39 2.94 3.83 4.22 4.50 4.83
China 2.39 4.00 5.50 4.39 3.67 4.11 3.00 4.17
USSR 3.06 3.39 5.44 4.39 5.06 4.50 4.17 4.61 5.72
USA 5.39 2.39 3.17 3.33 5.94 4.28 5.94 6.06 2.56 5.00
Yugoslavia 3.17 3.50 5.11 4.28 4.72 4.00 4.44 4.28 5.06 6.67 3.56

TABLE 11.1: Similarity data for pairs of countries collected in 1971 by Wise ().
Because similarity is symmetric, I show only one side of each pair.

C K M N Po Pi J Bl Bh
Cape Town 0 834 1136 1535 1547 1228 1263 912 846
Kimberley 834 0 332 716 713 555 430 150 526
Mahikeng 1136 332 0 537 441 625 242 367 797
Nelspruit 1535 716 537 0 234 464 306 622 891
Polokwane 1547 713 441 234 0 642 293 664 1015
Pietermaritzburg 1228 555 625 464 642 0 442 407 457
Johannesburg 1263 430 242 306 293 442 0 371 742
Bloemfontein 912 150 367 622 664 407 371 0 431
Bhisho 846 526 797 891 1015 457 742 431 0

TABLE 11.2: Distances between Sourth African provincial capitals, in
kilometers, rounded to the nearest kilometer, and obtained from http:// www.

distancefromto.net .

(b) Now consider the dataset of these t values. What is the relationship
between (a) std (t) and (b) the non-zero eigenvalue of Covmat ({x})? Why?

PROGRAMMING EXERCISES

11.4. Take the wheat kernel dataset from the UC Irvine machine learning data
repository at http://archive.ics.uci.edu/ml/datasets/seeds. Compute
the first two principal components of this dataset, and project it onto those
components.
(a) Produce a scatterplot of this projection. Do you see any interesting phe-

nomena?
(b) Plot the eigenvalues of the covariance matrix in sorted order. How many

principal components should be used to represent this dataset? why?

11.7 APPENDIX: TABLES OF DATA
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Clustering: Models of High
Dimensional Data

High-dimensional data comes with problems. Data points tend not to be
where you think; they can scattered quite far apart, and can be quite far from
the mean. Except in special cases, the only really reliable probability model is the
Gaussian (or Gaussian blob, or blob).

There is an important rule of thumb for coping with high dimensional data:
Use simple models. A blob is another good, simple model. Modelling data as a
blob involves computing its mean and its covariance. Sometimes, as we shall see,
the covariance can be hard to compute. Even so, a blob model is really useful. It is
natural to try and extend this model to cover datasets that don’t obviously consist
of a single blob.

One very good, very simple, model for high dimensional data is to assume
that it consists of multiple blobs. To build models like this, we must determine
(a) what the blob parameters are and (b) which datapoints belong to which blob.
Generally, we will collect together data points that are close and form blobs out of
them. This process is known as clustering.

Clustering is a somewhat puzzling activity. It is extremely useful to cluster
data, and it seems to be quite important to do it reasonably well. But it surprisingly
hard to give crisp criteria for a good (resp. bad) clustering of a dataset. Usually,
clustering is part of building a model, and the main way to know that the clustering
algorithm is bad is that the model is bad.

12.1 THE CURSE OF DIMENSION

High dimensional models display uninituitive behavior (or, rather, it can take years
to make your intuition see the true behavior of high-dimensional models as natural).
In these models, most data lies in places you don’t expect. We will do several simple
calculations with an easy high-dimensional distribution to build some intuition.

Assume our data lies within a cube, with edge length two, centered on the
origin. This means that each component of xi lies in the range [−1, 1]. One simple
model for such data is to assume that each dimension has uniform probability
density in this range. In turn, this means that P (x) = 1

2d
. The mean of this model

is at the origin, which we write as 0.
The first surprising fact about high dimensional data is that most of the data

can lie quite far away from the mean. For example, we can divide our dataset into
two pieces. A(ǫ) consists of all data items where every component of the data has
a value in the range [−(1− ǫ), (1 − ǫ)]. B(ǫ) consists of all the rest of the data. If
you think of the data set as forming a cubical orange, then B(ǫ) is the rind (which
has thickness ǫ) and A(ǫ) is the fruit.

313
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Your intuition will tell you that there is more fruit than rind. This is true,
for three dimensional oranges, but not true in high dimensions. The fact that the
orange is cubical just simplifies the calculations, but has nothing to do with the
real problem.

We can compute P ({x ∈ A(ǫ)}) and P ({x ∈ A(ǫ)}). These probabilities tell
us the probability a data item lies in the fruit (resp. rind). P ({x ∈ A(ǫ)}) is easy
to compute as

P ({x ∈ A(ǫ)}) = (2(1− ǫ)))
d

(

1

2d

)

= (1− ǫ)d

and
P ({x ∈ B(ǫ)}) = 1− P ({x ∈ A(ǫ)}) = 1− (1− ǫ)d.

But notice that, as d → ∞,

P ({x ∈ A(ǫ)}) → 0.

This means that, for large d, we expect most of the data to be in B(ǫ). Equivalently,
for large d, we expect that at least one component of each data item is close to
either 1 or −1.

This suggests (correctly) that much data is quite far from the origin. It is
easy to compute the average of the squared distance of data from the origin. We
want

E
[

xTx
]

=

∫

box

(

∑

i

x2
i

)

P (x)dx

but we can rearrange, so that

E
[

xTx
]

=
∑

i

E
[

x2
i

]

=
∑

i

∫

box
x2
iP (x)dx.

Now each component of x is independent, so that P (x) = P (x1)P (x2) . . . P (xd).
Now we substitute, to get

E
[

xTx
]

=
∑

i

E
[

x2
i

]

=
∑

i

∫ 1

−1

x2
iP (xi)dxi =

∑

i

1

2

∫ 1

−1

x2
i dxi =

d

3
,

so as d gets bigger, most data points will be further and further from the origin.
Worse, as d gets bigger, data points tend to get further and further from one
another. We can see this by computing the average of the squared distance of data
points from one another. Write u for one data point and v; we can compute

E
[

d(u,v)2
]

=

∫

box

∫

box

∑

i

(ui − vi)
2dudv = E

[

uTu
]

+ E
[

vTv
]

− E
[

uTv
]

but since u and v are independent, we have E
[

uTv
]

= E[u]
T
E[v] = 0. This yields

E
[

d(u,v)2
]

= 2
d

3
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meaning that, for large d, we expect our data points to be quite far apart.
It is difficult to build histogram representations for high dimensional data.

The strategy of dividing the domain into boxes, then counting data into them, fails
miserably because there are too many boxes. In the case of our cube, imagine we
wish to divide each dimension in half (i.e. between [−1, 0] and between [0, 1]). Then
we must have 2d boxes. This presents two problems. First, we will have difficulty
representing this number of boxes. Second, unless we are exceptionally lucky, most
boxes must be empty because we will not have 2d data items.

However, one representation is extremely effective. We can represent data as a col-
lection of clusters — coherent blobs of similar datapoints that could, under appropriate
circumstances, be regarded as the same. We discuss how to build these clusters, then what
to do with them.

12.2 AGGLOMERATIVE AND DIVISIVE CLUSTERING

There are two natural algorithms for clustering. In divisive clustering, the entire
data set is regarded as a cluster, and then clusters are recursively split to yield a
good clustering (Algorithm 12.2). In agglomerative clustering, each data item is
regarded as a cluster, and clusters are recursively merged to yield a good clustering
(Algorithm 12.1).

Make each point a separate cluster
Until the clustering is satisfactory

Merge the two clusters with the
smallest inter-cluster distance

end

Algorithm 12.1: Agglomerative Clustering or Clustering by Merging.

Construct a single cluster containing all points
Until the clustering is satisfactory

Split the cluster that yields the two
components with the largest inter-cluster distance

end

Algorithm 12.2: Divisive Clustering, or Clustering by Splitting.

There are two major issues in thinking about clustering:

• What is a good inter-cluster distance? Agglomerative clustering uses an inter-
cluster distance to fuse nearby clusters; divisive clustering uses it to split in-
sufficiently coherent clusters. Even if a natural distance between data points
is available (which might not be the case for vision problems), there is no
canonical inter-cluster distance. Generally, one chooses a distance that seems
appropriate for the data set. For example, one might choose the distance



Section 12.2 Agglomerative and Divisive Clustering 316

between the closest elements as the inter-cluster distance, which tends to
yield extended clusters (statisticians call this method single-link cluster-
ing). Another natural choice is the maximum distance between an element of
the first cluster and one of the second, which tends to yield rounded clusters
(statisticians call this method complete-link clustering). Finally, one could
use an average of distances between elements in the cluster, which also tends
to yield “rounded” clusters (statisticians call this method group average
clustering).

• How many clusters are there? This is an intrinsically difficult task if there
is no model for the process that generated the clusters. The algorithms we
have described generate a hierarchy of clusters. Usually, this hierarchy is
displayed to a user in the form of a dendrogram—a representation of the
structure of the hierarchy of clusters that displays inter-cluster distances—
and an appropriate choice of clusters is made from the dendrogram (see the
example in Figure 12.1).
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FIGURE 12.1: Left, a data set; right, a dendrogram obtained by agglomerative
clustering using single-link clustering. If one selects a particular value of distance,
then a horizontal line at that distance splits the dendrogram into clusters. This
representation makes it possible to guess how many clusters there are and to get
some insight into how good the clusters are.

The main difficulty in using a divisive model is knowing where to split. This is
sometimes made easier for particular kinds of data. For example, we could segment
an image by clustering pixel values. In this case, you can sometimes find good splits
by constructing a histogram of intensities, or of color values.

Another important thing to notice about clustering from the example of fig-
ure 12.1 is that there is no right answer. There are a variety of different clusterings
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of the same data. For example, depending on what scales in that figure mean, it
might be right to zoom out and regard all of the data as a single cluster, or to zoom
in and regard each data point as a cluster. Each of these representations may be
useful.

12.2.1 Clustering and Distance

In the algorithms above, and in what follows, we assume that the features are scaled
so that distances (measured in the usual way) between data points are a good
representation of their similarity. This is quite an important point. For example,
imagine we are clustering data representing brick walls. The features might contain
several distances: the spacing between the bricks, the length of the wall, the height
of the wall, and so on. If these distances are given in the same set of units, we could
have real trouble. For example, assume that the units are centimeters. Then the
spacing between bricks is of the order of one or two centimeters, but the heights
of the walls will be in the hundreds of centimeters. In turn, this means that the
distance between two datapoints is likely to be completely dominated by the height
and length data. This could be what we want, but it might also not be a good
thing.

There are some ways to manage this issue. One is to know what the features
measure, and know how they should be scaled. Usually, this happens because you
have a deep understanding of your data. If you don’t (which happens!), then it is
often a good idea to try and normalize the scale of the data set. There are two good
strategies. The simplest is to translate the data so that it has zero mean (this is
just for neatness - translation doesn’t change distances), then scale each direction
so that it has unit variance. More sophisticated is to translate the data so that
it has zero mean, then transform it so that each direction is independent and has
unit variance. Doing so is sometimes referred to as decorrelation or whitening
(because you make the data more like white noise).

TODO: no - fix the whitening link here

TODO: show how in R?

TODO: worked example in R?

12.2.2 Example: Agglomerative Clustering

Matlab provides some tools that are useful for agglomerative clustering. These
functions use a scheme where one first builds the whole tree of merges, then analyzes
that tree to decide which clustering to report. linkage will determine which pairs
of clusters should be merged at which step (there are arguments that allow you
to choose what type of inter-cluster distance it should use); dendrogram will plot
you a dendrogram; and cluster will extract the clusters from the linkage, using a
variety of options for choosing the clusters. I used these functions to prepare the
dendrogram of figure 12.2 for the height-weight dataset of section ?? (from http://

www2.stetson.edu/~jrasp/data.htm; look for bodyfat.xls). I deliberately forced
Matlab to plot the whole dendrogram, which accounts for the crowded look of the
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FIGURE 12.2: A dendrogram obtained from the body fat dataset, using single link
clustering. Recall that the data points are on the horizontal axis, and that the
vertical axis is distance; there is a horizontal line linking two clusters that get
merged, established at the height at which they’re merged. I have plotted the entire
dendrogram, despite the fact it’s a bit crowded at the bottom, because it shows that
most data points are relatively close (i.e. there are lots of horizontal branches at
about the same height).

figure (you can allow it to merge small leaves, etc.). I used a single-link strategy.
In particular, notice that many data points are about the same distance from one
another, which suggests a single big cluster with a smaller set of nearby clusters.
The clustering of figure 12.3 supports this view. I plotted the data points on the first
two principal components, using different colors and shapes of marker to indicate
different clusters. There are a total of 30 clusters here, though most are small.

As another example, I obtained the seed dataset from the UC Irvine Machine
Learning Dataset Repository (you can find it at http://archive.ics.uci.edu/

ml/datasets/seeds). Each item consists of seven measurements of a wheat kernel;
there are three types of wheat represented in this dataset. As you can see in
figures 12.4 and 12.5, this data clusters rather well.
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FIGURE 12.3: A clustering of the body fat dataset, using agglomerative clustering,
single link distance, and requiring a maximum of 30 clusters. I have plotted each
cluster with a distinct marker (though some markers differ only by color; you might
need to look at the PDF version to see this figure at its best). Notice that one
cluster contains much of the data, and that there are a set of small isolated clusters.
The original data is 16 dimensional, which presents plotting problems; I show a
scatter plot on the first two principal components (though I computed distances for
clustering in the original 16 dimensional space).

12.3 THE K-MEANS ALGORITHM AND VARIANTS

TODO: Figure notes: Iris figure, estimate of k, 2d iris plot, projected onto pca
plot, another cluster dataset

Assume we have a dataset that, we believe, forms many clusters that look like
blobs. If we knew where the center of each of the clusters was, it would be easy to
tell which cluster each data item belonged to — it would belong to the cluster with
the closest center. Similarly, if we knew which cluster each data item belonged to,
it would be easy to tell where the cluster centers were — they’d be the mean of the
data items in the cluster. This is the point closest to every point in the cluster.

We can turn these observations into an algorithm. Assume that we know how
many clusters there are in the data, and write k for this number. The jth data
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FIGURE 12.4: A dendrogram obtained from the seed dataset, using single link cluster-
ing. Recall that the data points are on the horizontal axis, and that the vertical axis
is distance; there is a horizontal line linking two clusters that get merged, established
at the height at which they’re merged. I have plotted the entire dendrogram, despite
the fact it’s a bit crowded at the bottom, because you can now see how clearly the
data set clusters into a small set of clusters — there are a small number of vertical
“runs”.

item to be clustered is described by a feature vector xj . We write ci for the center
of the ith cluster. We assume that most data items are close to the center of their
cluster. This suggests that we cluster the data by minimizing the the cost function

Φ(clusters, data) =
∑

i∈clusters







∑

j∈ith cluster

(xj − ci)
T (xj − ci)







.

Notice that if we know the center for each cluster, it is easy to determine which
cluster is the best choice for each point. Similarly, if the allocation of points to
clusters is known, it is easy to compute the best center for each cluster. However,
there are far too many possible allocations of points to clusters to search this space
for a minimum. Instead, we define an algorithm that iterates through two activities:

• Assume the cluster centers are known and, allocate each point to the closest
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FIGURE 12.5: A clustering of the seed dataset, using agglomerative clustering, single
link distance, and requiring a maximum of 30 clusters. I have plotted each cluster
with a distinct marker (though some markers differ only by color; you might need to
look at the PDF version to see this figure at its best). Notice that there are a set of
fairly natural isolated clusters. The original data is 8 dimensional, which presents
plotting problems; I show a scatter plot on the first two principal components (though
I computed distances for clustering in the original 8 dimensional space).

cluster center.

• Assume the allocation is known, and choose a new set of cluster centers. Each
center is the mean of the points allocated to that cluster.

We then choose a start point by randomly choosing cluster centers, and then iterate
these stages alternately. This process eventually converges to a local minimum of
the objective function (the value either goes down or is fixed at each step, and
it is bounded below). It is not guaranteed to converge to the global minimum of
the objective function, however. It is also not guaranteed to produce k clusters,
unless we modify the allocation phase to ensure that each cluster has some nonzero
number of points. This algorithm is usually referred to as k-means (summarized
in Algorithm 12.3).

Usually, we are clustering high dimensional data, so that visualizing clusters



Section 12.3 The K-Means Algorithm and Variants 322

Choose k data points to act as cluster centers
Until the cluster centers change very little

Allocate each data point to cluster whose center is nearest.
Now ensure that every cluster has at least
one data point; one way to do this is by
supplying empty clusters with a point chosen at random from
points far from their cluster center.

Replace the cluster centers with the mean of the elements
in their clusters.

end

Algorithm 12.3: Clustering by K-Means.

can present a challenge. If the dimension isn’t too high, then we can use panel
plots. An alternative is to project the data onto two principal components, and
plot the clusters there. A natural dataset to use to explore k-means is the iris data,
where we know that the data should form three clusters (because there are three
species). Recall this dataset from section ??. I reproduce figure 11.3 from that
section, for comparison. Figures 12.6, ?? and ?? show different k-means clusterings
of that data.

12.3.1 How to choose K

The iris data is just a simple example. We know that the data forms clean clusters,
and we know there should be three of them. Usually, we don’t know how many
clusters there should be, and we need to choose this by experiment. One strategy
is to cluster for a variety of different values of k, then look at the value of the cost
function for each. If there are more centers, each data point can find a center that
is close to it, so we expect the value to go down as k goes up. This means that
looking for the k that gives the smallest value of the cost function is not helpful,
because that k is always the same as the number of data points (and the value is
then zero). However, it can be very helpful to plot the value as a function of k, then
look at the “knee” of the curve. Figure 12.9 shows this plot for the iris data. Notice
that k = 3 — the “true” answer — doesn’t look particularly special, but k = 2,
k = 3, or k = 4 all seem like reasonable choices. It is possible to come up with
a procedure that makes a more precise recommendation by penalizing clusterings
that use a large k, because they may represent inefficient encodings of the data.
However, this is often not worth the bother.

In some special cases (like the iris example), we might know the right answer
to check our clustering against. In such cases, one can evaluate the clustering by
looking at the number of different labels in a cluster (sometimes called the purity),
and the number of clusters. A good solution will have few clusters, all of which
have high purity.

Mostly, we don’t have a right answer to check against. An alternative strategy,
which might seem crude to you, for choosing k is extremely important in practice.
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These two components explain 95.81 % of the point variability.

FIGURE 12.6: On the left, a panel plot of the iris data clustered using k-means with
k = 2. By comparison with figure 12.9, notice how the versicolor and verginica
clusters appear to have been merged. On the right, this data set projected onto the
first two principal components, with one blob drawn over each cluster.

Usually, one clusters data to use the clusters in an application (one of the most im-
portant, vector quantization, is described in section 16). There are usually natural
ways to evaluate this application. For example, vector quantization is often used
as an early step in texture recognition or in image matching; here one can evaluate
the error rate of the recognizer, or the accuracy of the image matcher. One then
chooses the k that gets the best evaluation score on validation data. In this view,
the issue is not how good the clustering is; it’s how well the system that uses the
clustering works.

12.3.2 Soft Assignment

One difficulty with k-means is that each point must belong to exactly one cluster.
But, given we don’t know how many clusters there are, this seems wrong. If a point
is close to more than one cluster, why should it be forced to choose? This reasoning
suggests we assign points to cluster centers with weights.

We allow each point to carry a total weight of 1. In the conventional k-means
algorithm, it must choose a single cluster, and assign its weight to that cluster
alone. In soft-assignment k-means, the point can allocate some weight to each
cluster center, as long as (a) the weights are all non-negative and (b) the weights
sum to one. Write wi,j for the weight connecting point i to cluster center j. We
interpret these weights as the degree to which the point participates in a particular
cluster. We require wi,j ≥ 0 and

∑

j wi,j = 1.
We would like wi,j to be large when xi is close to cj , and small otherwise.

Write di,j for the distance ||xi − cj || between these two. Write

si,j = e
−d2

i,j

2σ2
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These two components explain 95.81 % of the point variability.

FIGURE 12.7: On the left, a panel plot of the iris data clustered using k-means with
k = 3. By comparison with figure 12.9, notice how the clusters appear to follow
the species labels. On the right, this data set projected onto the first two principal
components, with one blob drawn over each cluster.

where σ > 0 is a choice of scaling parameter. This is often called the affinity
between the point i and the center j. Now a natural choice of weights is

wi,j =
si,j

∑k
l=1 si,l

.

All these weights are non-negative, they sum to one, and the weight is large if the
point is much closer to one center than to any other. The scaling parameter σ sets
the meaning of “much closer” — we measure distance in units of σ.

Once we have weights, re-estimating the cluster centers is easy. We use a
weights to compute a weighted average of the points. In particular, we re-estimate
the j’th cluster center by

∑

iwi,jxi
∑

iwi,j
.

Notice that k-means is a special case of this algorithm where σ limits to zero. In
this case, each point has a weight of one for some cluster, and zero for all others,
and the weighted mean becomes an ordinary mean. I have collected the description
into Algorithm 12.4 for convenience.

12.3.3 General Comments on K-Means

If you experiment with k-means, you will notice one irritating habit of the algorithm.
It almost always produces either some rather spread out clusters, or some single
element clusters. Most clusters are usually rather tight and blobby clusters, but
there is usually one or more bad cluster. This is fairly easily explained. Because
every data point must belong to some cluster, data points that are far from all
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FIGURE 12.8: On the left, a panel plot of the iris data clustered using k-means with
k = 5. By comparison with figure 12.9, notice how setosa seems to have been broken
in two groups, and versicolor and verginica into a total of three . On the right,
this data set projected onto the first two principal components, with one blob drawn
over each cluster.

others (a) belong to some cluster and (b) very likely “drag” the cluster center into
a poor location. This applies even if you use soft assignment, because every point
must have total weight one. If the point is far from all others, then it will be
assigned to the closest with a weight very close to one, and so may drag it into a
poor location, or it will be in a cluster on its own.

There are ways to deal with this. If k is very big, the problem is often not
significant, because then you simply have many single element clusters that you
can ignore. It isn’t always a good idea to have too large a k, because then some
larger clusters might break up. An alternative is to have a junk cluster. Any point
that is too far from the closest true cluster center is assigned to the junk cluster,
and the center of the junk cluster is not estimated. Notice that points should not
be assigned to the junk cluster permanently; they should be able to move in and
out of the junk cluster as the cluster centers move.

