
Measuring Praise and Criticism: Inference
of Semantic Orientation from Association

PETER D. TURNEY
National Research Council Canada
and
MICHAEL L. LITTMAN
Rutgers University

The evaluative character of a word is called its semantic orientation. Positive semantic orientation
indicates praise (e.g., “honest”, “intrepid”) and negative semantic orientation indicates criticism
(e.g., “disturbing”, “superfluous”). Semantic orientation varies in both direction (positive or nega-
tive) and degree (mild to strong). An automated system for measuring semantic orientation would
have application in text classification, text filtering, tracking opinions in online discussions, anal-
ysis of survey responses, and automated chat systems (chatbots). This article introduces a method
for inferring the semantic orientation of a word from its statistical association with a set of positive
and negative paradigm words. Two instances of this approach are evaluated, based on two different
statistical measures of word association: pointwise mutual information (PMI) and latent seman-
tic analysis (LSA). The method is experimentally tested with 3,596 words (including adjectives,
adverbs, nouns, and verbs) that have been manually labeled positive (1,614 words) and negative
(1,982 words). The method attains an accuracy of 82.8% on the full test set, but the accuracy rises
above 95% when the algorithm is allowed to abstain from classifying mild words.

Categories and Subject Descriptors: H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing—linguistic processing; H.3.3 [Information Storage and Retrieval]:
Information Search and Retrieval—information filtering, search process; I.2.7 [Artificial Intel-
ligence]: Natural Language Processing—text analysis

General Terms: Algorithms, Experimentation

Additional Key Words and Phrases: semantic orientation, semantic association, web mining,
text mining, text classification, unsupervised learning, mutual information, latent semantic
analysis

1. INTRODUCTION

In an early study of subjective meaning, Osgood et al. [1957] asked people to
rate words on a wide variety of scales. Each scale was defined by a bipolar
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pair of adjectives, such as sweet/sour, rugged/delicate, and sacred/profane. The
scales were divided into seven intervals. Osgood et al. [1957] gathered data on
the ratings of many words by a large number of subjects and then analyzed the
data using factor analysis. They discovered that three main factors accounted
for most of the variation in the data.

The intuitive meaning of each factor can be understood by looking for
the bipolar adjective pairs that are most highly correlated with each factor.
The primary factor, which accounted for much of the variation in the data,
was highly correlated with good/bad, beautiful/ugly, kind/cruel, and honest/
dishonest. Osgood et al. called this the evaluative factor. The second factor,
called the potency factor, was highly correlated with strong/weak, large/small,
and heavy/light. The third factor, activity, was correlated with active/passive,
fast/slow, and hot/cold.

In this article, we focus on the evaluative factor. Hatzivassiloglou and
McKeown [1997] call this factor the semantic orientation of a word. It is also
known as valence in the linguistics literature. A positive semantic orientation
denotes a positive evaluation (i.e., praise) and a negative semantic orienta-
tion denotes a negative evaluation (i.e., criticism). Semantic orientation has
both direction (positive or negative) and intensity (mild or strong); contrast
okay/fabulous (mild/strong positive) and irksome/horrid (mild/strong negative).
We introduce a method for automatically inferring the direction and intensity
of the semantic orientation of a word from its statistical association with a set
of positive and negative paradigm words.

It is worth noting that there is a high level of agreement among human
annotators on the assignment of semantic orientation to words. For their ex-
periments, Hatzivassiloglou and McKeown [1997] created a testing set of 1,336
adjectives (657 positive and 679 negative terms). They labeled the terms them-
selves and then they validated their labels by asking four people to indepen-
dently label a random sample of 500 of the 1,336 adjectives. On average, the
four people agreed that it was appropriate to assign a positive or negative label
to 89% of the 500 adjectives. In the cases where they agreed that it was appro-
priate to assign a label, they assigned the same label as Hatzivassiloglou and
McKeown to 97% of the terms. The average agreement among the four people
was also 97%. In our own study, in Section 5.8, the average agreement among
the subjects was 98% and the average agreement between the subjects and our
benchmark labels was 94% (25 subjects, 28 words). This level of agreement com-
pares favourably with validation studies in similar tasks, such as word sense
disambiguation.