In some cases, we want to cluster objects that can’t be averaged. For example,
you can compute distances between two trees but you can’t meaningfully average
them. In some cases, you might have a table of distances between objects, but
not know vectors representing the objects. For example, one could collect data on
the similarities between countries (as in Section 11.4.2, particularly Figure 11.23),
then try and cluster using this data (similarities can be turned into distances by,
for example, taking the negative logarithm). A variant of k-means, known as k-
medoids, applies to this case.

In k-medoids, the cluster centers are data items rather than averages, but the
rest of the algorithm has a familiar form. We assume the number of medoids is
known, and initialize these randomly. We then iterate two procedures. In the first,
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FIGURE 12.9: On the left, the scatterplot matrix for the Iris data, for reference. On
the right, a plot of the value of the cost function for each of several different values
of k. Notice how there is a sharp drop in cost going from k = 1 to k = 2, and again
at k = 4; after that, the cost falls off slowly. This suggests using k = 2, k = 3, or
k = 4, depending on the precise application.

we allocate data points to medoids. In the second, we choose the best medoid for
each cluster by finding the medoid that minimizes the sum of distances of points in
the cluster to that medoid (blank search is fine).

12.4 WHAT YOU SHOULD REMEMBER - NEED SOMETHING
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Choose k data points to act as cluster centers
Until the cluster centers change very little

First, we estimate the weights

For i indexing data points
For j indexing cluster centers

Compute si,j = e
−||xi−cj||

2σ2

For i indexing data points
For j indexing cluster centers

Compute wi,j = si,j/
∑

l=1 ksi,l

Now, we re-estimate the centers

For j indexing cluster centers

Compute cj =

∑

i
wi,jxi

∑

i
wi,j

end

Algorithm 12.4: Soft Clustering by K-Means.



C H A P T E R 13

Learning to Classify

A classifier is a procedure that accepts a set of features and produces a class label
for them. There could be two, or many, classes, though it is usual to produce
multi-class classifiers out of two-class classifiers. Classifiers are immensely useful,
and find wide application, because many problems are naturally decision problems.
For example, if you wish to determine whether to place an advert on a web-page or
not, you would use a classifier (i.e. look at the page, and say yes or no according
to some rule). As another example, if you have a program that you found for free
on the web, you would use a classifier to decide whether it was safe to run it (i.e.
look at the program, and say yes or no according to some rule). As yet another
example, you can think of doctors as extremely complex multi-class classifiers.

Classifiers are built by taking a set of labeled examples and using them to come
up with a rule that assigns a label to any new example. In the general problem,
we have a training dataset (xi, yi); each of the feature vectors xi consists of
measurements of the properties of different types of object, and the yi are labels
giving the type of the object that generated the example.

13.1 CLASSIFICATION, ERROR, AND LOSS

You should think of a classifier as a rule, though it might not be implemented that
way. We pass in a feature vector, and the rule returns a class label. We know the
relative costs of mislabeling each class and must come up with a rule that can take
any plausible x and assign a class to it, in such a way that the expected mislabeling
cost is as small as possible, or at least tolerable. For most of this chapter, we will
assume that there are two classes, labeled 1 and −1. Section 13.3.5 shows methods
for building multi-class classifiers from two-class classifiers.

13.1.1 Using Loss to Determine Decisions

The choice of classification rule must depend on the cost of making a mistake. A
two-class classifier can make two kinds of mistake. A false positive occurs when
a negative example is classified positive; a false negative occurs when a positive
example is classified negative. For example, pretend there is only one disease;
then doctors would be classifiers, deciding whether a patient had it or not. If
this disease is dangerous, but is safely and easily treated, then false negatives are
expensive errors, but false positives are cheap. Similarly, if it is not dangerous, but
the treatment is difficult and unpleasant, then false positives are expensive errors
and false negatives are cheap.

328



Section 13.1 Classification, Error, and Loss 329

13.1.2 Training Error, Test Error, and Overfitting

It can be quite difficult to know a good loss function, but one can usually come up
with a plausible model. If we knew the posterior probabilities, building a classifier
would be straightforward. Usually we don’t, and must build a model from data.
This model could be a model of the posterior probabilities, or an estimate of the
decision boundaries. In either case, we have only the training data to build it with.
Training error is the error a model makes on the training data set.

Generally, we will try to make this training error small. However, what we
really want to minimize is the test error, the error the classifier makes on test
data. We cannot minimize this error directly, because we don’t know the test set
(if we did, special procedures in training apply). However, classifiers that have
small training error might not have small test error. One example of this problem
is the (silly) classifier that takes any data point and, if it is the same as a point
in the training set, emits the class of that point and otherwise chooses randomly
between the classes. This classifier has been learned from data, and has a zero
error rate on the training dataset; it is likely to be unhelpful on any other dataset,
however.

The phenomenon that causes test error to be worse than training error is
sometimes called overfitting (other names include selection bias, because the
training data has been selected and so isn’t exactly like the test data, and gen-
eralizing badly, because the classifier fails to generalize). It occurs because the
classifier has been trained to perform well on the training dataset. The training
dataset is not the same as the test dataset. First, it is quite likely smaller. Second,
it might be biased through a variety of accidents. This means that small training
error may have to do with quirks of the training dataset that don’t occur in other
sets of examples. It is quite possible that, in this case, the test error will be larger
than the training error. Generally, we expect classifiers to perform somewhat bet-
ter on the training set than on the test set. Overfitting can result in a substantial
difference between performance on the training set and performance on the test set.
One consequence of overfitting is that classifiers should always be evaluated on test
data. Doing this creates other problems, which we discuss in Section 13.1.3.

A procedure called regularization attaches a penalty term to the training er-
ror to get a better estimate of the test error. This penalty term could take a variety
of different forms, depending on the requirements of the application. Section 14.1
describes regularization in further detail.

13.1.3 Error Rate and Cross-Validation

There are a variety of methods to describe the performance of a classifier. Natural,
straightforward choices are to report the error rate, the percentage of classification
attempts on a test set that result in the wrong answer. This presents an important
difficulty. We cannot estimate the error rate of the classifier using training data,
because the classifier has been trained to do well on that data, which will mean our
error rate estimate will be an underestimate. An alternative is to separate out some
training data to form a validation set, then train the classifier on the rest of the
data, and evaluate on the validation set. This has the difficulty that the classifier
will not be the best estimate possible, because we have left out some training data
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when we trained it. This issue can become a significant nuisance when we are
trying to tell which of a set of classifiers to use—did the classifier perform poorly
on validation data because it is not suited to the problem representation or because
it was trained on too little data?

We can resolve this problem with cross-validation, which involves repeat-
edly: splitting data into training and validation sets uniformly and at random,
training a classifier on the training set, evaluating it on the validation set, and
then averaging the error over all splits. This allows an estimate of the likely future
performance of a classifier, at the expense of substantial computation.

Choose some class of subsets of the training set,
for example, singletons.

For each element of that class, construct a classifier by
omitting that element in training, and compute the
mean number of classification errors on the omitted subset.

Average these errors over the class of subsets to estimate
the risk of using the classifier trained on the entire training
dataset.

Algorithm 13.1: Cross-Validation

The most usual form of this algorithm involves omitting single items from
the dataset and is known as leave-one-out cross-validation. Errors are usually
estimated by simply averaging over the class, but more sophisticated estimates
are available. We do not justify this tool mathematically; however, it is worth
noticing that leave-one-out cross-validation, in some sense, looks at the sensitivity
of the classifier to a small change in the training set. If a classifier performs well
under this test, then large subsets of the dataset look similar to one another, which
suggests that a representation of the relevant probabilities derived from the dataset
might be quite good.

13.2 LINEAR CLASSIFIERS

Assume we have a set of N example points xi that belong to two classes, which we
indicate by 1 and −1. These points come with their class labels, which we write as
yi; thus, our dataset can be written as

{(x1, y1), . . . , (xN , yN)} .

We wish to the sign of y for any point x; this rule is our classifier. Write y
(p)
i (x) for

the predicted value of y for a given value of x. assume we have a set of N example
points xi that belong to two classes, which we indicate by 1 and −1. These points
come with their class labels, which we write as yi; thus, our dataset can be written
as

{(x1, y1), . . . , (xN , yN)} .
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We seek a rule that predicts the sign of y for any point x; this rule is our classifier.
We will use a linear rule, so that for a new data item x, we will predict

sign ((a · x+ b)).

You should think of a and b as representing a hyperplane which separates the
positive data from the negative data. This hyperplane is known as the decision
boundary. The particular rule is given by the choice of a and b.

13.2.1 Why a linear rule?

This family of rules may look bad to you. It is easy to come up with examples
that it misclassifies badly. The rule has important strengths: it is easy to estimate
the best choice of rule, it works very well in practice on real data, and it is fast
to evaluate. For practical examples, experience shows that the error rate can be
improved by adding features to the vector x.

Example: 13.1 A linear model with a single feature

Assume we use a linear model with one feature. Then the model has
the form y

(p)
i = sign(axi + b). For any particular example which has

the feature value x∗, this means we will test whether x∗ is larger than,
or smaller than, −b/a.

Example: 13.2 A linear model with two features

Assume we use a linear model with two features. Then the model
has the form y

(p)
i = sign(aTxi + b). The sign changes along the line

aTx + b = 0. You should check that this is, indeed, a line. On one
side of this line, the model makes positive predictions; on the other,
negative. Which side is which can be swapped by multiplying a and b
by −1.

13.2.2 Logistic Regression

We will choose a and b by choosing values that minimize the cost of errors made
by the classifier. In particular, we will adopt a cost function of the form:

Training error cost + penalty term.

For the moment, we will ignore the penalty term. The training error cost will be
of the form

(1/N)

N
∑

i=1

C((aTxi + b), yi)
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so at each point in the training data, we compute a cost from the true value of yi
and the predicted value. This cost should be large if yi and y

(p)
i (aTxi + b, yi) have

different signs, and small if they have the same sign. It is convenient to write

γi = aTxi + b.

For logistic regression, the cost function using this notation is

C((aTxi + b), yi) = C(γi, yi) = log (1 + exp (−yiγi)) .

The function L(1, γ) is plotted in Figure 13.1. This loss is sometimes known as
the logistic loss. This loss very strongly penalizes a large positive γi if yi is
negative (and vice versa). However, there is no significant advantage to having a
large positive γi if yi is positive. This means that the significant components of
the loss function will be due to examples that the classifier gets wrong, but also
due to examples that have γi near zero (i.e., the example is close to the decision
boundary).

You should notice another important property of this loss. Assume we wish
to predict a label for a new data item. The loss we would incur depends quite
strongly on the magnitude of γ. If we produce a large value of γ for that data item
with the wrong sign, then we would incur a very large loss. This means that we
should prefer values of a and b that will tend to produce small values of γ. In turn,
we should prefer small values of a if they give about the same value of training loss.
This is our penalty term. We should use a cost function of the form

Training Loss +
λ

2
(Norm of a)

which is




1

N

∑

i∈examples

{log(1 + exp−yiγi})



+
λ

2
aTa

where λ > 0 is a constant chosen for good performance. Too large a value of λ, and
the classifier will behave poorly on training and test data; too small a value, and
the classifier will behave poorly on test data.

Usually, the value of λ is set with a validation dataset. We train classifiers
with different values of λ on a test dataset, then evaluate them on a validation
set—data whose labels are known, but which is not used for training—and finally
choose the λ that gets the best validation error. The error is not usually all that
sensitive to the choice of λ, so searching values by factors of 10 is usually fine.

The penalty term is often referred to as a regularizer, because it tends to
discourage solutions that are large (and so have possible high loss on future test
data) but are not strongly supported by the training data.

13.2.3 The Hinge Loss

There are alternate losses, that are very useful. The linear support vector ma-
chine or SVM uses the hinge loss. In this case the loss comparing the label value
yi and the prediction γi = (a · xi + b) can be written as

Lh(yi, γi) = max(0, 1− yiγi).
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FIGURE 13.1: The logistic loss, plotted for the case yi = 1. The horizontal variable
is the γi = a ·xi+ b of the text. Notice that giving a strong negative response to this
positive example causes a loss that grows linearly as the magnitude of the response
grows. Notice also that giving an insufficiently positive response also causes a loss.
Giving a strongly positive response is cheap or free.

This loss is always non-negative. For the moment, assume yi = 1; then, any predic-
tion by the classifier with value greater than one will incur no loss, and any smaller
prediction will incur a cost that is linear in the prediction value (Figure 13.2). This
means that minimizing the loss will encourage the classifier to (a) make strong
positive (or negative) predictions for positive (or negative) examples and (b) for
examples it gets wrong, make the most positive (negative) prediction that it can.
The expression

[

(1/N)

N
∑

i=1

max(0, 1− yi (a · xi + b))

]

+
λ

2
aTa

fits into the rule above, where we obtained a classifier by minimizing

Training Loss + Regularizer.

We are just using a different training loss.
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FIGURE 13.2: The hinge loss, plotted for the case yi = 1. The horizontal variable is
the γi = a · xi + b of the text. Notice that giving a strong negative response to this
positive example causes a loss that grows linearly as the magnitude of the response
grows. Notice also that giving an insufficiently positive response also causes a loss.
Giving a strongly positive response is or free. The loss should look a lot like the
logistic loss to you.

13.3 FINDING THE MINIMUM

We must now obtain a classifier that minimizes either logistic or hinge loss. Write
u = [a, b] for the vector obtained by stacking the vector a together with b. We have
a function g(u), and we wish to obtain a value of u that achieves the minimum for
that function. Sometimes we can solve this problem in closed form by constructing
the gradient and finding a value of a the makes the gradient zero. More usually we
need a numerical method. Implementing these numerical methods is a specialized
business, and it is usual to use general optimization codes. This section is intended
to sketch how such codes work, so you can read manual pages, etc. more effectively.
Personally, I am a happy user of Matlab’s fminunc, although the many different
settings take some getting used to.
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13.3.1 Overview

Typical codes take a description of the objective function (typically, the name of
a function), a start point for the search, and a collection of parameters. All codes
take an estimate u(i), update it to u(i+1), then check to see whether the result is
a minimum. This process is started from the start point. The update is usually
obtained by computing a direction p(i) such that for small values of h, g(u(i)+hp(i))
is smaller than g(u(i)). Such a direction is known as a descent direction.

Assume we have a descent direction. We must now choose how far to travel
along that direction. We can see g(a(i)+hp(i)) as a function of h. Write this function
as φ(h). We start at h = 0 (which is the original value a(i), so φ(0) = g(a(i)), and
move in the direction of increasing h to find a small value of φ(h) that is less than
φ(0). Searching for a good value of h is known as line search.

13.3.2 Gradient Descent

One method to choose a descent direction is gradient descent, which uses the
negative gradient of the function. Recall our notation that

u =









u1

u2

. . .
ud









and that

∇g =











∂g
∂u1

∂g
∂u2

. . .
∂g
∂ud











.

We can write a Taylor series expansion for the function g(u(i) + hp(i)). We have
that

g(u(i) + hp(i)) = g(u(i)) + h(∇g)Tp(i) +O(h2)

This means that we can expect that if

p(i) = −∇g(u(i)),

we expect that, at least for small values of h, g(u(i)+hp(i)) will be less than g(u(i)).
This works (as long as g is differentiable, and quite often when it isn’t) because

g must go down for at least small steps in this direction. There are two ways
to evaluate a gradient. You can require that the software estimate a numerical
derivative for you, which usually slows things down somewhat, or you can supply a
gradient value. Usually this gradient value must be computed by the same function
that computes the objective function value.

One tip: in my experience, about 99% of problems with numerical optimiza-
tion codes occur because the user didn’t check that the gradient their function
computed is right. Most codes will compute a numerical gradient for you, then
check that against your gradient; if they’re sufficiently different, the code will com-
plain. You don’t want to do this at runtime, because it slows things up, but it’s an
excellent idea to check.
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13.3.3 Stochastic Gradient Descent

Assume we wish to minimize some function g(u) = g0(u) + (1/N)
∑N

i=1 gi(u), as a
function of u. Gradient descent would require us to form

−∇g(u) = −
(

∇g0(u) + (1/N)
N
∑

i=1

∇gi(u)

)

and then take a small step in this direction. But if N is large, this is unattractive,
as we might have to sum a lot of terms. This happens a lot in building classifiers,
where you might quite reasonably expect to deal with millions of examples. For
some cases, there might be trillions of examples. Touching each example at each
step really is impractical.

Instead, assume that, at each step, we choose a number k in the range 1 . . .N
uniformly and at random, and form

pk = − (∇g0(u) +∇gk(u))

and then take a small step along pk. Our new point becomes

a(i+1) = a(i) + ηp
(i)
k ,

where η is called the steplength (even though it very often isn’t the length of the
step we take!). It is easy to show that

E[pk] = ∇g(u)

(where the expectation is over the random choice of k). This implies that if we take
many small steps along pk, they should average out to a step backwards along the
gradient. This approach is known as stochastic gradient descent (because we’re
not going along the gradient, but along a random vector which is the gradient only
in expectation). It isn’t obvious that stochastic gradient descent is a good idea.
Although each step is easy to take, we may need to take more steps. The question
is then whether we gain in the increased speed of the step what we lose by having
to take more steps. Not much is known theoretically, but in practice the approach
is hugely successful for training classifiers.

Choosing a steplength η takes some work. Line search won’t work, because
we don’t want to evaluate the function g, because doing so involves looking at each
of the gi terms. Instead, one uses a steplength that is large at the start — so that
it can explore large changes in the values of the classifier parameters — and small
steps later — so that it settles down. One useful strategy is to divide training into
epochs. Each epoch is a block of a fixed number of iterations. Each iteration is one
of the steps given above, with fixed steplength. However, the steplength changes
from epoch to epoch. In particular, in the r’th epoch, the steplength is

η(r) =
a

r + b

where a and b are constants chosen by experiment with small subsets of the dataset.
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One cannot really test whether stochastic gradient descent has converged to
the right answer. A better approach is to plot the error as a function of epoch on
a validation set. This should vary randomly, but generally go down as the epochs
proceed. I have summarized this discussion in box 13.1. You should be aware that
the recipe there admits many useful variations, though.

Procedure: 13.1 Stochastic Gradient Descent

We have a dataset containing N pairs (xi, yi). Each xi is a d-
dimensional feature vector, and each yi is a label, either 1 or −1.
Choose a set of possible values of the regularization weight λ. We
wish to train a model that minimizes a cost function of the form
g(u) = λ

2u
Tu+( 1

N )
∑N

i=1 gi(u). Separate the data into three sets: test,
training and validation. For each value of the regularization weight,
train a model, and evaluate the model on validation data. Keep the
model that produces the lowest error rate on the validation data, and
report its performance on the test data.
Train a model by choosing a fixed number of epochs Ne, and the num-
ber of steps per epoch Ns. Choose a random start point, u0 = [a, b].
For each epoch, first compute the steplength. In the e’th epoch, the
steplength is typically η = 1

ae+b for constants a and b chosen by small-
scale experiments (you try training a model with different values and
see what happens). For the e’th epoch, choose a subset of the training
set for validation for that epoch. Now repeat until the model has been
updated Ns times:

• Take k steps. Each step is taken by selecting a single data item
uniformly and at random. Assume we select the i’th data item.
We then compute p = −∇gi(u) − λu, and update the model by
computing

un+1 = un + ηp

• Evaluate the current model by computing the accuracy on the
validation set for that epoch. Plot the accuracy as a function of
step number.

13.3.4 Example: Training a Support Vector Machine with Stochastic Gradient Descent

I have summarized stochastic gradient descent in algorithm 13.1, but here is an
example in more detail. We need to choose a and b to minimize

C(a, b) = (1/N)

N
∑

i=1

max(0, 1− yi (a · xi + b)) +
λ

2
aTa.

This is a support vector machine, because it uses hinge loss. For a support vector
machine, stochastic gradient descent is particularly easy. We have estimates a(n)
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and b(n) of the classifier parameters, and we want to improve the estimates. We
pick the k’th example at random. We must now compute

∇
(

max(0, 1− yk (a · xk + b)) +
λ

2
aTa

)

.

Assume that yk (a · xk + b) > 1. In this case, the classifier predicts a score with
the right sign, and a magnitude that is greater than one. Then the first term is
zero, and the gradient of the second term is easy. Now if yk (a · xk + b) < 1, we can
ignore the max, and the first term is 1− yk (a · xk + b); the gradient is again easy.
But what if yk (a · xk + b) = 1? there are two distinct values we could choose for
the gradient, because the max term isn’t differentiable. It turns out not to matter
which term we choose (Figure ??), so we can write the gradient as

pk =























[

λa
0

]

if yk (a · xk + b) ≥ 1

[

λa− ykx
−yk

]

otherwise

We choose a steplength η, and update our estimates using this gradient. This yields:

a(n+1) = a(n) − η

{

λa if yk (a · xk + b) ≥ 1
λa− ykx otherwise

and

b(n+1) = b(n) − η

{

0 if yk (a · xk + b) ≥ 1
−yk otherwise

.

To construct figures, I downloaded the dataset at http://archive.ics.uci.
edu/ml/datasets/Adult. This dataset apparently contains 48, 842 data items, but
I worked with only the first 32, 000. Each consists of a set of numeric and categorical
features describing a person, together with whether their annual income is larger
than or smaller than 50K$. I ignored the categorical features to prepare these
figures. This isn’t wise if you want a good classifier, but it’s fine for an example.
I used these features to predict whether income is over or under 50K$. I split the
data into 5, 000 test examples, and 27,000 training examples. It’s important to
do so at random. There are 6 numerical features. I subtracted the mean (which
doesn’t usually make much difference) and rescaled each so that the variance was
1 (which is often very important). I used two different training regimes.

In the first training regime, there were 100 epochs. In each epoch, I applied
426 steps. For each step, I selected one data item uniformly at random (sampling
with replacement), then stepped down the gradient. This means the method sees
a total of 42, 600 data items. This means that there is a high probability it has
touched each data item once (27, 000 isn’t enough, because we are sampling with
replacement, so some items get seen more than once). I chose 5 different values
for the regularization parameter and trained with a steplength of 1/(0.01 ∗ e+50),
where e is the epoch. At the end of each epoch, I computed aTa and the accuracy
(fraction of examples correctly classified) of the current classifier on the held out
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FIGURE 13.3: On the left, the magnitude of the weight vector a at the end of each
epoch for the first training regime described in the text. On the right, the accu-
racy on held out data at the end of each epoch. Notice how different choices of
regularization parameter lead to different magnitudes of a; how the method isn’t
particularly sensitive to choice of regularization parameter (they change by factors
of 100); how the accuracy settles down fairly quickly; and how overlarge values of
the regularization parameter do lead to a loss of accuracy.

test examples. Figure 13.3 shows the results. You should notice that the accuracy
changes slightly each epoch; that for larger regularizer values aTa is smaller; and
that the accuracy settles down to about 0.8 very quickly.

In the second training regime, there were 100 epochs. In each epoch, I applied
50 steps. For each step, I selected one data item uniformly at random (sampling
with replacement), then stepped down the gradient. This means the method sees
a total of 5,000 data items, and about 3, 216 unique data items — it hasn’t seen
the whole training set. I chose 5 different values for the regularization parameter
and trained with a steplength of 1/(0.01 ∗ e+50), where e is the epoch. At the end
of each epoch, I computed aTa and the accuracy (fraction of examples correctly
classified) of the current classifier on the held out test examples. Figure 13.4 shows
the results. You should notice that the accuracy changes slightly each epoch; that
for larger regularizer values aTa is smaller; and that the accuracy settles down
to about 0.8 very quickly; and that there isn’t much difference between the two
training regimes. All of these points are relatively typical of stochastic gradient
descent with very large datasets.

13.3.5 Building Multi-Class Classifiers Out of Binary Classifiers

There are two standard methods to build multi-class classifiers out of binary classi-
fiers. In the all-vs-all approach, we train a binary classifier for each pair of classes.
To classify an example, we present it to each of these classifiers. Each classifier
decides which of two classes the example belongs to, then records a vote for that
class. The example gets the class label with the most votes. This approach is
simple, but scales very badly with the number of classes.
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FIGURE 13.4: On the left, the magnitude of the weight vector a at the end of each
epoch for the second training regime described in the text. On the right, the ac-
curacy on held out data at the end of each epoch. Notice how different choices of
regularization parameter lead to different magnitudes of a; how the method isn’t
particularly sensitive to choice of regularization parameter (they change by factors
of 100); how the accuracy settles down fairly quickly; and how overlarge values of
the regularization parameter do lead to a loss of accuracy.

In the one-vs-all approach, we build a binary classifier for each class. This
classifier must distinguish its class from all the other classes. We then take the
class with the largest classifier score. One possible concern with this method is
that training algorithms usually do not compel classifiers to be good at ranking
examples. We train classifiers so that they give positive scores for positive examples,
and negative scores for negative examples, but we do nothing explicit to ensure that
a more positive score means the example is more like the positive class. Another
important concern is that the classifier scores must be calibrated to one another,
so that when one classifier gives a larger positive score than another, we can be
sure that the first classifier is more certain than the second. Some classifiers, such
as logistic regression, report posterior probabilities, which require no calibration.
Others, such as the SVM, report numbers with no obvious semantics and need
to be calibrated. The usual method to calibrate these numbers is an algorithm
due to ?, which uses logistic regression to fit a simple probability model to SVM
outputs. One-vs-all methods tend to be reliable and effective even when applied to
uncalibrated classifier outputs, most likely because training algorithms do tend to
encourage classifiers to rank examples correctly.

Neither strategy is particularly attractive when the number of classes is large,
because the number of classifiers we must train scales poorly (linearly in one case,
quadratically in the other) with the number of classes. If we were to allocate each
class a distinct binary vector, we would need only logN bits in the vector for N
classes. We could then train one classifier for each bit, and we should be able to
classify into N classes with only logN classifiers. This strategy tends to founder
on questions of which class should get which bit string, because this choice has
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significant effects on the ease of training the classifiers. Nonetheless, it gives an
argument that suggests that we should not need as many as N classifiers to tell N
classes apart.

Evaluating a multi-class classifier is more complex than evaluating a binary
classifier. There are only two kinds of mistake that a binary classifier can make.
A multi-class classifier can make many more (mapping any one class to any other
class). It is useful to know the total error rate of the classifier, which is the percent-
age of classification attempts that produce the wrong answer. An alternative is the
accuracy, which is the percentage of classification attempts that produce the right
answer. If the error rate is low enough, or the accuracy is high enough, there’s not
much to worry about. But if it’s not, you can look at the class confusion matrix
to see what’s going on.

Predict Predict Predict Predict Predict Class
0 1 2 3 4 error

True 0 151 7 2 3 1 7.9%
True 1 32 5 9 9 0 91%
True 2 10 9 7 9 1 81%
True 3 6 13 9 5 2 86%
True 4 2 3 2 6 0 100%

TABLE 13.1: The class confusion matrix for a multiclass classifier. Further details
about the dataset and this example appear in worked example 13.1.

Table 13.1 gives an example. This is a class confusion matrix from a classifier
built on a dataset where one tries to predict the degree of heart disease from a col-
lection of physiological and physical measurements. There are five classes (0 . . . 4).
The i, j’th cell of the table shows the number of data points of true class i that
were classified to have class j. As I find it hard to recall whether rows or columns
represent true or predicted classes, I have marked this on the table. For each row,
there is a class error rate, which is the percentage of data points of that class that
were misclassified. The first thing to look at in a table like this is the diagonal;
if the largest values appear there, then the classifier is working well. This clearly
isn’t what is happening for table 13.1. Instead, you can see that the method is
very good at telling whether a data point is in class 0 (the class error rate is rather
small), but cannot distinguish between the other classes. This is a strong hint that
the data can’t be used to draw the distinctions that we want. It might be a lot
better to work with a different set of classes.

13.4 CLASSIFYING WITH RANDOM FORESTS

I described a classifier as a rule that takes a feature, and produces a class. One way
to build such a rule is with a sequence of simple tests, where each test is allowed
to use the results of all previous tests. This class of rule can be drawn as a tree
(Figure ??), where each node represents a test, and the edges represent the possible
outcomes of the test. To classify a test item with such a tree, you present it to
the first node; the outcome of the test determines which node it goes to next; and
so on, until the example arrives at a leaf. When it does arrive at a leaf, we label
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FIGURE 13.5: This — the household robot’s guide to obstacles — is a typical decision
tree. I have labelled only one of the outgoing branches, because the other is the
negation. So if the obstacle moves, bites, but isn’t furry, then it’s a toddler. In
general, an item is passed down the tree until it hits a leaf. It is then labelled with
the leaf ’s label.

the test item with the most common label in the leaf. This object is known as a
decision tree. Notice one attractive feature of this decision tree: it deals with
multiple class labels quite easily, because you just label the test item with the most
common label in the leaf that it arrives at when you pass it down the tree.

Figure 13.6 shows a simple 2D dataset with four classes, next to a decision
tree that will correctly classify at least the training data. Actually classifying data
with a tree like this is straightforward. We take the data item, and pass it down
the tree. Notice it can’t go both left and right, because of the way the tests work.
This means each data item arrives at a single leaf. We take the most common
label at the leaf, and give that to the test item. In turn, this means we can build
a geometric structure on the feature space that corresponds to the decision tree.
I have illustrated that structure in figure 13.6, where the first decision splits the
feature space in half (which is why the term split is used so often), and then the
next decisions split each of those halves into two.

The important question is how to get the tree from data. It turns out that
the best approach for building a tree incorporates a great deal of randomness. As
a result, we will get a different tree each time we train a tree on a dataset. None of
the individual trees will be particularly good (they are often referred to as “weak
learners”). The natural thing to do is to produce many such trees (a decision
forest), and allow each to vote; the class that gets the most votes, wins. This
strategy is extremely effective.

13.4.1 Building a Decision Tree

There are many algorithms for building decision trees. We will use an approach
chosen for simplicity and effectiveness; be aware there are others. We will always
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FIGURE 13.6: A straightforward decision tree, illustrated in two ways. On the left,
I have given the rules at each split; on the right, I have shown the data points in
two dimensions, and the structure that the tree produces in the feature space.

use a binary tree, because it’s easier to describe and because that’s usual (it doesn’t
change anything important, though). Each node has a decision function, which
takes data items and returns either 1 or -1.

We train the tree by thinking about its effect on the training data. We pass
the whole pool of training data into the root. Any node splits its incoming data
into two pools, left (all the data that the decision function labels 1) and right (ditto,
-1). Finally, each leaf contains a pool of data, which it can’t split because it is a
leaf.

Training the tree uses a straightforward algorithm. First, we choose a class of
decision functions to use at each node. It turns out that a very effective algorithm
is to choose a single feature at random, then test whether its value is larger than, or
smaller than a threshold. For this approach to work, one needs to be quite careful
about the choice of threshold, which is what we describe in the next section. Some
minor adjustments, described below, are required if the feature chosen isn’t ordinal.
Surprisingly, being clever about the choice of feature doesn’t seem add a great deal
of value. We won’t spend more time on other kinds of decision function, though
there are lots.

Now assume we use a decision function as described, and we know how to
choose a threshold. We start with the root node, then recursively either split the
pool of data at that node, passing the left pool left and the right pool right, or stop
splitting and return. Splitting involves choosing a decision function from the class
to give the “best” split for a leaf. The main questions are how to choose the best
split (next section), and when to stop.

Stopping is relatively straightforward. Quite simple strategies for stopping
are very good. It is hard to choose a decision function with very little data, so we
must stop splitting when there is too little data at a node. We can tell this is the
case by testing the amount of data against a threshold, chosen by experiment. If all
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FIGURE 13.7: Two possible splits of a pool of training data. Positive data is repre-
sented with an ’x’, negative data with a ’o’. Notice that if we split this pool with
the informative line, all the points on the left are ’o’s, and all the points on the
right are ’x’s. This is an excellent choice of split — once we have arrived in a leaf,
everything has the same label. Compare this with the less informative split. We
started with a node that was half ’x’ and half ’o’, and now have two nodes each of
which is half ’x’ and half ’o’ — this isn’t an improvement, because we do not know
more about the label as a result of the split.

the data at a node belongs to a single class, there is no point in splitting. Finally,
constructing a tree that is too deep tends to result in generalization problems, so
we usually allow no more than a fixed depth D of splits. Choosing the best splitting
threshold is more complicated.

Figure 13.7 shows two possible splits of a pool of training data. One is quite
obviously a lot better than the other. In the good case, the split separates the pool
into positives and negatives. In the bad case, each side of the split has the same
number of positives and negatives. We cannot usually produce splits as good as
the good case here. What we are looking for is a split that will make the proper
label more certain.

Figure 13.8 shows a more subtle case to illustrate this. The splits in this
figure are obtained by testing the horizontal feature against a threshold. In one
case, the left and the right pools contain about the same fraction of positive (’x’)
and negative (’o’) examples. In the other, the left pool is all positive, and the right
pool is mostly negative. This is the better choice of threshold. If we were to label
any item on the left side positive and any item on the right side negative, the error
rate would be fairly small. If you count, the best error rate for the informative
split is 20% on the training data, and for the uninformative split it is 40% on the
training data.

But we need some way to score the splits, so we can tell which threshold is
best. Notice that, in the uninformative case, knowing that a data item is on the
left (or the right) does not tell me much more about the data than I already knew.
We have that p(1|left pool, uninformative) = 2/3 ≈ 3/5 = p(1|parent pool) and
p(1|right pool, uninformative) = 1/2 ≈ 3/5 = p(1|parent pool). For the informa-
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FIGURE 13.8: Two possible splits of a pool of training data. Positive data is repre-
sented with an ’x’, negative data with a ’o’. Notice that if we split this pool with
the informative line, all the points on the left are ’x’s, and two-thirds of the points
on the right are ’o’s. This means that knowing which side of the split a point lies
would give us a good basis for estimating the label. In the less informative case,
about two-thirds of the points on the left are ’x’s and about half on the right are ’x’s
— knowing which side of the split a point lies is much less useful in deciding what
the label is.

tive pool, knowing a data item is on the left classifies it completely, and knowing
that it is on the right allows us to classify it an error rate of 1/3. The informative
split means that my uncertainty about what class the data item belongs to is signif-
icantly reduced if I know whether it goes left or right. To choose a good threshold,
we need to keep track of how informative the split is.

13.4.2 Entropy and Information Gain

It turns out to be straightforward to keep track of information, in simple cases. We
will start with an example. Assume I have 4 classes. There are 8 examples in class
1, 4 in class 2, 2 in class 3, and 2 in class 4. How much information on average will
you need to send me to tell me the class of a given example? Clearly, this depends
on how you communicate the information. You could send me the complete works
of Edward Gibbon to communicate class 1; the Encyclopaedia for class 2; and so
on. But this would be redundant. The question is how little can you send me.
Keeping track of the amount of information is easier if we encode it with bits (i.e.
you can send me sequences of ’0’s and ’1’s).

Imagine the following scheme. If an example is in class 1, you send me a ’1’.
If it is in class 2, you send me ’01’; if it is in class 3, you send me ’001’; and in class
4, you send me ’101’. Then the expected number of bits you will send me is

p(class = 1)1 + p(2)2 + p(3)3 + p(4)3 =
1

2
1 +

1

4
2 +

1

8
3 +

1

8
3

which is 1.75 bits. This number doesn’t have to be an integer, because it’s an
expectation.

Notice that for the i’th class, you have sent me − log2 p(i) bits. We can write
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the expected number of bits you need to send me as

−
∑

i

p(i) log2 p(i).

This expression handles other simple cases correctly, too. You should notice that it
isn’t really important how many objects appear in each class. Instead, the fraction
of all examples that appear in the class is what matters. This fraction is the prior
probability that an item will belong to the class. You should try what happens if
you have two classes, with an even number of examples in each; 256 classes, with
an even number of examples in each; and 5 classes, with p(1) = 1/2, p(2) = 1/4,
p(3) = 1/8, p(4) = 1/16 and p(5) = 1/16. If you try other examples, you may find
it hard to construct a scheme where you can send as few bits on average as this
expression predicts. It turns out that, in general, the smallest number of bits you
will need to send me is given by the expression

−
∑

i

p(i) log2 p(i)

under all conditions, though it may be hard or impossible to determine what rep-
resentation is required to achieve this number.

The entropy of a probability distribution is a number that scores how many
bits, on average, would need to be known to identify an item sampled from that
probability distribution. For a discrete probability distribution, the entropy is
computed as

−
∑

i

p(i) log2 p(i)

where i ranges over all the numbers where p(i) is not zero. Generally, the entropy
is larger if the class of an item is more uncertain. So, for example, if we have two
classes and p(1) = 0.99, then the entropy is 0.0808, meaning you need very little
information to tell which class an object belongs to. This makes sense, because there
is a very high probability it belongs to class 1; you need very little information to
tell you when it is in class 2. If you are worried by the prospect of having to
send 0.0808 bits, remember this is an average, so you can interpret the number as
meaning that, if you want to tell which class each of 104 independent objects belong
to, you could do so in principle with only 808 bits. As another example, if we have
two classes and p(1) = 0.5, then the entropy is 1, and this is the largest possible
value for a probability distribution on two classes. You can always tell which of
two classes an object belongs to with just one bit (though you might be able to tell
with even less than one bit).

13.4.3 Entropy and Splits

Now we return to the splits. Write P for the set of all data at the node. Write Pl

for the left pool, and Pr for the right pool. The entropy of a pool C that scores
how many bits would be required to represent the class of an item in that pool, on
average. Write n(i; C) for the number of items of class i in the pool, and N(C) for
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the number of items in the pool. Then the entropy is H(C) of the pool C is

−
∑

i

n(i; C)
N(C) log2

n(i; C)
N(C .

It is straightforward that H(P) bits are required to classify an item in the parent
pool P . For an item in the left pool, we need H(Pl) bits; for an item in the right
pool, we need H(Pr) bits. If we split the parent pool, we expect to encounter items
in the left pool with probability

N(Pl)

N(P)

and items in the right pool with probability

N(Pr)

N(P)
.

This means that, on average, we must supply

N(Pl)

N(P)
H(Pl) +

N(Pr)

N(P)
H(Pr)

bits to classify data items if we split the parent pool. Now a good split is one that
results in left and right pools that are informative. In turn, we should need fewer
bits to classify once we have split than we need before the split. You can see the
difference

I(Pl,Pr;P) = H(P)−
(

N(Pl)

N(P)
H(Pl) +

N(Pr)

N(P)
H(Pr)

)

as the information gain caused by the split. This is the average number of bits
that you don’t have to supply if you know which side of the split an example lies.
Better splits have larger information gain.

13.4.4 Choosing a Split with Information Gain

Recall that our decision function is to choose a feature at random, then test its
value against a threshold. Any data point where the value is larger goes to the left
pool; where the value is smaller goes to the right. This may sound much too simple
to work, but it is actually effective and popular. Assume that we are at a node,
which we will label k. We have the pool of training examples that have reached
that node. The i’th example has a feature vector xi, and each of these feature
vectors is a d dimensional vector.

We choose an integer j in the range 1 . . . d uniformly and at random. We will

split on this feature, and we store j in the node. Recall we write x
(j)
i for the value

of the j’th component of the i’th feature vector. We will choose a threshold tk, and

split by testing the sign of x
(j)
i − tk. Choosing the value of tk is easy. Assume there

are Nk examples in the pool. Then there are Nk − 1 possible values of tk that lead
to different splits. To see this, sort the Nk examples by x(j), then choose values
of tk halfway between example values (Figure 13.9). For each of these values, we
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FIGURE 13.9: We search for a good splitting threshold by looking at values of the
chosen component that yield different splits. On the left, I show a small dataset
and its projection onto the chosen splitting component (the horizontal axis). For the
8 data points here, there are only 7 threshold values that produce interesting splits,
and these are shown as ’t’s on the axis. On the right, I show a larger dataset; in
this case, I have projected only a subset of the data, which results in a small set of
thresholds to search.

compute the information gain of the split. We then keep the threshold with the
best information gain.

We can elaborate this procedure in a useful way, by choosing m features at
random, finding the best split for each, then keeping the feature and threshold
value that is best. It is important that m is a lot smaller than the total number of
features — a usual root of thumb is that m is about the square root of the total
number of features. It is usual to choose a single m, and choose that for all the
splits.

Now assume we happen to have chosen to work with a feature that isn’t
ordinal, and so can’t be tested against a threshold. A natural, and effective, strategy
is as follows. We can split such a feature into two pools by flipping an unbiased
coin for each value — if the coin comes up H , any data point with that value goes
left, and if it comes up T , any data point with that value goes right. We chose this
split at random, so it might not be any good. We can come up with a good split by
repeating this procedure F times, computing the information gain for each split,
then keeping the one that has the best information gain. We choose F in advance,
and it usually depends on the number of values the categorical variable can take.

We now have a relatively straightforward blueprint for an algorithm, which I
have put in a box. It’s a blueprint, because there are a variety of ways in which it
can be revised and changed.
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Procedure: 13.2 Building a decision tree

We have a dataset containing N pairs (xi, yi). Each xi is a d-
dimensional feature vector, and each yi is a label. Call this dataset
a pool. Now recursively apply the following procedure:

• If the pool is too small, or if all items in the pool have the same
label, or if the depth of the recursion has reached a limit, stop.

• Otherwise, search the features for a good split that divides the
pool into two, then apply this procedure to each child.

We search for a good split by the following procedure:

• Choose a subset of the feature components at random. Typically,
this subset is about the square root of the feature dimension.

• For each component of this subset, search for the best splitting
threshold. Do so by selecting a set of possible values for the
threshold, then for each value splitting the dataset (every data
item with a value of the component below the threshold goes left,
others go right), and computing the information gain for the split.
Keep the threshold that has the largest information gain.

A good set of possible values for the threshold will contain values that
separate the data “reasonably”. If the pool of data is small, you can
project the data onto the feature component (i.e. look at the values of
that component alone), then choose the N − 1 distinct values that lie
between two data points. If it is big, you can randomly select a subset
of the data, then project that subset on the feature component and
choose from the values between data points.

13.4.5 Forests

A single decision tree tends to yield poor classifications. One reason is because the
tree is not chosen to give the best classification of its training data. We used a
random selection of splitting variables at each node, so the tree can’t be the “best
possible”. Obtaining the best possible tree presents significant technical difficulties.
It turns out that the tree that gives the best possible results on the training data
can perform rather poorly on test data. The training data is a small subset of
possible examples, and so must differ from the test data. The best possible tree on
the training data might have a large number of small leaves, built using carefully
chosen splits. But the choices that are best for training data might not be best for
test data.

Rather than build the best possible tree, we have built a tree efficiently, but
with number of random choices. If we were to rebuild the tree, we would obtain
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a different result. This suggests the following extremely effective strategy: build
many trees, and classify by merging their results.

13.4.6 Building and Evaluating a Decision Forest

There are two important strategies for building and evaluating decision forests. I
am not aware of evidence strongly favoring one over the other, but different software
packages use different strategies, and you should be aware of the options. In one
strategy, we separate labelled data into a training and a test set. We then build
multiple decision trees, training each using the whole training set. Finally, we
evaluate the forest on the test set. In this approach, the forest has not seen some
fraction of the available labelled data, because we used it to test. However, each
tree has seen every training data item.

Procedure: 13.3 Building a decision forest

We have a dataset containing N pairs (xi, yi). Each xi is a d-
dimensional feature vector, and each yi is a label. Separate the dataset
into a test set and a training set. Train multiple distinct decision trees
on the training set, recalling that the use of a random set of components
to find a good split means you will obtain a distinct tree each time.

In the other strategy, sometimes called bagging, each time we train a tree we
randomly subsample the labelled data with replacement, to yield a training set the
same size as the original set of labelled data. Notice that there will be duplicates
in this training set, which is like a bootstrap replicate. This training set is often
called a bag. We keep a record of the examples that do not appear in the bag (the
“out of bag” examples). Now to evaluate the forest, we evaluate each tree on its
out of bag examples, and average these error terms. In this approach, the entire
forest has seen all labelled data, and we also get an estimate of error, but no tree
has seen all the training data.

Procedure: 13.4 Building a decision forest using bagging

We have a dataset containing N pairs (xi, yi). Each xi is a d-
dimensional feature vector, and each yi is a label. Now build k boot-
strap replicates of the training data set. Train one decision tree on each
replicate.

13.4.7 Classifying Data Items with a Decision Forest

Once we have a forest, we must classify test data items. There are two major
strategies. The simplest is to classify the item with each tree in the forest, then
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take the class with the most votes. This is effective, but discounts some evidence
that might be important. For example, imagine one of the trees in the forest has a
leaf with many data items with the same class label; another tree has a leaf with
exactly one data item in it. One might not want each leaf to have the same vote.

Procedure: 13.5 Classification with a decision forest

Given a test example x, pass it down each tree of the forest. Now choose
one of the following strategies.

• Each time the example arrives at a leaf, record one vote for the
label that occurs most often at the leaf. Now choose the label
with the most votes.

• Each time the example arrives at a leaf, recordNl votes for each of
the labels that occur at the leaf, where Nl is the number of times
the label appears in the training data at the leaf. Now choose the
label with the most votes.

An alternative strategy that takes this observation into account is to pass the
test data item down each tree. When it arrives at a leaf, we record one vote for each
of the training data items in that leaf. The vote goes to the class of the training
data item. Finally, we take the class with the most votes. This approach allows
big, accurate leaves to dominate the voting process. Both strategies are in use, and
I am not aware of compelling evidence that one is always better than the other.
This may be because the randomness in the training process makes big, accurate
leaves uncommon in practice.
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Worked example 13.1 Classifying heart disease data

Build a random forest classifier to classify the “heart” dataset from the UC
Irvine machine learning repository. The dataset is at http://archive.ics.

uci.edu/ml/datasets/Heart+Disease. There are several versions. You
should look at the processed Cleveland data, which is in the file “pro-
cessed.cleveland.data.txt”.