This article presents a general strategy for inferring semantic orientation
from semantic association. To provide the motivation for the work described
here, Section 2 lists some potential applications of algorithms for determin-
ing semantic orientation, such as new kinds of search services [Hearst 1992],
filtering “flames” (abusive messages) for newsgroups [Spertus 1997], and track-
ing opinions in online discussions [Tong 2001].

Section 3 gives two examples of our method for inferring semantic ori-
entation from association, using two different measures of word association,
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Pointwise Mutual Information (PMI) [Church and Hanks 1989] and Latent Se-
mantic Analysis (LSA) [Landauer and Dumais 1997]. PMI and LSA are based
on co-occurrence, the idea that “a word is characterized by the company it
keeps” [Firth 1957]. The hypothesis behind our approach is that the seman-
tic orientation of a word tends to correspond to the semantic orientation of its
neighbors.

Related work is examined in Section 4. Hatzivassiloglou and McKeown
[1997] have developed a supervised learning algorithm that infers semantic
orientation from linguistic constraints on the use of adjectives in conjunctions.
The performance of their algorithm was measured by the accuracy with which
it classifies words. Another approach is to evaluate an algorithm for learning
semantic orientation in the context of a specific application. Turney [2002] does
this in the context of text classification, where the task is to classify a review
as positive (“thumbs up”) or negative (“thumbs down”). Pang et al. [2002] have
also addressed the task of review classification, but they used standard machine
learning text classification techniques.

Experimental results are presented in Section 5. The algorithms are eval-
uated using 3,596 words (1,614 positive and 1,982 negative) taken from the
General Inquirer lexicon [Stone et al. 1966]. These words include adjectives,
adverbs, nouns, and verbs. An accuracy of 82.8% is attained on the full test set,
but the accuracy can rise above 95% when the algorithm is allowed to abstain
from classifying mild words.

The interpretation of the experimental results is given in Section 6. We dis-
cuss limitations and future work in Section 7 and conclude in Section 8.

2. APPLICATIONS

The motivation of Hatzivassiloglou and McKeown [1997] was to use seman-
tic orientation as a component in a larger system, to automatically identify
antonyms and distinguish near synonyms. Both synonyms and antonyms typi-
cally have strong semantic associations, but synonyms generally have the same
semantic orientation, whereas antonyms have opposite orientations.

Semantic orientation may also be used to classify reviews (e.g., movie reviews
or automobile reviews) as positive or negative [Turney 2002]. It is possible to
classify a review based on the average semantic orientation of phrases in the
review that contain adjectives and adverbs. We expect that there will be value
in combining semantic orientation [Turney 2002] with more traditional text
classification methods for review classification [Pang et al. 2002].

To illustrate review classification, Table I shows the average semantic ori-
entation of sentences selected from reviews of banks, from the Epinions site.1

In this table, we used SO-PMI (see Section 3.1) to calculate the semantic orien-
tation of each individual word and then averaged the semantic orientation of
the words in each sentence. Five of these six randomly selected sentences are
classified correctly.

1See http://www.epinions.com/.
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Table I. The Average Semantic Orientation of Some Sample Sentences

Positive Reviews Average SO
1. I love the local branch, however communication may break down

if they have to go through head office.
0.1414

2. Bank of America gets my business because of its extensive branch
and ATM network.

0.1226

3. This bank has exceeded my expectations for the last ten years. 0.1690
Negative Reviews Average SO

1. Do not bank here, their website is even worse than their actual
locations.

−0.0766

2. Use Bank of America only if you like the feeling of a stranger’s warm,
sweaty hands in your pockets.

0.1535

3. If you want poor customer service and to lose money to ridiculous
charges, Bank of America is for you.

−0.1314

In Table I, for each sentence, the word with the strongest semantic orien-
tation has been marked in bold. These bold words dominate the average and
largely determine the orientation of the sentence as a whole. In the sentence
that is misclassified as positive, the system is misled by the sarcastic tone. The
negative orientations of “stranger’s” and “sweaty” were not enough to counter
the strong positive orientation of “warm”.

One application of review classification is to provide summary statistics for
search engines. Given the query “Paris travel review”, a search engine could
report, “There are 5,000 hits, of which 80% are positive and 20% are negative.”
The search results could also be sorted by average semantic orientation, so that
the user could easily sample the most extreme reviews. Alternatively, the user
could include the desired semantic orientation in the query, “Paris travel review
orientation: positive” [Hearst 1992].