Solution: I used the R random forest package. This uses a bagging strategy.
There is sample code in listing ??. This package makes it quite simple to fit
a random forest, as you can see. In this dataset, variable 14 (V14) takes the
value 0, 1, 2, 3 or 4 depending on the severity of the narrowing of the arteries.
Other variables are physiological and physical measurements pertaining to the
patient (read the details on the website). I tried to predict all five levels of
variable 14, using the random forest as a multivariate classifier. This works
rather poorly, as the out-of-bag class confusion matrix below shows. The total
out-of-bag error rate was 45%.

Predict Predict Predict Predict Predict Class
0 1 2 3 4 error

True 0 151 7 2 3 1 7.9%
True 1 32 5 9 9 0 91%
True 2 10 9 7 9 1 81%
True 3 6 13 9 5 2 86%
True 4 2 3 2 6 0 100%

This is the example of a class confusion matrix from table 13.1. Fairly clearly,
one can predict narrowing or no narrowing from the features, but not the
degree of narrowing (at least, not with a random forest). So it is natural to
quantize variable 14 to two levels, 0 (meaning no narrowing), and 1 (meaning
any narrowing, so the original value could have been 1, 2, or 3). I then built
a random forest to predict this from the other variables. The total out-of-bag
error rate was 19%, and I obtained the following out-of-bag class confusion
matrix

Predict Predict Class
0 1 error

True 0 138 26 16%
True 1 31 108 22%

Notice that the false positive rate (16%, from 26/164) is rather better than the
false negative rate (22%). Looking at these class confusion matrices, you might
wonder whether it is better to predict 0, . . . , 4, then quantize. But this is not a
particularly good idea. While the false positive rate is 7.9%, the false negative
rate is much higher (36%, from 50/139). In this application, a false negative is
likely more of a problem than a false positive, so the tradeoff is unattractive.

13.5 WHAT YOU SHOULD REMEMBER - NEED SOMETHING
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Listing 13.1: R code used for the random forests of worked example 13.1

setwd ( ’/use r s/daf/Current/ cour s e s/Probcourse/Trees/RCode ’ ) ;
i n s ta l l . packages ( ’ randomForest ’ )
l ibrary ( randomForest )
hear t<−read . csv ( ’ p r o ce s s ed . c l eve l and . data . txt ’ , header=FALSE)
hear t$ levels<−as . factor ( hear t$V14)
h e a r t f o r e s t . a l l v a l s<−

randomForest ( formula=levels˜V1+V2+V3+V4+V5+V6
+V7+V8+V9+V10+V11+V12+V13 ,
data=heart , type=’ c l a s s i f i c a t i o n ’ , mtry=5)

# t h i s f i t s to a l l l e v e l s
# I got the CCM by typ ing
h e a r t f o r e s t . a l l v a l s
hear t$yesno<−cut ( hear t$V14 , c(− In f , 0 . 1 , I n f ) )
h e a r t f o r e s t<−

randomForest ( formula=yesno˜V1+V2+V3+V4+V5+V6
+V7+V8+V9+V10+V11+V12+V13 ,
data=heart , type=’ c l a s s i f i c a t i o n ’ , mtry=5)

# t h i s f i t s to the quan t i z ed case
# I got the CCM by typ ing
h e a r t f o r e s t

PROBLEMS

PROGRAMMING EXERCISES

13.1. The UC Irvine machine learning data repository hosts a collection of data
on breast cancer diagnostics, donated by Olvi Mangasarian, Nick Street, and
William H. Wolberg. You can find this data at http://archive.ics.uci.edu/
ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic). For each record, there
is an id number, 10 continuous variables, and a class (benign or malignant).
There are 569 examples. Separate this dataset randomly into 100 validation,
100 test, and 369 training examples.
Write a program to train a support vector machine on this data using stochastic
gradient descent. You should not use a package to train the classifier (you
don’t really need one), but your own code. You should ignore the id number,
and use the continuous variables as a feature vector. You should search for
an appropriate value of the regularization constant, trying at least the values
λ = [1e− 3, 1e− 2, 1e− 1, 1]. Use the validation set for this search
You should use at least 50 epochs of at least 100 steps each. In each epoch,
you should separate out 50 training examples at random for evaluation. You
should compute the accuracy of the current classifier on the set held out for
the epoch every 10 steps. You should produce:
(a) A plot of the accuracy every 10 steps, for each value of the regularization

constant.
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(b) Your estimate of the best value of the regularization constant, together
with a brief description of why you believe that is a good value.

(c) Your estimate of the accuracy of the best classifier on held out data
13.2. The UC Irvine machine learning data repository hosts a collection of data on

whether a mushroom is edible, donated by Jeff Schlimmer and to be found at
http://archive.ics.uci.edu/ml/datasets/Mushroom. This data has a set of
categorical attributes of the mushroom, together with two labels (poisonous or
edible). Use the R random forest package (as in the example in the chapter)
to build a random forest to classify a mushroom as edible or poisonous based
on its attributes.
(a) Produce a class-confusion matrix for this problem. If you eat a mushroom

based on your classifier’s prediction it is edible, what is the probability of
being poisoned?

(b) (Optional) By playing with the many options in the package, can you get
a more accurate classifier?
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Regression

Classification tries to predict a class from a data item. Regression tries to
predict a value. There are several reasons to do this. First, we might actually need
a value. For example, we know the zip code of a house, the square footage of its lot,
the number of rooms and the square footage of the house, and we wish to predict its
likely sale price. As another example, we know the cost and condition of a trading
card for sale, and we wish to predict a likely profit in buying it and then reselling
it. As yet another example, we have a picture with some missing pixels – perhaps
there was text covering them, and we want to replace it – and we want to fill in
the missing values. As a final example, you can think of classification as a special
case of regression, where we want to predict either +1 or −1. Predicting values is
very useful, and so there are many examples like this.

Second, we might want to compare trends in data. Doing so could make
it clear what is really happening. Here is an example from Efron (“Computer-
Intensive methods in statistical regression”, B. Efron, SIAM Review, 1988). Table 1
shows some data from medical devices, which sit in the body and release a hormone.
The data shows the amount of hormone currently in a device after it has spent some
time in service, and the time the device spent in service. The data describes devices
from three production lots (A, B, and C). Each device, from each lot, is supposed
to have the same behavior. The important question is: Are the lots the same?
The amount of hormone changes over time, so we can’t just compare the amounts
currently in each device. Instead, we need to determine the relationship between
time in service and hormone, and see if this relationship is different between batches.
We can do so by regressing hormone against time.

Figure 14.1 shows how a regression can help. In this case, we have modelled
the amount of hormone in the device as

a× (time in service) + b

for a, b chosen to get the best fit (much more on this point later!). This means
we can plot each data point on a scatter plot, together with the best fitting line.
This plot allows us to ask whether any particular batch behaves differently from
the overall model in any interesting way.

However, it is hard to evaluate the distances between data points and the best
fitting line by eye. A sensible alternative is to subtract the amount of hormone
predicted by the model from the amount that was measured. Doing so yields a
residual — the difference between a measurement and a prediction. We can then
plot those residuals (Figure 14.2). In this case, the plot suggests that lot A is special
— all devices from this lot contain less hormone than our model predicts.

355



Section 14.1 Linear Regression and Least Squares 356

Batch A
Amount of Time in
Hormone Service

25.8 99
20.5 152
14.3 293
23.2 155
20.6 196
31.1 53
20.9 184
20.9 171
30.4 52

Batch B
Amount of Time in
Hormone Service

16.3 376
11.6 385
11.8 402
32.5 29
32.0 76
18.0 296
24.1 151
26.5 177
25.8 209

Batch C
Amount of Time in
Hormone Service

28.8 119
22.0 188
29.7 115
28.9 88
32.8 58
32.5 49
25.4 150
31.7 107
28.5 125

TABLE 14.1: A table showing the amount of hormone remaining and the time in
service for devices from lot A, lot B and lot C. The numbering is arbitrary (i.e.
there’s no relationship between device 3 in lot A and device 3 in lot B). We expect
that the amount of hormone goes down as the device spends more time in service,
so cannot compare batches just by comparing numbers.
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FIGURE 14.1: A scatter plot of hormone against time for devices from tables 14.1
and 14.1. Notice that there is a pretty clear relationship between time and amount
of hormone (the longer the device has been in service the less hormone there is).
The issue now is to understand that relationship so that we can tell whether lots
A, B and C are the same or different. The best fit line to all the data is shown as
well, fitted using the methods of section 14.1.

14.1 LINEAR REGRESSION AND LEAST SQUARES

Assume we have a dataset consisting of a set of N pairs (xi, yi). We think of
yi as the value of some function evaluated at xi, with some random component
added. This means there might be two data items where the xi are the same, and
the yi are different. We refer to the xi as explanatory variables and the yi is
a dependent variable. We want to build a model of the dependence between
y and x. This model will be used to predict values of y for new values of x, or
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FIGURE 14.2: This is a scatter plot of residual — the distance between each data
point and the best fit line — against time for the devices from tables 14.1 and 14.1.
Now you should notice a clear difference; some devices from lots B and C have
positive and some negative residuals, but all lot A devices have negative residuals.
This means that, when we account for loss of hormone over time, lot A devices still
have less hormone in them. This is pretty good evidence that there is a problem
with this lot.

to understand the relationships between the x. The model needs to have some
probabilistic component; we do not expect that y is a function of x, and there is
likely some error in evaluating y anyhow.

14.1.1 Linear Regression

A good, simple model is to assume that the dependent variable is obtained by
evaluating a linear function of the explanatory variables, then adding a zero-mean
normal random variable. We can write this model as

y = xTβ + ξ

where ξ is a zero mean normal random variable with unknown variance (we will be
able to estimate this later). In this expression, β is a vector of weights, which we
must estimate. When we use this model to predict a value of y for a particular set
of explanatory variables x∗, we cannot predict the value that ξ will take. Our best
available prediction is the mean value (which is zero).
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Example: 14.1 A linear model fitted to a single explanatory variable

Assume we fit a linear model to a single explanatory variable. Then
the model has the form y = xβ + ξ, where ξ is a zero mean random
variable. For any value x∗ of the explanatory variable, our best estimate
of y is βx∗. In particular, if x∗ = 0, the model predicts y = 0, which
is unfortunate. We can draw the model by drawing a line through the
origin with slope β in the x, y plane. The y-intercept of this line must
be zero.

Example: 14.2 A linear model with a non-zero y-intercept

Assume we have a single explanatory variable, which we write u. We
can then create a vector x = [u, 1]

T
from the explanatory variable. We

now fit a linear model to this vector. Then the model has the form
y = xTβ + ξ, where ξ is a zero mean random variable. For any value
x∗ = [u∗, 1]T of the explanatory variable, our best estimate of y is
(x∗)Tβ, which can be written as y = β1u

∗ + β2. If x∗ = 0, the model
predicts y = β2. We can draw the model by drawing a line through the
origin with slope β1 and y-intercept β2 in the x, y plane.

The next step is to determine β. Because we have that P (y|x, β) is normal,
with mean xTβ, we can write out the log-likelihood of the data. Write σ2 for the
variance of ξ, which we don’t know, but will not need to worry about right now.
We have that

logL(β) =
∑

i

logP (yi|xi, β)

=
1

2σ2

∑

i

(yi − xT
i β)

2 + term not depending on β

Maximizing the log-likelihood of the data is equivalent to minimizing the
negative log-likelihood of the data. Furthermore, the term 1

2σ2 does not affect the
location of the minimum. We must have that β minimizes

∑

i

(yi − xT
i β)

2.

We can write all this more conveniently using vectors and matrices. Write y for
the vector









y1
y2
. . .
yn








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and X for the matrix




xT
1

xT
2

. . .xT
n



 .

Then we want to minimize

(y −Xβ)T (y −Xβ)

which means that we must have

X TXβ −X Ty = 0.

For reasonable choices of features, we could expect that X TX — which should
strike you as being a lot like a covariance matrix — has full rank. If it does, this
equation is easy to solve. If it does not, there is more to do, which we will do below
once we have done some examples.



Section 14.1 Linear Regression and Least Squares 360

Procedure: 14.1 Linear Regression with a Normal Model

We have a dataset containing N pairs (xi, yi). Each xi is a d-
dimensional explanatory vector, and each yi is a single dependent vari-
able. We assume that each data point conforms to the model

yi = xT
i β + ξi

where ξi is a normal random variable with mean 0 and unknown vari-
ance σ2. Write y for the vector









y1
y2
. . .
yn









and X for the matrix




xT
1

xT
2

. . .xT
n



 .

We estimate β̂ (the value of β) by solving the linear system

X TX ˆbeta−X Ty = 0.

The residuals are
e = y −X β̂.

We have that eT1 = 0. The mean square error is given by

m =
eT e

N
.

We can estimate σ2 by

σ2 =

∑

i(yi − xT
i β̂)

2

N
=

eTe

N
= m.
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Listing 14.1: R code used for the linear regression example of worked example 14.1

setwd ( ’/use r s/daf/Current/ cour s e s/Probcourse/Regres s ion/RCode/EfronDevices ’ ) ;
e fd<−read . table ( ’ e f r o n t ab l e . txt ’ , header=TRUE)
summary( e fd )
# the t a b l e has the form
#N1 Ah Bh Ch N2 At Bt Ct
# now we need to cons t ruc t a new da t a s e t
#
hor<−s tack ( efd , s e l e c t =2:4)
tim<−s tack ( efd , s e l e c t =6:8)
foo<−data . frame (time=tim [ , c ( ” va lue s ” ) ] , hormone=hor [ , c ( ” va lue s ” ) ] )
foo . lm<−lm( hormone˜time , data=foo )
summary( foo . lm)
#

Worked example 14.1 Simple Linear Regression with R

Regress the hormone data against time for all the devices in the Efron example.

Solution: This example is mainly used to demonstrate how to regress in R.
There is sample code in listing 14.2. The summary in the listing produces a
great deal of information (try it). You will see information about the residuals;
the smallest is -4.9357, the largest is 3.7323, and the median, first and third
quartiles are there too. You will see the intercept (34.167528) and the coefficient
of time (-0.057446), as well as a body of statistical information about these
coefficients. The R-squared (which we discuss below) is 0.8688. You can get
a figure by doing plot(foo.lm), but these figures will not mean anything yet.
We discuss some of them below.

14.1.2 Checking Goodness of Fit Qualitatively

It is quite important to know whether the regression is helpful. For example, it
seems highly unlikely that regressing the first digit of a telephone number against
some numerological score of your name will work that well (or at all). For a dataset
with one explanatory variable and one dependent variable, it is quite natural to
plot the data on a scatter plot, then plot the model as a line on that scatterplot.
Just looking at the picture can be informative (Figure 14.4). But we need more
powerful tools, so we can deal with models that are harder to plot.

Assume we have fitted a model y = xTβ + ξ to a dataset, and found the best
vector of parameters is β̂. Then the residual vector is e = y − X β̂. Inspecting
this residual vector will reveal a great deal about a model. We look at qualitative
properties first. If the line is horizontal, or close, then the value of the explanatory
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variable makes very little contribution to the prediction. This suggests that there
is no particular relationship between the two. The prediction will be good only if it
should take a constant value. Similarly, if the data points lie far from the regression
line, which means that the residual is persistently large compared to the predicted
value, then the regression will predict poorly. Figure 14.3 shows a linear regression
of age against weight — i.e., this builds a model that tries to predict someone’s age
from a knowledge of their weight. You won’t be surprised that the predictions are
poor, which can be confirmed by looking at the figure.
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FIGURE 14.3: On the left, age regressed against weight for the bodyfat dataset, with
four outliers removed. The data are presented as a scatter plot, and the line is the
regression line. Notice that the line is nearly horizontal, suggesting that knowing
weight does not improve one’s prediction of age. Notice also that many data points
lie rather far from the line. On the right, a scatter plot of the residual against the
value predicted by the regression. Generally, the residual takes rather large values,
suggesting that predictions are unreliable.

We assumed that y − xTβ was a zero-mean normal random variable with
fixed variance. In turn, this means that the value of the residual vector should not
depend on the corresponding y-value. If it does, this is good evidence that there is
a problem. Looking at a scatter plot of e against y will often reveal trouble in a
regression (Figure 14.4).

In the case of Figure 14.4, the trouble is caused by a few outlying data points
severely affecting the regression. We will discuss how to identify and deal with
such points in Section 14.1. Once they have been removed, the regression improves
markedly (Figure 14.5).

Figure ?? shows another example, based on the idea of word frequencies.
Some words are used very often in text; most are used seldom. The dataset for
this figure consists of counts of the number of time a word occurred for the 100
most common words in Shakespeare’s printed works. It was originally collected
from a concordance, and has been used to attack a variety of interesting questions,
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FIGURE 14.4: On the left, weight regressed against height for the bodyfat dataset.
The data are presented as a scatter plot, and the line is the regression line. Notice
the line doesn’t describe the data particularly well, because it has been strongly
affected by a few data points. On the right, a scatter plot of the residual against
the value predicted by the regression. Large values at some points are another sign
of trouble in this regression.

including an attempt to assess how many words Shakespeare knew. This is hard,
because he likely knew many words that he didn’t use in his works, so one can’t just
count. If you look at the plot of Figure 14.11, you can see that a linear regression
of count (the number of times a word is used) against rank (how common a word is,
1-100) is not really useful (Figure 14.11). It doesn’t model the very high frequencies
with which common words are used. You can see this effect in the scatter plot of
residual against dependent variable in Figure 14.11 — the residual depends rather
strongly on the dependent variable.

14.1.3 Evaluating Goodness of Fit

There is an important quantitative measure of how good a regression is. The de-
pendent variable has some variance (unless it’s a constant, which makes prediction
easy). If our model is of any use, it should explain some aspects of the value of the
dependent variable. This means that the variance of the residual should be smaller
than the variance of the dependent variable. If the model made perfect predictions,
then the variance of the residual should be zero.

We can formalize all this in a relatively straightforward way. We will ensure
that X always has a column of ones in it, so that the regression can have a non-zero
y-intercept. We now fit a model

y = Xβ + e

(where e is the vector of residual values) by choosing β such that eTe is minimized.
Then we get some useful technical results.
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FIGURE 14.5: On the left, weight regressed against height for the bodyfat dataset. I
have now removed four data points, which were the most likely to have been outliers.
The data are presented as a scatter plot, and the line is the regression line. The line
describes the data rather well in comparison with figure 14.4 (notice the axes are
different). On the right, a scatter plot of the residual against the value predicted
by the regression. Notice that the mean squared residual is about the same for
different values of the prediction; this is consistent with our model, and suggests the
regression will yield good predictions.

Useful Facts: 14.1 Regression

We write y = Xβ+ e, where e is the residual. Assume X has a column
of ones, and β is chosen to minimize eTe. Then we have

1. eTX = 0, i.e. that e is orthogonal to any column of X . This
is because, if e is not orthogonal to some column of e, we can
increase or decrease the β term corresponding to that column to
make the error smaller. Another way to see this is to notice that
beta is chosen to minimize eTe, which is (y−Xβ)T (y−Xβ). Now
because this is a minimum, the gradient with respect to β is zero,
so (y −Xβ)T (−X ) = −eTX = 0.

2. eT1 = 0 (recall that X has a column of all ones, and apply the
previous result).

3. 1T (y −Xβ) = 0 (same as previous result).

4. eTXβ = 0 (first result means that this is true).

Now y is a one dimensional dataset arranged into a vector, so we can compute
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FIGURE 14.6: On the left, word count plotted against rank for the 100 most common
words in Shakespeare, using the data of ****. I show a regression line too. This is
a poor fit by eye, confirmed by the plot of the residuals on the right, which shows
the residuals plotted against dependent variable for this regression. Notice that the
residual value depends very strongly on the value of the dependent variable.

mean ({y}) and var[y]. Similarly, Xβ is a one dimensional dataset arranged into a
vector (its elements are xT

i β), as is e, so we know the meaning of mean and variance
for each. We have a particularly important result:

var[y] = var[Xβ] + var[e].

This is quite easy to show, with a little more notation. Write y = (1/N)(1Ty)1 for
the vector whose entries are all mean ({y}); similarly for e and for Xβ. We have

var[y] = (1/N)(y − y)T (y − y)

and so on for var[ei], etc. Notice from the facts that y = Xβ. Now

var[y] = (1/N)
([

Xβ −Xβ
]

+ [e− e]
)T ([Xβ −Xβ

]

+ [e− e]
)

= (1/N)
(

[

Xβ −Xβ
]T [Xβ −Xβ

]

+ 2 [e− e]
T [Xβ −Xβ

]

+ [e− e]
T
[e− e]

)

= (1/N)
(

[

Xβ −Xβ
]T [Xβ −Xβ

]

+ [e− e]T [e− e]
)

because e = 0 and eTXβ = 0 and eT1 = 0

= var[Xβ] + var[e].

This is extremely important, because us allows us to think about a regression as
explaining variance in y. As we are better at explaining y, var[e] goes down. In
turn, a natural measure of the goodness of a regression is what percentage of the
variance of y it explains. This is known as R2 (the r-squared measure). We have

R2 =
var
[

xT
i β
]

var[yi]
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which gives some sense of how well the regression explains the training data.
Good predictions result in high values of R2, and a perfect model will have

R2 = 1 (which doesn’t usually happen). For example, the regression of figure 14.1
has an R2 value of 0.87; the regression of weight against all explanatory variables
(Figure 14.8) has an R2 value of 0.99; and the regression of Boston house prices
against all explanatory variables (Figure 14.8) has an R2 value of 0.72. Similarly,
poor predictions result in low values of R2. For example, the regression of weight
on height of Figure 14.4 has an R2 of 0.095; the regression of age on weight of
Figure 14.3 has an R2 of 0.00030 (because knowing weight tells one essentially
nothing about age or height). Removing the outliers from the bodyfat dataset, to
get the regression of weight on height of Figure 14.5, improves the R2 to 0.29.

14.1.4 Linear Regression: Examples

For the data of tables 14.1 and 14.1, y is the hormone remaining in the device and
x = (time, 1). This gives us a model of the hormone in the device as

y = β1time + β2

which should look like the line in figure ??. We get β = (−0.0574, 34.2). Now we
can ask whether some lots of device behave differently than others. One way to
address this is to consider the residual,

yi − xT
i β

which is the difference between the observed value and what the model predicts.
Look at figure 14.2, which shows this residual plotted against the time. Notice that,
for batch A, the model always over predicts, whereas batches B and C seem about
the same; this suggests that there is something different about A — any effects
caused by the hormone being taken up from the device have been accounted for by
our model, and the residual shows the effects that are left.

14.2 PRODUCING GOOD LINEAR REGRESSIONS

Outlying data points can significantly weaken the usefulness of a regression. We
need to identify data points that might be a problem, and then resolve how to deal
with them. One possibility is that they are true outliers — someone recorded a
data item wrong, or they represent an effect that just doesn’t occur all that often.
Another is that they are important data, and our linear model may not be good
enough. If the data points really are outliers, we can ignore them; if they aren’t,
we may be able to improve the regression by transforming features or by finding a
new explanatory variable.

14.2.1 Problem Data Points

We are solving for the β that minimizes
∑

i(yi−xT
i β)

2, equivalently for the β that
produces the smallest value of

∑

i e
2
i . This means that residuals with large value

can have a very strong influence on the outcome — we are squaring that large
value. Generally, many residuals of medium size will have a smaller cost that one
large residual and the rest tiny. In turn, some data points can have an excessive
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influence on the choice of β. This creates a problem, because data points that are
clearly wrong (sometimes called outliers) can also have the highest influence on
the outcome of the regression. Compare Figure 14.4 and Figure 14.5 to see this
effect for a simple case.

When we have only one explanatory variable, there’s an easy method to spot
problem data points. One produces a scatter plot and a regression line, and the
difficulty is usually obvious. In particularly tricky cases, printing the plot and using
a perspex ruler to draw a line by eye can help. When there are more, we need more
powerful visualization tools.

There are two tools that are simple and effective. One method deletes the i’th
point, computes the regression for the reduced data set, then compares the true
value of every other point to the predictions made by the dataset with the i’th point
deleted. The score for the comparison is called Cook’s distance. If a point has a
large value of Cook’s distance, then it has a strong influence on the regression and
might well be an outlier. Typically, one computes Cook’s distance for each point,
and takes a closer look at any point with a large value. This procedure is described
in more detail in procedure 14.2

Procedure: 14.2 Computing Cook’s distance

We have a dataset containing N pairs (xi, yi). Each xi is a d-
dimensional explanatory vector, and each yi is a single dependent vari-
able. Write β̂ for the coefficients of a linear regression (see proce-

dure 14.1), and β̂î for the coefficients of the linear regression computed
by omitting the i’th data point, and m for the mean square error. The
Cook’s distance of the i’th data point is

∑

j(x
T
j β̂ − xT

j β̂î)

dm
.

An alternative method identifies data points that have few nearby points by
computing leverage. Write β̂ for the estimated value of β, and yp = X β̂ for the
predicted y values. Then we have

β̂ =
(

X TX
)−1

(X Ty)

so that
yp = (X

(

X TX
)−1 X T )y.

The matrix (X
(

X TX
)−1X T ) is sometimes called the hat matrix, and is written

H. It gives the predicted values as a linear function of the observed values. The
leverage of the i’th point is the i’th diagonal element, hii, of the hat matrix H. It
is straightforward to show that the eigenvalues of a hat matrix can be only 1 or 0,
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and that it is symmetric (exercises). It is also straightforward to show that, for the
i’th row of the hat matrix, the sum of squares is less than one, that is

∑

j

h2
ij ≤ 1.
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FIGURE 14.7: On the left, residuals plotted against leverage for a regression of
weight against all other measurements for the bodyfat dataset. I did not remove the
outliers. The contours on the plot are contours of Cook distance; I have overlaid
arrows showing points with suspiciously large Cook distance. Notice also that several
points have high leverage, without having a large residual value. These points may
or may not present problems. On the right, the same plot for this dataset with
points 36, 39, 41 and 42 removed (these are the points I have been removing for
each such plot). Notice that another point now has high Cook distance, but mostly
the residual is much smaller.

You can interpret each row of the hat matrix as a set of mixing weights that
mix the observations to produce the prediction for a particular data point. But
these weights have limited size, so that if hii is large, then the other terms must
be small. In particular, if hii is large, then other data items make relatively little
contribution to the prediction at that point. This could mean that the point is
an outlier, or that there are few examples nearby. In either case, it is reasonable
to worry about the data point. One might try and get more data, or reduce the
number of explanatory variables.

14.2.2 Explanatory variables

When there is more than one explanatory variable, it is difficult to plot the re-
gression. Instead, one can get an idea of the usefulness of the regression by plot-
ting the residual against the predicted value. Figure 14.9 show these plots for
the bodyfat dataset, and for a regression of boston house prices against a variety



Section 14.2 Producing Good Linear Regressions 369

0.00 0.05 0.10 0.15 0.20 0.25 0.30

−
4

−
2

0
2

4
6

Leverage

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

lm(V14 ~ V1 + V2 + V3 + V4 + V5 + V6 + V7 + V8 + V9 + V10 + V11 + V12 + V13 ...

Cook’s distance
0.5

0.5

1

Residuals vs Leverage

369

373

365

FIGURE 14.8: Residuals plotted against leverage for a regression of weight against
all other measurements for the Boston housing. The contours on the plot are con-
tours of Cook distance; No points have suspiciously large Cook distance, though the
software package has identified points most likely to present problems. Notice also
that several points have high leverage, without having a large residual value. These
points may or may not present problems. The residual plot of Figure 14.9 suggests
that this regression will make poor predictions, but the problem does not seem to be
outlying points.

of explanatory variables (the data set is quite well known; you can find it at the
UCI repository, http://archive.ics.uci.edu/ml/datasets/Housing). In these
plots, you should notice there is some structure — the residuals seem to depend on
the predicted value. This suggests that we could improve the regression either by
supplying another explanatory variable, or by transforming the variables we have.
Both methods are useful.

Sometimes the data isn’t in a form that leads to a good linear regression. In
this case, transforming explanatory variables, the dependent variable, or both can
lead to big improvements. Figure ?? shows one example, based on the idea of word
frequencies. Some words are used very often in text; most are used seldom. The
dataset for this figure consists of counts of the number of time a word occurred
for the 100 most common words in Shakespeare’s printed works. It was originally
collected from a concordance, and has been used to attack a variety of interesting
questions, including an attempt to assess how many words Shakespeare knew. This
is hard, because he likely knew many words that he didn’t use in his works, so one
can’t just count.

Notice that a linear regression of count (the number of times a word is used)
against rank (how common a word is, 1-100) is not really useful. It doesn’t model
the very high frequencies with which common words are used. However, if we
regress log-count against log-rank, we get a very good fit indeed. This suggests that
Shakespeare’s word usage (at least for the 100 most common words) is consistent
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FIGURE 14.9: On the left, residuals plotted against predicted value for a regression
of weight against all other measurements for the bodyfat dataset, with four outliers
removed. This regression is quite successful (small residuals). Notice that the vari-
ance of the residuals changes somewhat as the predicted value increases, giving a
banana shape to the data. This suggests that we are missing an explanatory variable,
or that a non-linear transformation of the explanatory variables might be helpful.
On the right, a scatter plot of the residual against the value predicted by the regres-
sion for the price of a house in Boston regressed against a variety of explanatory
variables. Generally, the residual takes rather large values. At small values of the
prediction, the residual is somewhat larger. This suggests that we are missing an
explanatory variable, or that a non-linear transformation of the explanatory vari-
ables might be helpful. There is a curious linear structure in the top right corner,
which might have been caused by the dependent variable being thresholded.

with Zipf’s law. This gives the relation between frequency f and rank r for a
word as

f ∝ 1

r

s

where s is a constant characterizing the distribution. Our linear regression suggests
that s is approximately 1.67 for this data.

In some cases, the natural logic of the problem will suggest variable transfor-
mations that improve regression performance. For example, one could argue that
humans have approximately the same density, and so that weight should scale as
the cube of height; in turn, this suggests that one regress weight against the cube
root of height. Generally, shorter people tend not to be scaled versions of taller
people, so the cube root might be too aggressive. For example, the body mass
index divides weight by the square (rather than the cube) of height. An appropri-
ate transformation has attracted a great deal of interest over the last century and
a half, perhaps because there are many confounding variables. For example, the
body mass index tends to regard muscular individuals as obese.
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FIGURE 14.10: On the left, word count plotted against rank for the 100 most common
words in Shakespeare, using the data of ****. I show a regression line too. This
is a poor fit by eye, confirmed by Figure ??. On the right, log word count plotted
against log rank for the 100 most common words in Shakespeare, using the data of
****. The regression line is very close to the data, confirmed by Figure ??.
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FIGURE 14.11: On the left, residuals of word count regressed against rank for the
100 most common words in Shakespeare, plotted against the predicted value. Notice
that some large predictions have enormous residuals. This plot suggests serious
problems with the regression, which you can confirm by looking at Figure 14.11.
On the right, residuals of log word count regressed against log rank for the 100
most common words in Shakespeare, plotted against the predicted value. Notice
that residual variance is about the same at each value, a good sign.
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In other cases, one might need to try different transformations or groupings of
explanatory variables. There is a method for transforming the dependent variable,
the Box-Cox transformation, that can search for a transformation that improves
the regression. This is a one-parameter family of transformations, with parameter
λ. We define the Box-Cox transformation of the dependent variable to be

y
(bc)
i =

{

yλ
i −1
λ if λ 6= 0

log yi if λ = 0
.

It turns out to be straightforward to estimate a good value of λ using maximum
likelihood. One searches for a value of λ that makes residuals look most like a
normal distribution. Statistical software will do it for you; the exercises sketch
out the method. This transformation can produce significant improvements in a
regression. Figure ?? shows a small but acceptable improvement in regression of
weight against height using the Box-Cox transformation (residuals in Figure 14.13).
Figure 14.14 shows an improvement in the regression of weight against all variables
for the bodyfat dataset obtained using the Box-Cox transformation. Figure 14.15
shows an improvement in the regression of Boston house price against all variables
obtained using the Box-Cox transformation.

Worked example 14.2 BoxCox with R

Regress weight against height using the Box-Cox transformation

Solution: This example is mainly used to demonstrate how easy it is to do
Box-Cox in R. There is sample code in listing ??. The line boxcox(...) will
produce a plot on your screen - you look for the location of the peak, and that’s
the parameter value to use. In this case, the peak is close to zero, so we should
work with the log of the dependent variable. Notice how neat abline is — you
pass it a linear regression, and it puts a line on a plot.

14.3 WHICH VARIABLES ARE IMPORTANT?

14.3.1 Testing Regression Coefficients

When we fit regression models, we are often trying to draw conclusions about which
of the explanatory variables is actually important. For example, we might ask
whether the amount of hormone in the devices of Figure 14.2 actually does depend
on time. This requires some care, because the values the regression coefficients
depend on the noise in the data. As a result, in this example the coefficient of time
is unlikely to be exactly zero.

As a simple example, look at Figure ??. To make this figure, I took a dataset
with one independent variable, and split it into two pieces. I used simulated data.
The x values are drawn from a normal distribution with mean zero, and the y values
are drawn from a normal distribution with mean one. The dependent variable
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Listing 14.2: R code used for the linear regression example of worked example 14.2

setwd ( ’/use r s/daf/Current/ cour s e s/Probcourse/Regres s ion/RCode/HeightWeight ’ ) ;
#i n s t a l l . packages ( ’ gdata ’ )
l ibrary ( gdata )
#cement s l a g ash water super coarse f i n e age s t r en g t h
bfd<−read . x l s ( ’ BodyFat . x l s ’ )
summary( bfd )
#IDNO BODYFAT DENSITY AGE WEIGHT HEIGHT ADIPOSITY NECK CHEST ABDOMEN
HIP THIGH KNEE ANKLE BICEPS FOREARM WRIST X
sb fd . lm<−lm(WEIGHT˜HEIGHT, data=bfd )
plot ( bfd [ , c ( ”HEIGHT” ) ] , bfd [ , c ( ”WEIGHT” ) ] ,

main=”Linear r e g r e s s i o n o f Weight aga in s t Height ” , x lab=”Height ” , y lab=”Wei
abline ( sb fd . lm)
#36 , 39 41 and 42 are the bad ones
cbfd<−bfd [−c (36 , 39 , 41 ,42) , ]
s cb fd<−lm(WEIGHT˜HEIGHT, data=cbfd )
plot ( cbfd [ , c ( ”HEIGHT” ) ] , cbfd [ , c ( ”WEIGHT” ) ] ,

main=”Linear r e g r e s s i o n o f Weight aga in s t Height , o u t l i e r s removed” , x lab=”
abline ( scb fd )

l ibrary (MASS)
cbfd . lm<−lm(WEIGHT˜HEIGHT, data=cbfd )
boxcox ( cbfd . lm , p l o t i t=TRUE)
# sugge s t s lambda=0 i s bes t , s t r on g l y
cbfd . l lm<−lm( log (WEIGHT)˜HEIGHT, data=cbfd )
plot ( cbfd [ , c ( ”HEIGHT” ) ] , log ( cbfd [ , c ( ”WEIGHT” ) ] ) ,

main=”Linear r e g r e s s i o n o f l o g Weight aga in s t Height , o u t l i e r s removed” , x la
abline ( cbfd . l lm )

does not depend on the predictor. I computed the linear regression for each piece.
Because there is some randomness in the dataset, the regression coefficients for each
piece are different, and neither is zero. You should also notice that the constant
term in each regression is different, and neither is one, either. We need to be able
to test the hypothesis that a regression coefficient takes a particular value.

Under some circumstances, doing so is relatively straightforward. Assume
that we have a single explanatory variable. Assume that there is a true set of
regression coefficients, β0 and β1, so that for any value x of the explanatory variable
the dependent variable is a random variable Y . We assume that

Y = β1x+ β0 +W

where W is a normal random variable with zero mean and standard deviation σ,
which represents noise. The standard deviation of W is unknown. Our dataset
consists of a series of different instances of x stacked into a vector x and a vector
y of values of the random variable Y . Now assume we estimate the two regression
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FIGURE 14.12: On the left, a linear regression of weight against height for the bodyfat
dataset. This is just a copy of the regression of Figure 14.1, for reference. The R2

is 0.29. The Box-Cox method predicts that one should use λ = 0 (equivalently,
predict logweight from height). On the right, a linear regression of log weight
against height. The regression is slightly better (R2 is 0.3). Figure 14.1 compares
the residuals for these cases.
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FIGURE 14.13: On the left, the residuals against predicted value for the linear re-
gression of weight against height for the bodyfat dataset. This is just a copy of the
regression of Figure 14.1, for reference. The R2 is 0.29. The Box-Cox method pre-
dicts that one should use λ = 0 (equivalently, predict logweight from height). On
the right, a linear regression of the log of weight against height. The regression is
slightly better (R2 is 0.3).
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FIGURE 14.14: On the left, residuals plotted against predicted value for a regres-
sion of weight against all other measurements for the bodyfat dataset, with four
outliers removed. Notice that the variance of the residuals changes somewhat as
the predicted value increases, giving a banana shape to the data. This suggests
that a non-linear transformation of the explanatory variables might be helpful. The
Box-Cox procedure suggests λ = 0.5, so we regress

√
weight against the explanatory

variables. This yields the plot on the right. Notice how the banana shape has gone,
and the residuals have about the same distribution for each predicted value.

coefficients. We cannot know β0 or β0 precisely, because we do not know the noise.
However, we can estimate their values. It is straightforward to show that our
estimate β̂1 of the x coefficient β1 is

β̂1 =

∑

i (yi −mean ({y})) (xi −mean ({x}))
∑

i (xi −mean ({x})) (xi −mean ({x}))

and
In this case, it is possible to show
We have that

y = xβ1 +w

where each entry of w is an independent sample from the normal distribution with
mean zero and standard deviation σ. Now we have that the true value is

β =
(

X TX
)−1 X Ty −

(

X TX
)−1 X Tn

and our estimate of that value is

β̂ =
(

X TX
)−1 X Ty.

Now we have that β̂ = β + b, where

b = −
(

X TX
)−1 X Tn.
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FIGURE 14.15: On the left, residuals plotted against predicted value for a regression
of Boston house prices against all other measurements (compare Figure 14.1). The
Box-Cox procedure suggests λ = 0.1, so we regress weight0.1 against the explanatory
variables. This yields the plot on the right. Notice how the residuals have about
the same distribution for each predicted value, but the linear structure hasn’t gone.

This is a random error term, which means that our estimate has a random com-
ponent. If we have a model for this component, we can test hypotheses using that
model.

This term is a vector of the same dimension as β. Each component of that
vector is a weighted sum of independent normal random variables (the components
of n). This means that it must itself be a normal random variable. Each component
of n is normal random variable with mean 0 and variance σ2, and the components
are independent. So a weighted sum of these components must also have mean 0,
and this means that

E[b] = 0.

Now the covariance matrix for n is Σn = σ2I. Recall the results of Section 11.2.1.
We have from that the covariance matrix for b is

Σb =
(

−
(

X TX
)−1 X T

)

Σn

(

−
(

X TX
)−1 X T

)T

which is
Σb = σ2

(

X TX
)−1

.

Now imagine we wish to test the hypothesis that β1 = 0. We need to determine
the fraction of datasets that will give the value we observe, or larger, if β1 were,
in fact, zero. We have that β̂1 − β1 is a normal random variable with mean zero,
and with variance given by the diagonal element Σb We need to determine the
probability of seeing an observation at least as big as the one we have, if
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14.3.2 Regularizing Linear Regressions

One occasionally important difficulty is that the explanatory variables might be
significantly correlated. If they are, then it will generally be easy to predict one
explanatory variable from another. This means that X TX may have some very
small eigenvalues (because there is a vector u so that Xu is small; this means that
uTX TXu must be small).

These small eigenvalues lead to bad predictions. If X TX has a small eigen-
value, then there is some vector v such that X TXv is small, or, equivalently, that
the matrix can turn large vectors into small ones; but that means that (X TX )−1

will turn some small vectors into big ones. In turn, this means that small errors in
y — which are likely inevitable — will result in big errors in β. This could cause
trouble in two ways. If we are looking at β to tell which explanatory variables are
important, then large errors in β will be a problem. And if we are trying to predict
new y values, we expect that errors in β turn into errors in prediction.

An important and useful way to suppress these errors is to regularize, using
the same trick we saw in the case of classification. Instead of choosing β to minimize

∑

i

(yi − xT
i β)

2 = (y −Xβ)T (y −Xβ)

we minimize

∑

i

(yi − xT
i β)

2 + λβTβ = (y −Xβ)T (y −Xβ) + λβTβ

where λ > 0 is a constant. We choose λ in the same way we used for classification;
split the training set into a training piece and a validation piece, train for different
values of λ, and test the resulting regressions on the validation piece. We choose
the λ that yields the smallest validation error. Notice we could use multiple splits,
and average over the splits.

This helps, because to solve for β we must solve the equation

(X TX + λI)β = X Ty

(obtained by differentiating with respect to β and setting to zero) and the smallest
eigenvalue of the matrix (X TX + λI) will be at least λ.

14.3.3 Which Variables should Contribute? The LASSO

14.4 WHAT YOU SHOULD REMEMBER - NEED SOMETHING
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Exploiting your Neighbors

Classification and regression problems are similar, because in each case we
are trying to predict a value from a vector of features. For classification, we want
to predict a label, and for regression we wanted to predict a number (we will do
more shortly). Write y for what is predicted, and x for the vector of features. Now
assume we have two examples, xi and xj . We expect that, if xi and xj are close, the
correct values of yi and yj will be close, too. What this means depends somewhat
on the problem. If we are classifying the examples, then I mean that the labels
should be the same for nearby examples; if we are regressing something against the
features, we expect the values of the dependent variable to be close, too.

This observation suggests the extremely useful and general strategy of exploit-
ing a data item’s neighbors. If you want to classify a data item, find the closest
example, and report the class of that example. Alternatively, you could find the
closest k examples, and vote. Similarly, if you want to predict something using the
data item, find the closest k examples, and construct a prediction using them.

This strategy has many very attractive features. It turns out to produce ac-
curate classifiers, and it is easy to build multi-class classifiers like this (Section ??).
It is easy to regress numbers against features like this (Section ??); but it is also
easy to regress complex objects against features, too (Section ??). However, one
must find the nearest neighbors, which can be challenging (Section ??).

15.1 CLASSIFYING WITH NEAREST NEIGHBORS

Imagine we have a data point x that we wish to classify (a query point). Our
strategy will be to find the closest training example, and report its class.

How well can we expect this strategy to work? Remember that any classifier
will slice up the space of examples into cells (which might be quite complicated)
where every point in a cell has the same label. The boundaries between cells are
decision boundaries — when a point passes over the decision boundary, the label
changes. Now assume we have a large number of labelled training examples, and
we know the best possible set of decision boundaries. If there are many training
examples, there should be at least one training example that is close to the query
point. If there are enough training examples, then the closest point should be inside
the same cell as the query point.

You may be worried that, if the query point is close to a decision boundary,
the closest point might be on the other side of that boundary. But if it were,
we could improve things by simply having more training points. All this suggests
that, with enough training points, our classifier should work about as well as the
best possible classifier. This intuition turns out to be correct, though the number
of training points required is wholly impractical, particularly for high-dimensional
feature vectors.

One important generalization is to find the k nearest neighbors, then choose

378
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a label from those. A (k, l) nearest neighbor classifier finds the k example points
closest to the point being considered, and classifies this point with the class that has
the highest number of votes, as long as this class has more than l votes (otherwise,
the point is classified as unknown). A (k, 0)-nearest neighbor classifier is usually
known as a
k-nearest neighbor classifier, and a (1, 0)-nearest neighbor classifier is usually
known as a nearest neighbor classifier. In practice, one seldom uses more than
three nearest neighbors. Finding the k nearest points for a particular query can be
difficult, and Section 15.4.1 reviews this point.

There are three practical difficulties in building nearest neighbor classifiers.
You need a lot of labelled examples. You need to be able to find the nearest
neighbors for your query point. And you need to use a sensible choice of distance.
For features that are obviously of the same type, such as lengths, the usual metric
may be good enough. But what if one feature is a length, one is a color, and one
is an angle? One possibility is to whiten the features (section 11.1). This may be
hard if the dimension is so large that the covariance matrix is hard to estimate. It is
almost always a good idea to scale each feature independently so that the variance
of each feature is the same, or at least consistent; this prevents features with very
large scales dominating those with very small scales. Notice that nearest neighbors
(fairly obviously) doesn’t like categorical data. If you can’t give a clear account
of how far apart two things are, you shouldn’t be doing nearest neighbors. It is
possible to fudge this point a little, by (say) putting together a distance between
the levels of each factor, but it’s probably unwise.