Preliminary experiments indicate that semantic orientation is also useful for
summarization of reviews. A positive review could be summarized by picking
out the sentence with the highest positive semantic orientation and a negative
review could be summarized by extracting the sentence with the lowest negative
semantic orientation.

Another potential application is filtering “flames” for newsgroups [Spertus
1997]. There could be a threshold, such that a newsgroup message is held for
verification by the human moderator when the semantic orientation of any word
in the message drops below the threshold.

Tong [2001] presents a system for generating sentiment timelines. This sys-
tem tracks online discussions about movies and displays a plot of the number
of positive sentiment and negative sentiment messages over time. Messages
are classified by looking for specific phrases that indicate the sentiment of the
author towards the movie, using a hand-built lexicon of phrases with associated
sentiment labels. There are many potential uses for sentiment timelines: Adver-
tisers could track advertising campaigns, politicians could track public opinion,
reporters could track public response to current events, and stock traders could
track financial opinions. However, with Tong’s approach, it would be necessary
to provide a new lexicon for each new domain. Tong’s [2001] system could benefit
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from the use of an automated method for determining semantic orientation, in-
stead of (or in addition to) a hand-built lexicon.

Semantic orientation could also be used in an automated chat system (a chat-
bot), to help decide whether a positive or negative response is most appropriate.
Similarly, characters in software games would appear more realistic if they re-
sponded to the semantic orientation of words that are typed or spoken by the
game player.

Another application is the analysis of survey responses to open ended
questions. Commercial tools for this task include TextSmart2 (by SPSS) and
Verbatim Blaster3 (by StatPac). These tools can be used to plot word frequencies
or cluster responses into categories, but they do not currently analyze semantic
orientation.

3. SEMANTIC ORIENTATION FROM ASSOCIATION

The general strategy in this article is to infer semantic orientation from seman-
tic association. The semantic orientation of a given word is calculated from the
strength of its association with a set of positive words, minus the strength of
its association with a set of negative words:

Pwords = a set of words with positive semantic orientation (1)
Nwords = a set of words with negative semantic orientation (2)
A(word1, word2) = a measure of association between word1 and word2 (3)

SO-A(word ) =
∑

pword∈Pwords

A(word, pword )−
∑

nword∈Nwords

A(word, nword ). (4)

We assume that A(word1, word2) maps to a real number. When A(word1, word2)
is positive, the words tend to be associated with each other. Larger values corre-
spond to stronger associations. When A(word1, word2) is negative, the presence
of one word makes it likely that the other is absent.

A word, word, is classified as having a positive semantic orientation when
SO-A(word ) is positive and a negative orientation when SO-A(word ) is neg-
ative. The magnitude (absolute value) of SO-A(word ) can be considered the
strength of the semantic orientation.

In the following experiments, seven positive words and seven negative words
are used as paradigms of positive and negative semantic orientation:

Pwords = {good, nice, excellent, positive, fortunate, correct, superior} (5)
Nwords = {bad, nasty, poor, negative, unfortunate, wrong, inferior}. (6)

These fourteen words were chosen for their lack of sensitivity to context. For
example, a word such as “excellent” is positive in almost all contexts. The sets
also consist of opposing pairs (good/bad, nice/nasty, excellent/poor, etc.). We
experiment with randomly selected words in Section 5.8.

2See http://www.spss.com/textsmart/.
3See http://www.statpac.com/content-analysis.htm.
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It could be argued that this is a supervised learning algorithm with fourteen
labeled training examples and millions or billions of unlabeled training exam-
ples, but it seems more appropriate to say that the paradigm words are defining
semantic orientation, rather than training the algorithm. Therefore, we prefer
to describe our approach as unsupervised learning. However, this point does
not affect our conclusions.

This general strategy is called SO-A (Semantic Orientation from Associa-
tion). Selecting particular measures of word association results in particular
instances of the strategy. This article examines SO-PMI (Semantic Orientation
from Pointwise Mutual Information) and SO-LSA (Semantic Orientation from
Latent Semantic Analysis).

3.1 Semantic Orientation from PMI

PMI-IR [Turney 2001] uses Pointwise Mutual Information (PMI) to calculate
the strength of the semantic association between words [Church and Hanks
1989]. Word co-occurrence statistics are obtained using Information Retrieval
(IR). PMI-IR has been empirically evaluated using 80 synonym test questions
from the Test of English as a Foreign Language (TOEFL), obtaining a score of
74% [Turney 2001], comparable to that produced by direct thesaurus search
[Littman 2001].