Nearest neighbors is wonderfully flexible about the labels the classifier pre-
dicts. Nothing changes when you go from a two-class classifier to a multi-class
classifier. In fact, you could attach a number (or more) to each point and predict
that as well (Section ??).
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Worked example 15.1 Classifying using nearest neighbors

Build a nearest neighbor classifier to classify the digit data originally con-
structed by Yann Lecun. You can find it at several places. The original dataset
is at http://yann.lecun.com/exdb/mnist/. The version I used was used for
a Kaggle competition (so I didn’t have to decompress Lecun’s original format).
I found it at http://www.kaggle.com/c/digit-recognizer.

Solution: As you’d expect, R has nearest neighbor code that seems quite
good (I haven’t had any real problems with it, at least). There isn’t really all
that much to say about the code. I used the R FNN package. This uses a
bagging strategy. There is sample code in listing ??. I trained on 1000 of the
42000 examples, so you could see how in the code. I tested on the next 200
examples. For this (rather small) case, I found the following class confusion
matrix

P
0 1 2 3 4 5 6 7 8 9

0 12 0 0 0 0 0 0 0 0 0
1 0 20 4 1 0 1 0 2 2 1
2 0 0 20 1 0 0 0 0 0 0
3 0 0 0 12 0 0 0 0 4 0
4 0 0 0 0 18 0 0 0 1 1
5 0 0 0 0 0 19 0 0 1 0
6 1 0 0 0 0 0 18 0 0 0
7 0 0 1 0 0 0 0 19 0 2
8 0 0 1 0 0 0 0 0 16 0
9 0 0 0 2 3 1 0 1 1 14

There are no class error rates here, because I was in a rush and couldn’t recall
the magic line of R to get them. However, you can see the classifier works
rather well for this case.

15.2 EXPLOITING YOUR NEIGHBORS TO PREDICT A NUMBER

Nearest neighbors can clearly predict a number for a query example — you find
the closest training example, and report its number. This would be one way to
use nearest neighbors for regression, but it isn’t terribly effective. One important
difficulty is that the regression prediction is piecewise constant (Figure 15.1). If
there is an immense amount of data, this may not present major problems, because
the steps in the prediction will be small and close together. But it’s not generally
an effective use of data.

A more effective strategy is to find several nearby training examples, and use
them to produce an estimate. This approach can produce very good regression
estimates, because every prediction is made by training examples that are near to
the query example. However, producing a regression estimate is expensive, because
for every query one must find the nearby training examples.

Write x for the query point, and assume that we have already collected the
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FIGURE 15.1: Different forms of nearest neighbors regression, predicting y from a
one-dimensional x, using a total of 40 training points. Top left: reporting the
nearest neighbor leads to a piecewise constant function. Top right: improvements
are available by forming a weighted average of the five nearest neighbors, using in-
verse distance weighting or exponential weighting with three different scales. Notice
if the scale is small, then the regression looks a lot like nearest neighbors, and if it
is too large, all the weights in the average are nearly the same (which leads to a
piecewise constant structure in the regression). Bottom left and bottom right
show that using more neighbors leads to a smoother regression.

N nearest neighbors, which we write xi. Write yi for the value of the dependent
variable for the i’th of these points. Notice that some of these neighbors could be
quite far from the query point. We don’t want distant points to make as much
contribution to the model as nearby points. This suggests forming a weighted
average of the predictions of each point. Write wi for the weight at the i’th point.
Then the estimate is

ypred =

∑

i wiyi
∑

i wi
.

A variety of weightings are reasonable choices. Write di = ||(x − xi) || for
the distance between the query point and the i’th nearest neighbor. Then inverse
distance weighting uses wi = 1/di. Alternatively, we could use an exponential
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function to strongly weight down more distant points, using

wi = exp

(−d2i
2σ2

)

.

We will need to choose a scale σ, which can be done by cross-validation. Hold out
some examples, make predictions at the held out examples using a variety of dif-
ferent scales, and choose the scale that gives the best held-out error. Alternatively,
if there are enough nearest neighbors, we could form a distance weighted linear
regression, then predict the value at the query point from that regression.

Each of these strategies presents some difficulties when x has high dimension.
In that case, it is usual that the nearest neighbor is a lot closer than the second
nearest neighbor. If this happens, then each of these weighted averages will boil
down to evaluating the dependent variable at the nearest neighbor (because all the
others will have very small weight in the average).

15.3 REGRESSING COMPLEX OBJECTS

In the linear regression model, I did not explain how to regress objects with compli-
cated structure against explanatory variables. This is a problem that arises often
in practice. For example, I might want to predict a parse tree (the object with
complicated structure) from a sentence (the explanatory variables). As another
example, I might want to predict a map of the shadows in an image (the object
with complicated structure) against an image (the explanatory variables). As yet
another example, I might want to predict which direction to move the controls on a
radio-controlled helicopter (the object with complicated structure) against a path
plan and the current state of the helicopter (the explanatory variables). In each
case, it seems unlikely that a pure linear regression is likely to resolve the problem.

Looking at neighbors is a very good way to solve such problems. The general
strategy is relatively simple. We find a large collection of pairs of training data.
Write xi for the explanatory variables for the i’th example, and yi for the dependent
variable in the i’th example. This dependent variable could be anything — it
doesn’t need to be a single number. It might be a tree, or a shadow map, or a
word, or anything at all. I wrote it as a vector because I needed to choose some
notation.

In the simplest, and most general, approach, we obtain a prediction for a new
set of explanatory variables x by (a) finding the nearest neighbor and then (b)
producing the dependent variable for that neighbor. We might vary the strategy
slightly by using an approximate nearest neighbor. You have already seen this
strategy in action filling holes in images.

If the dependent variables have enough structure that it is possible to sum-
marize a collection of different dependent variables, then we might recover the k
nearest neighbors and summarize their dependent variables. How we summarize
rather depends on the dependent variables. For example, it is a bit difficult to
imagine the average of a set of trees, but quite straightforward to average numbers.
If the dependent variable was a word, we might not be able to average words, but
we can vote and choose the most popular word. If the dependent variable is a
vector, we can compute either distance weighted averages or a distance weighted
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linear regression.

Initial image
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FIGURE 15.2: We can fill large holes in images by matching the image to a collection,
choosing one element of the collection, then cutting out an appropriate block of pixels
and putting them into the hole in the query image. In this case, the hole has been
made by an artist, who wishes to remove the roofline from the view. Notice how
there are a range of objects (boats, water) that have been inserted into the hole.
These objects are a reasonable choice, because the overall structures of the query
and matched image are largely similar — getting an image that matches most of
the query image supplies enough context to ensure that the rest “makes sense”.

15.3.1 Example: Filling Large Holes with Whole Images

Many different kinds of user want to remove things from images or from video. Art
directors might like to remove unattractive telephone wires; restorers might want
to remove scratches or marks; there’s a long history of government officials remov-
ing people with embarrassing politics from publicity pictures (see the fascinating
examples in ?); and home users might wish to remove a relative they dislike from
a family picture. All these users must then find something to put in place of the
pixels that were removed.

If one has a large hole in a large image, we may not be able to just extend
a texture to fill the hole. Instead, entire objects might need to appear in the hole
(Figure 15.2). There is a straightforward, and extremely effective, way to achieve
this. We match the image to a large collection of images, to find the nearest
neighbors (the details of the distance function are below). This yields a set of
example images where all the pixels we didn’t want to replace are close to those of
the query image. From these, we choose one, and fill in the pixels from that image.

There are several ways to choose. If we wish to do so automatically, we could
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use the example with the smallest distance to the image. Very often, an artist is
involved, and then we could prepare a series of alternatives — using, perhaps, the
k closest examples — then show them to the artist, who will choose one. This
method, which is very simple to describe, is extremely effective in practice.

It is straightforward to get a useful distance between images. We have an
image with some missing pixels, and we wish to find nearby images. We will
assume that all images are the same size. If this isn’t in fact the case, we could
either crop or resize the example images. A good measure of similarity between two
images A and B can be measured by forming the sum of squared differences (or
SSD) of corresponding pixel values. You should think of an image as an array of
pixels. If the images are grey-level images, then each pixel contains a single number,
encoding the grey-level. If the images are color images, then each pixel (usually!)
contains three values, one encoding the red-level, one encoding the green-level, and
one encoding the blue-level. The SSD is computed as

∑

(i,j)

(Aij − Bij)
2

where i and j range over all pixels. If the images are grey-level images, then by
(Aij − Bij)

2, I mean the squared difference between grey levels; if they are color
images, then this means the sum of squared differences between red, green and blue
values. This distance is small when the images are similar, and large when they are
different (it is essentially the length of the difference vector).

Now we don’t know some of the pixels in the query image. Write K for the
set of pixels around a point whose values are known, and ♯K for the size of this set.
We can now use

1

♯K
∑

(i,j)∈K
(Aij − Bij)

2.

Filling in the pixels requires some care. One does not usually get the best
results by just copying the missing pixels from the matched image into the hole.
Instead, it is better to look for a good seam. We search for a curve enclosing the
missing pixels which (a) is reasonably close to the boundary of the missing pixels
and (b) gives a good boundary between the two images. A good boundary is one
where the query image (on one side) is “similar to” the matched image (on the
other side). A good sense of similarity requires that pixels match well, and that
image gradients crossing the boundary tend to match too.

15.3.2 Filling in a Single Missing Pixel

Imagine I have an image where exactly one pixel value is missing. This pixel could
have been erased by noise; it could be a tiny scratch on the film of the image; the
disk storage system might have lost it; and so on. I would like to create a value to
insert into that pixel’s location.

Here is an easy strategy. Take a block of pixels centered on the missing pixel.
Find many close matches to this block of pixels in a collection of images, counting
only the known pixel values. Each match offers a possible value for the missing
pixel. There is no reason to prefer any one value, so choose randomly from the
values.
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FIGURE 15.3: ? synthesize textures by matching neighborhoods of the image being
synthesized to the example image, and then choosing at random amongst the possible
values reported by matching neighborhoods (Algorithm 15.1). This means that the
algorithm can reproduce complex spatial structures, as these examples indicate. The
small block on the left is the example texture; the algorithm synthesizes the block on
the right. Note that the synthesized text looks like text: it appears to be constructed
of words of varying lengths that are spaced like text, and each word looks as though
it is composed of letters (though this illusion fails as one looks closely). This fig-
ure was originally published as Figure 3 of “Texture Synthesis by Non-parametric
Sampling,” A. Efros and T.K. Leung, Proc. IEEE ICCV, 1999 c© IEEE, 1999.

We could use the SSD to match these patches, but this measure places the
same weight on pixels close to the unknown value as it does on distant pixels.
Better results are usually obtained by weighting up nearby pixels and weighting
down distant pixels. Now, for convenience, we will assume the patch is square, and
the missing pixel value has index (0, 0). The function

exp

(−(i2 + j2)

2σ2

)

takes the value one when (i, j) = (0, 0), and falls off fast as (i2 + j2) — distance
from the origin — grows. If we weight squared pixel differences by this function,
then the difference between pixels far from the missing pixel is less important in
determining the value of the missing pixels. This yields Gaussian weighted SSD,
where the matching cost is

∑

(i,j)∈patch,(i,j) 6=(0,0)

(Aij − Bij)
2 exp

(−(i2 + j2)

2σ2

)

.

Patches with a smaller value of this match cost are better matches.
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If we need to fill in only one pixel, then finding the best-matching patch is
likely enough. However, we can generalize the idea to fill in more than one pixel.
When we do so, it will be important to preserve random structures in the image
textures. This means it is a good idea to collect several alternative values for the
pixel, and choose one at random. To do so, we find the closest patch. Write smin

for the similarity value of the closest patch. We then recover all patches whose
similarity value is less than (1 + ǫ)smin. Notice that doing so may involve a linear
pass through the data (which should be slow, because we should be using a lot of
data) or an approximate nearest neighbors query.

We may not need to search a large collection of images to find good patches.
Most image textures occupy reasonably large regions in the image, meaning we
might find quite good patches matching our patch in the original image itself.

FIGURE 15.4: The size of the image neighborhood to be matched makes a significant
difference in Algorithm 15.1. In the figure, the textures at the right are synthesized
from the small blocks on the left, using neighborhoods that are increasingly large
as one moves to the right. If very small neighborhoods are matched, then the
algorithm cannot capture large-scale effects easily. For example, in the case of
the spotty texture, if the neighborhood is too small to capture the spot structure
(and so sees only pieces of curve), the algorithm synthesizes a texture consisting
of curve segments. As the neighborhood gets larger, the algorithm can capture the
spot structure, but not the even spacing. With very large neighborhoods, the spacing
is captured as well. This figure was originally published as Figure 2 of “Texture
Synthesis by Non-parametric Sampling,” A. Efros and T.K. Leung, Proc. IEEE
ICCV, 1999 c© IEEE, 1999.

15.3.3 Filling in a Textured Region

Now imagine we have many missing pixels. If each is scattered widely across the
image, the original procedure will work fine, because each missing pixel will be
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spanned by a patch. But things get more interesting if we are missing a block of
pixels. In this case, the values of some pixels in the neighborhood of the pixel to
be synthesized are not known; these pixels need to be synthesized too. We assume
that the missing pixels are inside a region of coherent texture, so (for example) we
might be expected to create a region of grass, or of bushes, or of sea. We don’t
expect to need to create objects (boats at sea; birds in bushes; and so on). This
means we don’t need to worry about whether the objects “naturally belong” in the
picture.

We can proceed as follows. Choose a pixel to synthesize. Find a set of
examples for the pixel of interest, by matching a patch of image around that pixel
to some example images (quite possibly other parts of the original image). We
will use SSD with Gaussian weights to match, but omit the values of the pixels
we don’t know (as in Section 15.3.1). Notice the cost there is weighted by the
number of known pixels; this is important, because different query patches might
have different numbers of known pixels.

One important application of this procedure is texture synthesis, where
one takes a small block of texture and expands it to a large block. This is useful,
because computer graphics methods and computer games are aggressive consumers
of textures, and want to be supplied with very large texture regions. But large
examples of sample textures are hard to get — we want to build a large texture
from a small one. We could do so by regarding the small texture as part of a larger
image, with many missing pixels, yielding Algorithm 15.1.

The size and shape of the neighborhood we use is significant, because it codes
the range over which pixels can affect one another’s values directly (see Figure 15.4).
The original method, due to Efros et al. used a square neighborhood, centered at
the pixel of interest; current methods do so as well.

Choose a texture sample
Insert this sample into the image to be synthesized
Until each location in the image to be synthesized has a value
For each unsynthesized location on
the boundary of the block of synthesized values
Match the neighborhood of this location to the
example image, ignoring unsynthesized
locations in computing the matching score

Choose a value for this location uniformly and at random
from the set of values of the corresponding locations in the
matching neighborhoods

end
end

Algorithm 15.1: Non-parametric Texture Synthesis.
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15.4 FINDING YOUR NEAREST NEIGHBORS

15.4.1 Finding the Nearest Neighbors and Hashing

To build a nearest neighbors classifier, we need to find the members of a set of high
dimensional vectors that are closest to some query vector. It turns out this is a
general, and quite difficult, problem. A linear search through the dataset is fine for
a small set of data items, but we will operate at scales where we need something
more efficient. Surprisingly, exact solutions turn out to be only very slightly more
efficient than a linear search through the dataset. Approximate solutions are much
more efficient. They are approximate in the sense that, with high probability, they
return a point that is almost as close to the query as the closest point. The main
trick to obtaining a good approximate solution is to carve the space into cells, then
look at items that lie in cells near the query vector; there are two methods that are
worth discussing in detail here.

Locality Sensitive Hashing
In locality sensitive hashing, we build a set of hash tables containing the

data items, using different hashing functions for each table. For a query item, we
recover whatever is in each hash table at the location corresponding to the hash
code computed for the query item. We search this set, keeping any data items from
this set that are sufficiently close to the query. There are many choices of hash
function; the most widely used in vision is random projection. Write v for a
vector, representing either a query or a data item. We now obtain a single bit of a
hash code by choosing a random vector r and then computing sign(v·r). Computing
a k-bit hash code involves choosing k such random vectors, then computing one bit
for each. There is a set of k such random vectors associated with each hash table.
Geometrically, choosing an r corresponds to choosing a hyperplane in the data
space, and the hashing bit corresponds to which side of the hyperplane v lies on.
A k-bit hash code identifies a cell in an arrangement of k hyperplanes in which v
lies. k will be small compared to the dimension, and so we are cutting the space
into 2k cells. This means that there will be relatively few data items that lie in the
same cell as a query. Some nearby data items may not lie in the same cell, because
they could be on the other side of a hyperplane, but these items should lie in the
same cell in another hash table.

All these assertions can be made precise, resulting in a guarantee that: (a) a
data item that is almost as close as the nearest neighbor will be found with high
probability; and (b) all data items closer to the query than some threshold will be
found with high probability, whereas data items that are significantly more distant
will be found with low probability. Straightforward geometric intuition suggests
that this approach will work best when the data items have zero mean, which is
easy to arrange. Notice that using n k-bit hash tables is not the same as using one
nk-bit hash table. In the first case, the list of points returned from a particular
query is a union of the lists returned from each of the n hash tables. This means
that points that are near the query but just happen to lie outside the query’s cell
for one hash table, have a good chance of being found in another hash table. In the
second case, the list we must handle is much shorter (because there are more cells),
but there is a better chance of missing nearby points. The choice of n and k will
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FIGURE 15.5: In locality sensitive hashing using a random projection hash function,
the hash function is equivalent to a hyperplane in the data space. Items that lie
on one side of the hyperplane corresponding to the nth bit have that bit set to one;
otherwise, it is zero. These hyperplanes cut the space of data into a set of cells.
All the data items in a cell get a binary hash code (shown for two points in each
figure; we have marked the order of the bits by labeling the hyperplanes, and the +s
show which side of the hyperplane gets a one). To query, we find all data items
in the same hash table entry as the query (the filled polygons in the figure), and
then find the closest. However, the nearest neighbor might not be in this cell (for
example, the case on the left). To reduce the probability of error from this cause,
we use more than one hash table and search the union of the sets of points lying in
the query cell. In the case illustrated, the nearest neighbor of the query lies in the
query cell for the second hash table, on the right. The hash tables reduce the set of
points we need to search, with high probability of finding a point that is almost as
close as the nearest neighbor.

depend on dimension and on the nature of the probabilistic guarantee one wants.
There are a variety of other possible choices of hash function. Details of other
choices, and precise statements of the relevant guarantees, can be found in (?).

KD-Trees for Approximate Nearest Neighbors
Random projection methods build a cell structure that is independent of the

distribution of the data. This means trouble if data is heavily concentrated in some
regions, because queries that land in a heavily populated cell of the hash table will
need to search a long list. An alternative method is to use a k-d tree to build the
cell structure. A k-d tree is built by recursively splitting cells. The root will be the
whole space. To generate the children of a cell, select one dimension d, perhaps at
random, and select some threshold value td. Write the dth component of v as vd.
Now all data items in a cell with vd ≤ td are placed in the left child, and all others
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FIGURE 15.6: A k-d tree is built by recursively splitting cells along dimensions. The
order in which cells are split for this tree is shown by the dashes on the lines. The
nearest neighbor for the query point is found by (a) finding the closest item in the
query point’s cell, then (b) backtracking, and looking at cells that could contain
closer items. Notice that in this example one will need to go right up to the root of
the tree and down the other side to find the nearest neighbor. In high dimensions,
this backtracking becomes intractable, but if an approximate nearest neighbor is
sufficient, the amount of backtracking can be controlled successfully.

in the right. We now apply this splitting procedure recursively to the root, until
the children are sufficiently small. If we choose the threshold value appropriately
(for example, the median of the data in the cell), we can ensure that cells are small
in dense components of the space and large in sparse components.

The nearest neighbor to a query can then be found by walking the tree to
find the cell containing the query point. We then check any data items in that
cell. Write the distance from the query to the closest as dc. We now backtrack,
investigating cells that could contain points closer than dc and updating dc when
we find a better point. We can prune any branch of the tree that represents a
volume that is further from the query than dc. This procedure works well for low
dimensions, but becomes unattractive in high dimensions because we will need to
explore too many cells (the number of neighbors of a cell goes up exponentially
with dimension).

This difficulty can be avoided if an approximate nearest neighbor is sufficient.
In the best bin first approach, we look at a fixed number Nc of cells, then report
the best point found so far. Promising cells will tend to have some points that are
close to the query, and we define the distance between a cell and the query to be
the shortest distance from the query to any point on the cell’s boundary. Whenever
we investigate the child of a cell, we insert the other child into a priority queue,



Section 15.5 What you should remember - NEED SOMETHING 391

ordered by distance to the query. Once we have checked a cell, we retrieve the next
cell from the priority queue. We do this until we have looked at Nc cells. We will
look mainly at cells that are close to the query, and so the point we report is a good
approximate nearest neighbor.

Good performance of a particular method depends somewhat on the dataset.
For most applications, the choice of method can be made offline using the dataset, or
a subset of it. ? describe a software package that can choose an approximate nearest
neighbors method that is fastest for a particular dataset. Generally, they find that
using multiple randomized k-d trees is usually the best; at the time of writing,
software could be found at http://www.cs.ubc.ca/~mariusm/index.php/FLANN/
FLANN.

15.5 WHAT YOU SHOULD REMEMBER - NEED SOMETHING



C H A P T E R 16

Describing Repetition with Vector
Quantization

Classifying images is an important problem, with a variety of applications. I
list some below. We have seen powerful classification methods. But what features
should one use to classify images? In this section, I will describe a construction that
extends to a variety of other signals, because it exploits repetition. Repetition is an
important feature of many interesting signals. For example, images contain textures,
which are orderly patterns that look like large numbers of small structures that are
repeated. Examples include the spots of animals such as leopards or cheetahs; the
stripes of animals such as tigers or zebras; the patterns on bark, wood, and skin.
Similarly, speech signals contain phonemes — characteristic, stylised sounds that
people assemble together to produce speech (for example, the “ka” sound followed
by the “tuh” sound leading to “cat”). An important part of representing signals
that repeat is identifying the components that repeat, then describing the signal in
terms of those components.

Repetition occurs in more subtle forms than spot patterns. The essence is
that a small number of local patterns can be used to represent a large number of
examples. You see this effect in pictures of scenes. If you collect many pictures
of, say, a beach scene, you will expect most to contain some waves, some sky,
and some sand. The individual patches of wave, sky or sand can be surprisingly
similar, and different images are made by selecting some patches from a vocabulary
of patches, then placing them down to form an image. Similarly, pictures of living
rooms contain chair patches, TV patches, and carpet patches. Many different living
rooms can be made from small vocabularies of patches; but you won’t often see wave
patches in living rooms, or carpet patches in beach scenes.

This view suggests that we should (a) develop a vocabulary of image patches
and then (b) construct a feature that describes which vocabulary elements appear in
the image. It turns out that where the vocabulary elements appear is less important.
This is because different pictures of a living room may have the same patches in
different locations (for example, you might just move the camera to the left). As
another example, zebras have stripes, but precisely where the stripes lie on a zebra
doesn’t seem to matter much in practice.