The Pointwise Mutual Information (PMI) between two words, word1 and
word2, is defined as follows [Church and Hanks 1989]:

PMI (word1, word2) = log2

(
p(word1 & word2)
p(word1) p(word2)

)
. (7)

Here, p(word1 & word2) is the probability that word1 and word2 co-occur. If the
words are statistically independent, the probability that they co-occur is given
by the product p(word1) p(word2). The ratio between p(word1 & word2) and
p(word1) p(word2) is a measure of the degree of statistical dependence between
the words. The log of the ratio corresponds to a form of correlation, which is
positive when the words tend to co-occur and negative when the presence of
one word makes it likely that the other word is absent.

PMI-IR estimates PMI by issuing queries to a search engine (hence, the IR
in PMI-IR) and noting the number of hits (matching documents). The following
experiments use the AltaVista Advanced Search engine,4 which indexes approx-
imately 350 million web pages (counting only those pages that are in English).
Given a (conservative) estimate of 300 words per web page, this represents a
corpus of at least one hundred billion words.

AltaVista was chosen over other search engines because it has a NEAR op-
erator. The AltaVista NEAR operator constrains the search to documents that
contain the words within ten words of one another, in either order. Previous
work has shown that NEAR performs better than AND when measuring the
strength of semantic association between words [Turney 2001]. We experimen-
tally compare NEAR and AND in Section 5.4.

4See http://www.altavista.com/sites/search/adv.
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SO-PMI is an instance of SO-A. From Eq. (4), we have:

SO-PMI(word ) =
∑

pword∈Pwords

PMI(word, pword )

−
∑

nword∈Nwords

PMI(word, nword ). (8)

Let hits(query) be the number of hits returned by the search engine, given the
query, query. We calculate PMI(word1, word2) from Eq. (7) as follows:

PMI(word1, word2) = log2

(
1
N hits(word1 NEAR word2)
1
N hits(word1) 1

N hits(word2)

)
. (9)

Here, N is the total number of documents indexed by the search engine.
Combining Eqs. (8) and (9), we have:

SO-PMI(word ) =

log2


∏

pword∈Pwords
hits(word NEAR pword ) · ∏

nword∈Nwords
hits(nword )∏

pword∈Pwords
hits(pword ) · ∏

nword∈Nwords
hits(word NEAR nword )

 .
(10)

Note that N , the total number of documents, drops out of the final equation.
Equation (10) is a log-odds ratio [Agresti 1996].

Calculating the semantic orientation of a word via Eq. (10) requires twenty-
eight queries to AltaVista (assuming there are fourteen paradigm words). Since
the two products in (10) that do not contain word are constant for all words,
they only need to be calculated once. Ignoring these two constant products, the
experiments required only fourteen queries per word.

To avoid division by zero, 0.01 was added to the number of hits. This is a
form of Laplace smoothing. We examine the effect of varying this parameter in
Section 5.3.

Pointwise Mutual Information is only one of many possible measures of
word association. Several others are surveyed in Manning and Schütze [1999].
Dunning [1993] suggests the use of likelihood ratios as an improvement over
PMI. To calculate likelihood ratios for the association of two words, X and Y,
we need to know four numbers:

k(X Y ) = the frequency that X occurs within a given neighborhood of Y (11)
k(∼X Y ) = the frequency that Y occurs in a neighborhood without X (12)
k(X ∼ Y ) = the frequency that X occurs in a neighborhood without Y (13)
k(∼X ∼Y ) = the frequency that neither X nor Y occur in a neighborhood.

(14)

If the neighborhood size is ten words, then we can use hits(X NEAR Y ) to
estimate k(X Y ) and hits(X ) – hits(X NEAR Y ) to estimate k(X ∼ Y ), but
note that these are only rough estimates, since hits(X NEAR Y ) is the number
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of documents that contain X near Y , not the number of neighborhoods that
contain X and Y . Some preliminary experiments suggest that this distinction
is important, since alternatives to PMI (such as likelihood ratios [Dunning
1993] and the Z-score [Smadja 1993]) appear to perform worse than PMI when
used with search engine hit counts.

However, if we do not restrict our attention to measures of word asso-
ciation that are compatible with search engine hit counts, there are many
possibilities. In the next section, we look at one of them, Latent Semantic
Analysis.

3.2 Semantic Orientation from LSA

SO-LSA applies Latent Semantic Analysis (LSA) to calculate the strength of the
semantic association between words [Landauer and Dumais 1997]. LSA uses
the Singular Value Decomposition (SVD) to analyze the statistical relationships
among words in a corpus.

The first step is to use the text to construct a matrix X, in which the row
vectors represent words and the column vectors represent chunks of text (e.g.,
sentences, paragraphs, documents). Each cell represents the weight of the cor-
responding word in the corresponding chunk of text. The weight is typically the
tf-idf score (Term Frequency times Inverse Document Frequency) for the word
in the chunk. (tf-idf is a standard tool in information retrieval [van Rijsbergen
1979].)5

The next step is to apply singular value decomposition [Golub and Van
Loan 1996] to X, to decompose X into a product of three matrices UΣVT ,
where U and V are in column orthonormal form (i.e., the columns are or-
thogonal and have unit length: UT U = VT V = I) and Σ is a diagonal ma-
trix of singular values (hence, SVD). If X is of rank r, then Σ is also of
rank r. Let Σk , where k < r, be the diagonal matrix formed from the top
k singular values, and let Uk and Vk be the matrices produced by selecting
the corresponding columns from U and V. The matrix UkΣkVT

k is the ma-
trix of rank k that best approximates the original matrix X, in the sense
that it minimizes the approximation errors. That is, X̂ = UkΣkVT

k minimizes
‖X̂−X‖F over all matrices X̂ of rank k, where ‖ · · · ‖F denotes the Frobenius
norm [Golub and Van Loan 1996; Bartell et al. 1992]. We may think of
this matrix UkΣkVT

k as a “smoothed” or “compressed” version of the original
matrix X.

LSA is similar to principal components analysis. LSA works by measur-
ing the similarity of words using the smoothed matrix UkΣkVT

k instead of
the original matrix X. The similarity of two words, LSA(word1, word2), is
measured by the cosine of the angle between their corresponding row vec-
tors in UkΣkVT

k , which is equivalent to using the corresponding rows of Uk
[Deerwester et al. 1990; Bartell et al. 1992; Schütze 1993; Landauer and
Dumais 1997].

5The tf-idf score gives more weight to terms that are statistically “surprising”. This heuristic works
well for information retrieval, but its impact on determining semantic orientation is unknown.
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The semantic orientation of a word, word, is calculated by SO-LSA from
Eq. (4), as follows:

SO-LSA(word ) =
∑

pword∈Pwords

LSA(word, pword )

−
∑

nword∈Nwords

LSA(word, nword ). (15)

For the paradigm words, we have the following (from Eqs. (5), (6), and (15)):

SO-LSA(word ) = [LSA(word, good)+ · · · + LSA(word, superior)]
− [LSA(word, bad)+ · · · + LSA(word, inferior)]. (16)

As with SO-PMI, a word, word, is classified as having a positive semantic
orientation when SO-LSA(word ) is positive and a negative orientation when
SO-LSA(word ) is negative. The magnitude of SO-LSA(word ) represents the
strength of the semantic orientation.

4. RELATED WORK

Related work falls into three groups: work on classifying words by positive
or negative semantic orientation (Section 4.1), classifying reviews (e.g., movie
reviews) as positive or negative (Section 4.2), and recognizing subjectivity in
text (Section 4.3).

4.1 Classifying Words

Hatzivassiloglou and McKeown [1997] treat the problem of determining seman-
tic orientation as a problem of classifying words, as we also do in this article.
They note that there are linguistic constraints on the semantic orientations
of adjectives in conjunctions. As an example, they present the following three
sentences:

(1) The tax proposal was simple and well received by the public.
(2) The tax proposal was simplistic, but well received by the public.
(3) (*) The tax proposal was simplistic and well received by the public.

The third sentence is incorrect, because we use “and” with adjectives that have
the same semantic orientation (“simple” and “well-received” are both positive),
but we use “but” with adjectives that have different semantic orientations (“sim-
plistic” is negative).