The patches in the vocabulary are often referred to as textons. We could
find these textons by looking for image patches that are common, and then reason
about which ones are repeated. There are two important difficulties in finding
image patches that commonly occur together. First, these representations of the
image are continuous. We cannot simply count how many times a particular pattern
occurs, because each vector is slightly different. Second, the representation is high
dimensional in either case. A patch around a pixel might need hundreds of pixels
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to represent it well. This means we cannot build a histogram directly, because it
will have an unmanageable number of cells.

16.0.1 Applications of Image Classification

Detecting explicit images: There are numerous reasons to try and detect images
that depict nudity or sexual content. In some jurisdictions, possession or distribu-
tion of such pictures might be illegal. Many employers want to ensure that work
computers are not used to collect or view such images; in fact, vendors of image
filtering software have tried to persuade employers that they might face litigation
if they don’t do so. Advertisers want to be careful that their ads appear only next
to images that will not distress their customers. Web search companies would like
to allow users to avoid seeing images they find distressing.

Material classification: Imagine we have an image window. What material
(e.g., “wood,” “glass,” “rubber,” and “leather”) does the window cover? If we could
answer this question, we could decide whether an image patch was cloth—and so
might be part of a person, or of furniture—or grass, or trees, or sky. Generally,
different materials produce different image textures, so natural features to use for
this multiclass classification problem will be texture features. However, materials
tend to have some surface relief (for example, the little pores on the surface of an
orange; the bumps on stucco; the grooves in tree bark), and these generate quite
complex shading behavior. Changes in the illumination direction can cause the
shadows attached to the relief to change quite sharply, and so the overall texture
changes. Furthermore, as Figure 16.1 illustrates, texture features might indicate
the material an object is made of, but objects can have the same texture and be
made of quite different materials.

Scene classification: Pictures of a bedroom, of a kitchen, or of a beach
show different scenes. Scenes provide an important source of context to use in
interpreting images. You could reasonably expect to see a pillow, but not a toaster
or a beachball, in a bedroom; a toaster, but not a pillow or a beachball, in a kitchen;
or a beachball and perhaps a pillow, but not a toaster, on a beach. We should like
to be able to tell what scene is depicted in an image. This is difficult, because scenes
vary quite widely in appearance, and this variation has a strong spatial component.
For example, the toaster could be in many different locations in the kitchen. In
scene classification, one must identify the scene depicted in the image. Scene
labels are more arbitrary than object labels, because there is no clear consensus
on what the different labels should be. Some labels seem fairly clear and are easy
to assign accurately (Figure 16.2), for example, “kitchen,” “bedroom,” and other
names of rooms in a house. Other labels are uncertain: should one distinguish
between “woodland paths” and “meadows”, or just label them all “outdoors”?
Humans seem to have a problem here, too (Figure ??). However, there are several
scene datasets, each with its own set of labels, so methods can be compared and
evaluated.

16.0.2 Vector Quantization and Textons

Vector quantization is a strategy to deal with these difficulties. Vector quanti-
zation is a way of representing vectors in a continuous space with numbers from a
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FIGURE 16.1: Material is not the same as object category (the three cars on the top
are each made of different materials), and is not the same as texture (the three
checkered objects on the bottom are made of different materials). Knowing the
material that makes up an object gives us a useful description, somewhat distinct
from its identity and its texture. This figure was originally published as Figures 2
and 3 of “Exploring Features in a Bayesian Framework for Material Recognition,”
by C. Liu, L. Sharan, E. Adelson, and R. Rosenholtz Proc. CVPR 2010, 2010 c©
IEEE, 2010.

FIGURE 16.2: Some scenes are easily identified by humans. These are examples from
the SUN dataset (?) of scene categories that people identify accurately from images;
the label above each image gives its scene type. This figure was originally published
as Figure 2 of “SUN database: Large-scale Scene Recognition from Abbey to Zoo,”
by J. Xiao, J. Hays, K. Ehinger, A. Oliva, and A. Torralba, Proc. IEEE CVPR
2010, c© IEEE, 2010.
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FIGURE 16.3: There are two steps to building a pooled texture representation for a
texture in an image domain. First, one builds a dictionary representing the range
of possible pattern elements, using a large number of texture patches. This is usu-
ally done in advance, using a training data set of some form. Second, one takes
the patches inside the domain, vector quantizes them by identifying the number of
the closest cluster center, then computes a histogram of the different cluster center
numbers that occur within a region. This histogram might appear to contain no
spatial information, but this is a misperception. Some frequent elements in the his-
togram are likely to be textons, but others describe common ways in which textons
lie close to one another; this is a rough spatial cue. This figure shows elements of a
database collected by C. Liu, L. Sharan, E. Adelson, and R. Rosenholtz, and pub-
lished at http://people.csail.mit.edu/lavanya/research_sharan.html. Fig-
ure by kind permission of the collectors.

set of fixed size. We first build a set of clusters out of a training set of vectors; this
set of clusters is often thought of as a dictionary. We now replace any new vector
with the cluster center closest to that vector. This strategy applies to vectors quite
generally, though we will use it for texture representation. Many different clusterers
can be used for vector quantization, but it is most common to use k-means or one
of its variants.

We can now represent a collection of vectors as a histogram of cluster centers.
This general recipe can be applied to image representation by describing each pixel
in the domain with some vector, then vector quantizing and describing the domain
with the histogram of cluster centers. One natural vector to use is obtained by
reshaping the pixels from a fixed-size patch around the image pixel (Figure 16.4).
There is a rich collection of alternative possibilities in the computer vision literature.
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Build a dictionary:
Collect many training example images
Construct the vectors x for relevant pixels; these could be
a reshaping of a patch around the pixel, or a vector of filter outputs
computed at the pixel, or other image representations.

Obtain k cluster centers c for these examples

Represent an image domain:
For each relevant pixel i in the image

Compute the vector representation xi of that pixel
Obtain j, the index of the cluster center cj closest to that pixel
Insert j into a histogram for that domain

Algorithm 16.1: Image Representation Using Vector Quantization.

16.0.3 Hierarchical K Means

One important difficulty occurs in applications. We might need to have an enormous
dataset (millions of image patches are a real possibility), and so a very large k. In
this case, k means clustering becomes difficult because identifying which cluster
center is closest to a particular data point scales linearly with k (and we have to
do this for every data point at every iteration). There are two useful strategies for
dealing with this problem.

The first is to notice that, if we can be reasonably confident that each cluster
contains many data points, some of the data is redundant. We could randomly
subsample the data, cluster that, then keep the cluster centers. This works, but
doesn’t scale particularly well.

A more effective strategy is to build a hierarchy of k-means clusters. We
randomly subsample the data (typically, quite aggressively), then cluster this with
a small value of k. Each data item is then allocated to the closest cluster center, and
the data in each cluster is clustered again with k-means. We now have something
that looks like a two-level tree of clusters. Of course, this process can be repeated to
produce a multi-level tree of clusters. It is easy to use this tree to vector quantize a
query data item. We vector quantize at the first level. Doing so chooses a branch of
the tree, and we pass the data item to this branch. It is either a leaf, in which case
we report the number of the leaf, or it is a set of clusters, in which case we vector
quantize, and pass the data item down. This procedure is efficient both when one
clusters and at run time.

16.0.4 Using Textons

We can now build a large vocabulary of textons. Details vary from application to
application, but the general procedure is clear. We obtain a large number of relevant
images (from thousands to millions, depending on the particular application). We
extract patches from these images. These patches could have centers that are on
a grid, or are randomly chosen, or lie at image corners (which are detected using
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FIGURE 16.4: Pattern elements can be identified by vector quantizing vectors obtained
by reshaping an image window centered on each pixel. Here we show the top 50 pat-
tern elements (or textons), obtained using this strategy from all 1,000 images of the
collection of material images described in Figure ??. Each subimage here illustrates
a cluster center. For some cluster centers, we show the closest 25 image patches. To
measure distance, we first subtracted the average image intensity, and we weighted
by a Gaussian to ensure that pixels close to the center of the patch were weighted
higher than those far from the center. This figure shows elements of a database
collected by C. Liu, L. Sharan, E. Adelson, and R. Rosenholtz, and published
at http://people.csail.mit.edu/lavanya/research_sharan.html. Figure by
kind permission of the collectors.

methods outside the scope of this discussion). These patches are clustered using
k-means or hierarchical k-means. It is quite usual to have k in the hundreds of
thousands. We can then describe a new image by decomposing it into patches
(typically, on a grid); vector quantizing each patch; and forming a histogram of the
centers. Usually, this histogram is normalized, so that larger images (with more
patches) do not appear different from smaller images.

When we use this description, we need to keep in mind that it is a histogram.
Histograms can be represented as vectors (one entry per bin), but in important
respects they are not really vectors. All the entries in a normalized histogram sum
to one. This means that measuring the difference between two histograms with a
Euclidean distance measure is not a particularly good idea. The significance of a
large difference at a particular bin depends on how full the bin is. Write g and h
for the two histograms we wish to compare, and gi (resp. hi) for the i’th bin. Now
assume (hi − gi)

2 is large. If hi + gi is large, too, this might not be significant,
because we might have a difference in counts that is due to random effects. But if
hi + gi is small, the difference is much more significant, because one bin has many
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entries and another has few. This argues for using a distance

d(h,g) =
∑

i

(hi − gi)
2

(hi + gi)

which is known as the χ2 distance (often written as the chi-squared distance). The
name comes from an analogy with Pearson’s χ2 distance for comparing histograms

(which is
∑

i
(hi−gi)

2

hi
).

We can now use this image description in a variety of ways.

• Image classification with SVM’s: One could use an SVM to classify
images. Better results are available with more complex classifier technologies,
because SVM’s do not account for the histogram distance effect, above.

• Image classification with nearest neighbors: ¿A nearest neighbor clas-
sifier should use the chi-squared distance. It is often sufficient to use an ap-
proximate nearest neighbor method to get a set of possible histograms close
to the query, then find the closest using the chi-squared distance.

• Image retrieval: There are many applications where we would like to recover
images that are similar in appearance to a query image. We can do so by
selecting images that have a small chi-squared distance to the query image.
Some complex technical paraphenalia are required to make doing so efficient,
however.

• Image clustering: We can cluster images using the chi-squared distance.

One issue that arises quite regularly in applications is that vector quantization
loses information. Small changes in image patch can lead to a large change in
the cluster center, and many of these can accumulate to give a big deviation in
the histogram. This is an important source of error in applications. There is
an effective strategy to handle it. One builds multiple systems, then votes. For
example, imagine building a nearest neighbor classifier for images. We build (say)
three, rather than one, vector quantizers. Each clusters the same set of image
patches, but uses a different random start. We then build three (say) rather than
one histogram describing an image, and query three collections, one with each
histogram. Finally, we choose the category that gets the majority of votes.

An alternate use of a texton vocabulary is in denoising. Assume we have a
large vocabulary of image patches, built as above. A new image comes in, but is
noisy, perhaps because there are errors in the storage and retrieval system, or in a
communication system, or because the camera is very slightly defocussed. We can
build a reconstruction by matching each of the noisy image patches to its cluster
center, then replacing the patch with the cluster center. The details are complex,
because we need to figure out what to do with patches that overlap, and to ensure
that patches that abut one another are consistent.

16.1 EXAMPLES USING VECTOR QUANTIZATION

At http://archive.ics.uci.edu/ml/datasets/Wholesale+customers, you will
find a dataset giving sums of money spent annually on different commodities by
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FIGURE 16.5: On the left, the sum of squared error for clusterings of the customer
data with k-means for k running from 2 to 35. This suggests using a k somewhere in
the range 10-30; I chose 20. On the right, I have clustered this data to 20 cluster
centers with k-means. The clusters do seem to be squashed together, but the plot on
the left suggests that clusters do capture some important information. Using too few
clusters will clearly lead to problems. Notice that I did not scale the data, because
each of the measurements is in a comparable unit. For example, wouldn’t make
sense to scale expenditures on fresh and expenditures on grocery with a different
scale.

customers in Portugal. These customers are divided by channel (two channels) and
by region (three regions). You can think of the data as being divided into six groups
(one for each channel-region pair). There are 440 records, and so many customers
per class. The commodities are divided into a set of categories (fresh; milk; grocery;
frozen; detergents and paper; and delicatessen) relevant for the study. Figure 16.6
shows a panel plot of the customer data. Relatively little structure is apparent here
— you can’t, for example, see any evidence of six clean clusters.

If you think about it, it’s too much to expect that all customers in a class
are similar. Instead, we expect that there might be different “types” of customer
— some might spend more money on milk, others on grocery, and so on. Different
groups likely contain different numbers of each type of customer. This would make
it hard to see the groups in the panel plot.

Vector quantization can expose this kind of structure rather effectively. I
used k-means clustering to cluster the customer data to 20 different clusters (Fig-
ure 16.6). Then I described the each group of data by the histogram of customer
types that appeared in that group (Figure ??). Notice how the distinction between
the groups is now apparent — the groups do appear to contain quite different dis-
tributions of customer type. To be more confident in this analysis, we would need
to be sure that different types of customer really are different. We could do this by
repeating the analysis for fewer clusters, or by looking at the similarity of customer
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FIGURE 16.6: The histogram of different types of customer, by group, for the cus-
tomer data. Notice that different groups do really appear to have different types of
customer represented in different amounts.

types.
Another, more complex, example dataset appears at https://archive.ics.

uci.edu/ml/datasets/Dataset+for+ADL+Recognition+with+Wrist-worn+Accelerometer.
This dataset consists of examples of the signal from a wrist mounted accelerometer,
produced as different subjects engaged in different activities of daily life. Activities
include: brushing teeth, climbing stairs, combing hair, descending stairs, and so on.
Each is performed by sixteen volunteers. The accelerometer samples the data at
32Hz (i.e. this data samples and reports the acceleration 32 times per second). The
accelerations are in the x, y and z-directions. Figure 16.7 shows the x-component
of various examples of toothbrushing.

There is an important problem with using data like this. Different subjects
take quite different amounts of time to perform these activities. For example, some
subjects might be more thorough tooth-brushers than other subjects. As another
example, people with longer legs walk at somewhat different frequencies than people
with shorter legs. This means that the same activity performed by different subjects
will produce data vectors that are of different lengths. It’s not a good idea to deal
with this by warping time and resampling the signal. For example, doing so will
make a thorough toothbrusher look as though they are moving their hands very
fast (or a careless toothbrusher look ludicrously slow: think speeding up or slowing
down a movie). So we need a representation that can cope with signals that are a
bit longer or shorter than other signals.

Another important property of these signals is that all examples of a particular
activity should contain repeated patterns. For example, brushing teeth should show
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FIGURE 16.7: Some examples from the accelerometer dataset at https:

// archive.ics. uci. edu/ ml/ datasets/Dataset+for+ADL+ Recognition+

with+Wrist-worn+Accelerometer . I have labelled each signal by the activity.
These show acceleration in the X direction (Y and Z are in the dataset, too).
There are four examples for brushing teeth and four for eat meat. You should
notice that the examples don’t have the same length in time (some are slower and
some faster eaters, etc.), but that there seem to be characteristic features that are
shared within a category (brushing teeth seems to involve faster movements than
eating meet).

fast accelerations up and down; walking should show a strong signal at somewhere
around 2 Hz; and so on. These two points should suggest vector quantization to
you. Representing the signal in terms of stylized, repeated structures is probably a
good idea because the signals probably contain these structures. And if we represent
the signal in terms of the relative frequency with which these structures occur, the
representation will have a fixed length, even if the signal doesn’t. To do so, we need
to consider (a) over what time scale we will see these repeated structures and (b)
how to ensure we segment the signal into pieces so that we see these structures.

Generally, repetition in activity signals is so obvious that we don’t need to be
smart about segment boundaries. I broke these signals into 32 sample segments,
one following the other. Each segment represents one second of activity. This
is long enough for the body to do something interesting, but not so long that our
representation will suffer if we put the segment boundaries in the wrong place. This
resulted in about 40, 000 segments. I then used hierarchical k-means to cluster these
segments. I used two levels, with 40 cluster centers at the first level, and 12 at the
second. Figure 16.8 shows some cluster centers at the second level.

I then computed histogram representations for different example signals (Fig-
ure 16.9). You should notice that when the activity label is different, the histogram
looks different, too.

Another useful way to check this representation is to compare the average
within class chi-squared distance with the average between class chi-squared dis-
tance. I computed the histogram for each example. Then, for each pair of examples,
I computed the chi-squared distance between the pair. Finally, for each pair of ac-
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FIGURE 16.8: Some cluster centers from the accelerometer dataset. Each cluster
center represents a one-second burst of activity. There are a total of 480 in my
model, which I built using hierarchical k-means. Notice there are a couple of cen-
ters that appear to represent movement at about 5Hz; another few that represent
movement at about 2Hz; some that look like 0.5Hz movement; and some that seem
to represent much lower frequency movement. These cluster centers are samples
(rather than chosen to have this property).
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FIGURE 16.9: Histograms of cluster centers for the accelerometer dataset, for differ-
ent activities. You should notice that (a) these histograms look somewhat similar for
different actors performing the same activity and (b) these histograms look some-
what different for different activities.
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tivity labels, I computed the average distance between pairs of examples where one
example has one of the activity labels and the other example has the other activity
label. In the ideal case, all the examples with the same label would be very close to
one another, and all examples with different labels would be rather different. Ta-
ble 16.1 shows what happens with the real data. You should notice that for some
pairs of activity label, the mean distance between examples is smaller than one
would hope for (perhaps some pairs of examples are quite close?). But generally,
examples of activities with different labels tend to be further apart than examples
of activities with the same label.

0.9 2.0 1.9 2.0 2.0 2.0 1.9 2.0 1.9 1.9 2.0 2.0 2.0 2.0
1.6 2.0 1.8 2.0 2.0 2.0 1.9 1.9 2.0 1.9 1.9 2.0 1.7

1.5 2.0 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 2.0
1.4 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.8

1.5 1.8 1.7 1.9 1.9 1.8 1.9 1.9 1.8 2.0
0.9 1.7 1.9 1.9 1.8 1.9 1.9 1.9 2.0

0.3 1.9 1.9 1.5 1.9 1.9 1.9 2.0
1.8 1.8 1.9 1.9 1.9 1.9 1.9

1.7 1.9 1.9 1.9 1.9 1.9
1.6 1.9 1.9 1.9 2.0

1.8 1.9 1.9 1.9
1.8 2.0 1.9

1.5 2.0
1.5

TABLE 16.1: Each column of the table represents an activity for the
activity dataset https:// archive.ics.uci. edu/ ml/ datasets/Dataset+for+
ADL+Recognition+with+Wrist-worn+Accelerometer , as does each row. In each
of the upper diagonal cells, I have placed the average chi-squared distance between
histograms of examples from that pair of classes (I dropped the lower diagonal for
clarity). Notice that in general the diagonal terms (average within class distance)
are rather smaller than the off diagonal terms. This quite strongly suggests we can
use these histograms to classify examples successfully.

Yet another way to check the representation is to try classification with nearest
neighbors, using the chi-squared distance to compute distances. I split the dataset
into 80 test pairs and 360 training pairs; using 1-nearest neighbors, I was able to
get a held-out error rate of 0.79. This suggests that the representation is fairly
good at exposing what is important.

16.2 WHAT YOU SHOULD REMEMBER - NEED SOMETHING
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Topics and Documents

We often want to deal with free text. For example, we might want to decide
which reviewers to trust from a batch of text reviews of restaurants. To do so, we
should check for evidence that the reviews are fake. Restaurant owners might pay
for positive reviews of their restaurant, or negative reviews of a rivals. These paid
reviews are typically quite stylized, because the author gets paid by the review. We
might also want to check that the text is consistent with the rating, and that the
particular reviewer is active. As another example, we might like to check whether
a piece of email is spam or not. In each case, we do not need a particularly deep
understanding of what the text means as a piece of language — we’re just looking
for useful superficial evidence to support a decision.

17.1 BASIC TECHNOLOGIES FROM INFORMATION RETRIEVAL

It is quite useful to understand basic ideas in information retrieval. Typical text
information retrieval systems expect a set of query words. They use these to query
some form of index, producing a list of putative matches. From this list they
chose documents with a large enough similarity measure between document and
query. These are ranked by a measure of significance, and returned. The important
questions to understand here are how to identify which document is similar to the
query, and how to score the significance of documents.

17.1.1 Word Counts

Much of text information retrieval is shaped by the fact that a few words are com-
mon, but most words are rare. The most common words—typically including “the,”
“and,” “but,” “it”—are sometimes called stop words and are ignored because al-
most every document contains many of them. Other words tend to be rare, which
means that their frequencies can be quite distinctive. Quite often, it is enough to
know whether the word is there or not. For example, documents containing the
words “stereo,” “fundamental,” “trifocal,” and “match” are likely to be about 3D
reconstruction; documents containing “chrysoprase,” “incarnadine,” “cinnabarine,”
and “importunate” are most likely lists of 11 letter words ending in “e” (many such
lists exist, for crossword puzzle users; you can check this using Google).

Word Types, Tokens, and Tokenization
Passing from a text document to a set of word counts requires some care. We

need to respect the difference between word types — distinct words, however many
times they occur — and word tokens — the actual instances of the words. So, for
example, the sentence “A cat sat beside another cat” contains five word types and
six tokens. For many applications, whether a word type occurs is more important
information than the number of times it occurs.

Some nuisance results from the fact that small changes in the form of a word

404
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may not be particularly important. For example, it is unlikely that we need to
care about the difference between “cat” and “cats” — we would want to regard
these as the same word type. Similarly, we might regard “run” and “running” as
the same word type. Quite good programs for reducing words to a standard form
(i.e. “laughing” or “laughs” go to “laugh”) are known as stemmers. Using a
stemmer can create problems as well as solve them; for example, a stemmer might
regard “stock” and “stocking” as instances of the same word type, thereby confusing
avaritia with luxuria in internet searches.

Most words are very rare. One consequence is that, even if we have seen a
large collection of documents, we expect to see new word types in new documents.
In turn, this means we cannot usually tell in advance all the word types that we
need to deal with. This causes a variety of nuisances, particularly when we are
dealing with informal text. We must pass from a string of characters to a set of
counts for each word type that occurs. But how do we tell whether a string is a
word type, a variant word type, or just noise? For example, “youre” is probably the
result of poor punctuation; but it takes some background to know that “whilom”
is a deliberate archaism, but “wylom” is (at best) a spelling error. Producing a set
of word counts from a document is known as tokenization. For our purposes, this
is the domain of specialized software which we download.

Software pointers: 17.1 Text tools

RTextTools is a collection of tools for text data using R, which can be
found at http://www.rtexttools.com. Notice the variety of examples
and tutorials there.
OpenNLP is an extensive set of text processing tools in Java, which can
be found at http://opennlp.apache.org.
Ingo Feinerer has produced a tokenizer in R, called tm, which can
be found at http://www.inside-r.org/packages/cran/tm/docs/MC_
tokenizer.

Indexing Documents
It is straightforward to build a table representing the documents in which

each word occurs, because very few words occur in many documents, so the table
is sparse. Write Nw for the number of words and Nd for the number of documents.
We could represent the table as an array of lists. There is one list for each word, and
the list entries are the documents that contain that word. This object is referred
to as an inverted index, and can be used to find all documents that contain a
logical combination of some set of words. For example, to find all documents that
contain any one of a set of words, we would: take each word in the query, look up
all documents containing that word in the inverted index, and take the union of
the resulting sets of documents. Similarly, we could find documents containing all
of the words by taking an intersection, and so on. Such logical queries usually are
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not sufficient, because the result set might be either very large or too small, and
because we have no notion of which elements of the result set are more important.
We need a more refined notion of similarity between documents, and between a
document and a query.

Similarity from Word Counts
One measure of similarity for two documents is to compare word frequencies.

Assume we have a fixed set of terms that we will work with. We represent each
document by a vector c, with one entry for each term. These entries are zero when
the term is absent, and contain some measure of the word frequency when the word
is present. This measure might be as simple as a one if the word appears at least
once in the document, or might be a count of the number of words. Write c1, c2
for two such vectors; the cosine similarity between the documents they represent
is

c1 · c2
||c1 ||||c2 ||

.

Two documents that both use an uncommon word are most likely more similar than
two documents that both use a common word. We can account for this effect by
weighting word counts. The most usual way to do this is called tf-idf weighting
(for “term frequency-inverse document frequency”). Terms that should have most
weight appear often in the particular document we are looking at, but seldom in
all documents. Write Nd for the total number of documents and Nt for the number
of documents that contain the particular term we are interested in. Then, the
inverse document frequency can be estimated as Nd/(1+Nt) (where we add one to
avoid dividing by zero). Write nt(j) for the number of times the term appears in
document j and nw(j) for the total number of words that appear in that document.
Then, the tf-idf weight for term t in document j is

(

nt(j)

nw(j)

)

/log

(

Nd

(1 +Nt)

)

.

We divide by the log of the inverse document frequency because we do not want
very uncommon words to have excessive weight. Inserting this tf-idf weight into
the count vectors above will get a cosine similarity that weights uncommon words
that are shared more highly than common words that are shared.

17.1.2 Smoothing Word Counts

Our measurement of similarity will not work well on most real document collections,
even if we weight by tf-idf. This is because words tend to be rare, so that most pairs
of documents share only quite common words, and so most pairs of documents will
have quite small cosine similarity. The real difficulty here is that zero word counts
can be underestimates. For example, a document that uses the words “elephant,”
“tusk,” and “pachyderm” should have some affinity for “trunk.” If that word does
not appear in the document, it is an accident of counting. This means that to
measure similarity, we would do well to smooth the word counts.

We can do so by looking at how all terms are distributed across all documents.
An alternative representation of the information in an inverted index is as an Nw
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by Nd table D, where each cell contains an entry if the relevant word is not in the
relevant document and a zero otherwise. Entries could be one if the word occurs,
or a count of the number of times the word occurs, or the tf-idf weight for the term
in the document. In any case, this table is extremely sparse, so it can be stored
and manipulated efficiently. A column of the table is a representation of the words
in a document, and the cosine similarity between columns is our original measure
of similarity between documents.

Zeros in D might be the result of counting accidents, as above. We would like
a version of this table that smooths word counts. We assume that, if two documents
are on the same topic, then they tend to use the same words in about the same
frequency. This means that in the smoothed version of the table, there are many
columns that are similar. Now think about a word that is associated with a topic
(say, “elephant”). Then in the smoothed version of the table, it will appear in
documents about elephants, and not in documents about something else. But this
will be true of other such words (say, “ivory”). This means that, in the smoothed
table, many rows should be similar to one another as well.

The smoothed version of D will be significantly rank-deficient because many
columns (resp. rows) are similar. We can estimate the smoothed version by com-
puting a singular value decomposition of D as D = UΣVT . Write Uk for the matrix
consisting of the first k columns of U , Vk for the matrix consisting of the first k
columns of V , Σk for Σ with all but the k largest singular values set to be zero, and
write D̂ = UkΣkVT

k .
Now consider the ith column of D, which we write as di. The corresponding

column d̂i of D̂ lies in the span of Uk. The word counts are smoothed by forcing
them to lie in this span. For example, assume that there are many documents
discussing elephants, and only one uses the word “pachyderm.” The count vectors
for each of these documents could be represented by a single column, but error will
be minimized if there is a small count for “pachyderm” in each. Because of this
smoothing effect, cosine distances between documents represented by columns of D̂
are a much more reliable guide to similarity.

To compute cosine similarity between an old document and a new document
with count vector q, we project the new document’s count vector onto the columns
of Uk to obtain q̂ = UkUT

k q. We can then take the inner product of q̂ and d̂i. A
complete table of inner products (cosine distances) between documents is given by

D̂T D̂ = (VkΣk)(ΣkVT ) = (ΣkVT
k )

T (ΣkVT ),

so that we can think of the columns of ΣkVT as points in a k-dimensional “concept
space” that represents the inner products exactly. One could, for example, cluster
documents in this space rather than the original count space, and expect a better
clustering. Computing the SVD of D is known as latent semantic analysis; using
the concept space for indexing is known as latent semantic indexing.

D̂ is useful in other ways, too. There is a rough tendency of words that have
similar meaning to appear near similar words in similar documents, an idea known
as distributional semantics. This means that cosine similarity between rows of
D̂ is an estimate of the similarity of meaning of two terms, because it counts the
extent to which they co-occur. Furthermore, D̂ can be used as an inverted index. If
we use it in this way, we are not guaranteed that every document recovered contains
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all the words we used in the query; instead, it might contain very similar words.
This is usually a good thing. The columns of U are sometimes called topics and
can be thought of as model word frequency vectors; the coordinates of a column in
the semantic space show the weights with which topics should be mixed to obtain
the document.

17.2 TOPIC MODELS

In the previous section, we assumed that documents that were similar had similar
smoothed word counts. We estimated a word-document matrix using this idea. This
allowed us to measure the cosine similarity between two documents more reliably.
We can expand this idea into a topic model – a model of how words that appear
in a document result from the topic of the document.

17.2.1 A Multinomial Topic Model

Topic models are built to represent how a document is generated. Our first assump-
tion is that the order in which words appear does not matter. The only evidence
we will use is the number of times each word appears. This assumption clearly
doesn’t describe language very well, but it seems to be a quite reliable guide to
what documents are about. You should notice that we used it in our model of
information retrieval, too. The assumption is known as the bag-of-words model.

Now assume we wish to produce a document. We will assume that each
document treats only one topic. We assume that there are k possible topics. We
produce a document by selecting a topic, then producing words from that topic.
We assume that the topic is chosen by sampling from a multinomial distribution,
so we draw topic t with probability P (t).

Now the topic is known. We assume that the counts for each word are in-
dependent of the counts for other words, and depend only on the topic. These
assumptions make estimating the parameters of the model much easier. They’re
also a tolerable model of how words might be used in producing a document. For
example, if you are writing about “elephants”, the rate at which you use (or for-
get to use) the word “pachyderm” is likely to be independent from the rate at
which you use (or forget to use) the word “tusk”. And the rate at which you use
the word “pachyderm” is higher when you write about “elephants” or “Victorian
zookeepers”, but much lower when you write about anything else.

This assumption means that, when the topic has been selected, the words are
obtained by sampling from a multinomial distribution. We can write P (w|t) for
the probability of getting a particular word w conditioned on a topic t. Notice that
there is one such distribution per topic.

In the usual case, we have a collection of documents and need to determine
P (t) and P (w|t) for each topic and word. From this information we can build
a representation of each document. A rigorous description of the procedure for
inferring P (t) and P (w|t) is beyond the scope of this description, because it requires
some slightly finicky probabilistic reasoning, and because in practice we use more
complex models anyhow. But it’s quite easy to get a good sense of how the method
works, which has a strong analogy to k-means.

Assume for the moment we know which topic each document belongs to. Write
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Nd for the number of documents in the collection. Then it is easy to estimate P (t)
by counting. For each topic t, we have the estimate

P (t) =
# documents with topic t

Nd
.

Similarly, it is easy to estimate P (w|t) by counting. For each word type w, we
know how many times it occurs in a document of topic t. Write Nw(t) for the total
number of word tokens that are in documents of type t. So we can estimate

P (w|t) = # of times w occurs in documents with topic t

Nw(t)
.

Now let us work the other way round. Assume we know P (t) and P (w|t).
Then for each document, we can determine the posterior probability that document
came from topic t. Write w(d) for a vector of word counts (ie for each word in the
vocabulary, there is one component in the vector; this contains the number of times
that word appears in the document d), and wi for the i’th component of that vector.
We want to know

P (topic = t|w(d)) =
P (w(d)|t)P (t)

P (w(d))

=

∏

i P (wi|t)P (t)
∑

u

∏

i P (wi|t = u)P (t = u)

which we can evaluate. We could assign the document to the topic with highest
posterior. In fact, we can do better. We could regard this posterior distribution
as a “soft count”, assigning the document to topic t with weight P (t|w(d)). We
can estimate the distributions P (t) and P (w|t) by regarding these soft counts as
fractional counts (compare section ??).

So we have an algorithm, very like k-means. We make an initial guess of
P (w|t), typically by choosing one document at random to estimate the topic centers,
then counting the words in the document. We can then get an initial guess at P (t)
as a uniform distribution. We then form soft assignments of each document to each
topic, and use these to re-estimate the probabilities. We iterate this procedure until
it converges. With a little care, it will converge. There are two things to be careful
about. We may be unlucky, and have a topic that gets no documents at a particular
iteration. This will make it hard to estimate P (w|t). Just as in k means, we could
resolve this by choosing a document at random and assigning it to that topic. We
may also find that in a particular topic, a word appears 0 times. This is likely a
miscount. In reality, the word is uncommon given the topic, and is so uncommon
that it has not appeared. But it is highly unlikely that it cannot appear, which is
what setting P (w|t) = 0 would imply. There are a variety of sophisticated tricks
we could apply to this situation. The simplest, which is often quite successful, is
to add one to every count.

Now assume we have estimated P (t) and all the P (w|t). We can use this
information to describe any document in a variety of ways. We could simply report
the most likely topic given the document. We could report P (w|t) for that topic. A
more detailed description is given by computing P (topic = t|w(d)). You can think
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of this as a vector of affinities connecting the document to each topic. For example,
a document might deal with “elephants” with weight 0.2 and “rhinoceroses” with
weight 0.02.

17.2.2 Latent Dirichlet Allocation

The difficulty with the approach above is that it assumes that each document has
one topic. We can measure the affinity between a document and multiple topics,
but the assumptions rule out documents that (say) each discuss two distinct topics
(“elephants”’ and then “marula”, say). It would be better to allow each document
to deal with multiple topics.

We can do so with the following model. Assume we wish to generate a col-
lection of documents. To do so, we will first generate a set of topics. We represent
each with a vector P (w|t). We obtain these vectors by sampling from a prior dis-
tribution on topic vectors. Once we have these vectors, we must obtain words for
each document. The document first chooses a set of topic weights. This is the
probability that a word will be chosen from a topic for that document — so each
document may have a different set of topic weights. For example, one document
may use words from the “elephants” topic more often and another might use words
from the “rhinoceroses” topic more often. The set of topic weights is a vector of
probabilities, one per topic, and each document has one.

Once the document has a set of topic weights, it must generate words. It does
so by repeatedly: choosing a topic at random using the vector of topic weights,
then visiting that topic and choosing a single word at random using that topic’s
P (w|t). As a result, words in a document can come from different topics. In fact,
two instances of the same word may come from two different topics.

Assume we have a set of documents that we believe were generated using this
model. We must determine the model parameters. These are the word probabilities
for each topic, and the topic weights for each document. How we fit this model to
a set of documents is way beyond the scope of this text, but the general picture is
rather like multinomial topic models. If we knew which topic every word came from,
we could recover the word probabilities and the topic weights easily by counting.
Similarly, if we knew what the topic weights and the word probabilities were, we
could estimate which topic each word comes from. This is a fairly substantial
problem in large scale inference, because we might be looking at millions of words
and thousands of topics. A variety of good software is available freely on the web
(Section ??).

For our purposes, these models are important because they give us sophisti-
cated representations of what documents might be about. Consider the document
topic weights. Documents dealing in different ways with different matters are likely
to have different topic weights. With a modicum of luck, documents treating the
same topic using different approaches (“elephant conservation” vs. “elephant cook-
ery”, say) will have different topic weights, too. In turn, this means we have a good
chance of drawing useful conclusions about documents using these topic weights.
For example, they might be used to classify or cluster documents.
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Software pointers: 17.2 Latent Dirichlet Allocation software

David Blei’s research group has produced a great deal of topic modelling
software. A guide can be found at https://www.cs.princeton.edu/

~blei/topicmodeling.html. There is software in C, C++, Python
and R.
Mark Steyvers and Tom Griffiths have produced a topic modelling tool-
box for Matlab. The code, and a series of example scripts for a variety of
topic models, can be found at http://psiexp.ss.uci.edu/research/
programs_data/toolbox.htm.
Bettina Grün and Kurt Hornik have produced an interface to Blei’s
C/C++ code for R, called topicmodels. Details can be found at http:
//cran.r-project.org/web/packages/topicmodels/index.html.
There is a nice tutorial on using this package together with
RTextTools at http://www.rtexttools.com/1/post/2011/08/

getting-started-with-latent-dirichlet-allocation-using-rtexttools-topicmodels.

html.
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Math Resources

18.1 USEFUL MATERIAL ABOUT MATRICES

Terminology:

• A matrix M is symmetric if M = MT . A symmetric matrix is necessarily
square.

• We write I for the identity matrix.

• A matrix is diagonal if the only non-zero elements appear on the diagonal.
A diagonal matrix is necessarily symmetric.

• A symmetric matrix is positive semidefinite if, for any x such that xTx > 0
(i.e. this vector has at least one non-zero component), we have xTMx ≥ 0.

• A symmetric matrix is positive definite if, for any x such that xTx > 0, we
have xTMx > 0.

• A matrix R is orthonormal if RTR = I = IT = RRT . Orthonormal
matrices are necessarily square.

Orthonormal matrices: You should think of orthonormal matrices as ro-
tations, because they do not change lengths or angles. For x a vector, R an or-
thonormal matrix, and u = Rx, we have uTu = xTRTRx = xTIx = xTx. This
means that R doesn’t change lengths. For y, z both unit vectors, we have that
the cosine of the angle between them is yTx; but, by the same argument as above,
the inner product of Ry and Rx is the same as yTx. This means that R doesn’t
change angles, either.

Eigenvectors and Eigenvalues: Assume S is a d× d symmetric matrix, v
is a d× 1 vector, and λ is a scalar. If we have

Sv = λv

then v is referred to as an eigenvector of S and λ is the corresponding eigenvalue.
Matrices don’t have to be symmetric to have eigenvectors and eigenvalues, but the
symmetric case is the only one of interest to us.

In the case of a symmetric matrix, the eigenvalues are real numbers, and there
are d distinct eigenvectors that are normal to one another, and can be scaled to
have unit length. They can be stacked into a matrix U = [v1, . . . ,vd]. This matrix
is orthonormal, meaning that UTU = I. This means that there is a diagonal matrix
Λ such that

SU = UΛ.

412
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In fact, there is a large number of such matrices, because we can reorder the eigen-
vectors in the matrix U , and the equation still holds with a new Λ, obtained by
reordering the diagonal elements of the original Λ. There is no reason to keep track
of this complexity. Instead, we adopt the convention that the elements of U are
always ordered so that the elements of Λ are sorted along the diagonal, with the
largest value coming first.

Diagonalizing a symmetric matrix: This gives us a particularly impor-
tant procedure. We can convert any symmetric matrix S to a diagonal form by
computing

UTSU = Λ.

This procedure is referred to as diagonalizing a matrix. Again, we assume that
the elements of U are always ordered so that the elements of Λ are sorted along
the diagonal, with the largest value coming first. Diagonalization allows us to
show that positive definiteness is equivalent to having all positive eigenvalues, and
positive semidefiniteness is equivalent to having all non-negative eigenvalues.

Factoring a matrix: Assume that S is symmetric and positive semidefinite.
We have that

S = UΛUT

and all the diagonal elements of Λ are non-negative. Now construct a diagonal
matrix whose diagonal entries are the positive square roots of the diagonal elements
of Λ; call this matrix Λ(1/2). We have Λ(1/2)Λ(1/2) = Λ and (Λ(1/2))T = Λ(1/2).
Then we have that

S = (UΛ(1/2))(Λ(1/2)UT ) = (UΛ(1/2))(UΛ(1/2))T

so we can factor S into the form XX T by computing the eigenvectors and eigen-
values.

18.1.1 Approximating A Symmetric Matrix

Assume we have a k × k symmetric matrix T , and we wish to construct a matrix
A that approximates it. We require that (a) the rank of A is precisely r < k and
(b) the approximation should minimize the Frobenius norm, that is,

||(T − A) ||F 2
=
∑

ij

(Tij −Aij)
2.

It turns out that there is a straightforward construction that yields A.
The first step is to notice that if U is orthonormal and M is any matrix, then

||UM||F = ||MU ||F = ||M||F .

This is true because U is a rotation (as is UT = U−1), and rotations do not change
the length of vectors. So, for example, if we write M as a table of row vectors M =
[m1,m2, ...mk], then UM = [Um1,Um2, ...Umk]. Now ||M||F 2

=
∑k

j=1 ||mj ||2, so
||UM||F 2

=
∑k

i=1 ||Umk ||2. But rotations do not change lengths, so ||Umk ||2 =

||mk ||2, and so ||UM||F = ||M||F . To see the result for the case of MU , just think
of M as a table of row vectors.
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Notice that, if U is the orthonormal matrix whose columns are eigenvectors
of T , then we have

||(T − A) ||F 2 = ||UT (T − A)U ||F
2
.

Now write Λr for UTAU , and Λ for the diagonal matrix of eigenvalues of T . Then
we have

||(T − A) ||F 2
= ||Λ− ΛA ||F 2

,

an expression that is easy to solve for ΛA. We know that Λ is diagonal, so the best
ΛA is diagonal, too. The rank of A must be r, so the rank of ΛA must be r as well.
To get the best ΛA, we keep the r largest diagonal values of Λ, and set the rest
to zero; ΛA has rank r because it has only r non-zero entries on the diagonal, and
every other entry is zero.

Now to recover A from ΛA, we know that UTU = UUT = I (remember, I is
the identity). We have ΛA = UTAU , so

A = UΛAUT .

We can clean up this representation in a useful way. Notice that only the first r
columns of U (and the corresponding rows of UT ) contribute to A. The remaining
k − r are each multiplied by one of the zeros on the diagonal of ΛA. Remember
that, by convention, Λ was sorted so that the diagonal values are in descending
order (i.e. the largest value is in the top left corner). We now keep only the top
left r × r block of ΛA, which we write Λr. We then write Ur for the k × r matrix
consisting of the first r columns of U . Then

A = UrΛrUT

This is so useful a result, I have displayed it in a box; you should remember it.

Procedure: 18.1 Approximating a symmetric matrix with a low rank
matrix

Assume we have a symmetric k× k matrix T . We wish to approximate
T with a matrix A that has rank r < k. Write U for the matrix
whose columns are eigenvectors of T , and Λ for the diagonal matrix
of eigenvalues of A (so AU = UΛ). Remember that, by convention, Λ
was sorted so that the diagonal values are in descending order (i.e. the
largest value is in the top left corner).
Now construct Λr from Λ by setting the k − r smallest values of Λ to
zero, and keeping only the top left r× r block. Construct Ur, the k× r
matrix consisting of the first r columns of U . Then

A = UrΛrUT
r

is the best possible rank r approximation to T in the Frobenius norm.
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Now if A is positive semidefinite (i.e. if at least the r largest eigenvalues of
T are non-negative), then we can factor A as in the previous section. This yields a
procedure to approximate a symmetric matrix by factors. This is so useful a result,
I have displayed it in a box; you should remember it.

Procedure: 18.2 Approximating a symmetric matrix with low dimen-
sional factors

Assume we have a symmetric k× k matrix T . We wish to approximate
T with a matrix A that has rank r < k. We assume that at least the
r largest eigenvalues of T are non-negative. Write U for the matrix
whose columns are eigenvectors of T , and Λ for the diagonal matrix
of eigenvalues of A (so AU = UΛ). Remember that, by convention, Λ
was sorted so that the diagonal values are in descending order (i.e. the
largest value is in the top left corner).
Now construct Λr from Λ by setting the k − r smallest values of Λ

to zero and keeping only the top left r × r block. Construct Λ
(1/2)
r

by replacing each diagonal element of Λ with its positive square root.
Construct Ur, the k × r matrix consisting of the first r columns of U .
Then write V = (UrΛ

(1/2)
r )

A = VVT

is the best possible rank r approximation to T in the Frobenius norm.

Error functions and Gaussians: The error function is defined by

erf(x) =
2√
π

∫ x

0

e−t2dt

and programming environments can typically evaluate the error function. This fact
is made useful to us by a simple change of variables. We get

1√
2π

∫ x

0

e
−u2

2 du =
1√
π

∫ x√
2

0

e−t2dt =
1

2
erf

(

x√
2

)

.

A particularly useful manifestation of this fact comes by noticing that

1√
2π

∫ 0

−∞
e

−t2

2 dt = 1/2

(because 1√
2π

e
−u2

2 is a probability density function, and is symmetric about 0). As

a result, we get
1√
2π

∫ x

−∞
e

−t2

2 dt = 1/2(1 + erf

(

x√
2

)

).



Section 18.1 Useful Material about Matrices 416

Inverse error functions: We sometimes wish to know the value of x such
that

1√
2π

∫ x

−∞
e

−t2

2 dt = p

for some given p. The relevant function of p is known as the probit function or
the normal quantile function. We write

x = Φ(p).

The probit function Φ can be expressed in terms of the inverse error function.
Most programming environments can evaluate the inverse error function (which is
the inverse of the error function). We have that

Φ(p) =
√
2erf−1(2p− 1).

One problem we solve with some regularity is: choose u such that

∫ u

−u

1√
2π

exp (−x2/2)dx = p.

Notice that

p

2
=

1√
2π

∫ u

0

e
−t2

2 dt

=
1

2
erf

(

u√
2

)

so that
u =

√
2erf−1(p).