Hatzivassiloglou and McKeown [1997] use a four-step supervised learning
algorithm to infer the semantic orientation of adjectives from constraints on
conjunctions:

(1) All conjunctions of adjectives are extracted from the given corpus.
(2) A supervised learning algorithm combines multiple sources of evidence to

label pairs of adjectives as having the same semantic orientation or dif-
ferent semantic orientations. The result is a graph in which the nodes are
adjectives and links indicate sameness or difference of semantic orientation.
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Table II. The Accuracy of HM with a 21-Million-Word Corpus6

Alpha Accuracy Size of test set Percent of “full” test set
2 78.08% 730 100.0%
3 82.56% 516 70.7%
4 87.26% 369 50.5%
5 92.37% 236 32.3%

(3) A clustering algorithm processes the graph structure to produce two subsets
of adjectives, such that links across the two subsets are mainly different-
orientation links, and links inside a subset are mainly same-orientation
links.

(4) Since it is known that positive adjectives tend to be used more frequently
than negative adjectives, the cluster with the higher average frequency is
classified as having positive semantic orientation.

For brevity, we will call this the HM algorithm.
Like SO-PMI and SO-LSA, HM can produce a real-valued number that indi-

cates both the direction (positive or negative) and the strength of the semantic
orientation. The clustering algorithm (Step (3) above) can produce a “goodness-
of-fit” measure that indicates how well an adjective fits in its assigned cluster.

Hatzivassiloglou and McKeown [1997] used a corpus of 21 million words and
evaluated HM with 1,336 manually labeled adjectives (657 positive and 679
negative). Their results are given in Table II. HM classifies adjectives with
accuracies ranging from 78% to 92%, depending on Alpha, described as follows.

Alpha is a parameter that is used to partition the 1,336 labeled adjectives
into training and testing sets. As Alpha increases, the training set grows and
the testing set becomes smaller. The precise definition of Alpha is complicated,
but the basic idea is to put the hard cases (the adjectives for which there are
few conjunctions in the given corpus) in the training set and the easy cases (the
adjectives for which there are many conjunctions) in the testing set. As Alpha
increases, the testing set becomes increasingly easy (i.e., the adjectives that
remain in the testing set are increasingly well covered by the given corpus).
In essence, the idea is to improve accuracy by abstaining from classifying the
difficult (rare, sparsely represented) adjectives. As expected, the accuracy rises
as Alpha rises. This suggests that the accuracy will improve with larger corpora.

This algorithm is able to achieve good accuracy levels, but it has some lim-
itations. In contrast with SO-A, HM is restricted to adjectives and it requires
labeled adjectives as training data (in Step (2)).

Although each step in HM, taken by itself, is relatively simple, the combi-
nation of the four steps makes theoretical analysis challenging. In particular,
the interaction between the supervised labeling (Step (2)) and the clustering
(Step (3)) is difficult to analyze. For example, the degree of regularization (i.e.,
smoothing, pruning) in the labeling step may have an impact on the quality
of the clusters. By contrast, SO-PMI is captured in a single formula (Eq. (10)),
which takes the form of the familiar log-odds ratio [Agresti 1996].

6This table is derived from Table III in Hatzivassiloglou and McKeown [1997].
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HM has only been evaluated with adjectives, but it seems likely that it would
work with adverbs. For example, we would tend to say “He ran quickly (+) but
awkwardly (−)” rather than “He ran quickly (+) and awkwardly (−)”. However,
it seems less likely that HM would work well with nouns and verbs. There is
nothing wrong with saying “the rise (+) and fall (−) of the Roman Empire” or
“love (+) and death (−)”.7 Indeed, “but” would not work in these phrases.

Kamps and Marx [2002] use the WordNet lexical database [Miller 1990]
to determine the semantic orientation of a word. For a given word, they look
at its semantic distance from “good” compared to its semantic distance from
“bad”. The idea is similar to SO-A, except that the measure of association is
replaced with a measure of semantic distance, based on WordNet [Budanit-
sky and Hirst 2001]. This is an interesting approach, but it has not yet been
evaluated empirically.

4.2 Classifying Reviews

Turney [2002] used a three-step approach to classify reviews. The first step
was to apply a part-of-speech tagger to the review and then extract two-word
phrases, such as “romantic ambience” or “horrific events”, where one of the
words in the phrase was an adjective or an adverb. The second step was to
use SO-PMI to calculate the semantic orientation of each extracted phrase. The
third step was to classify the review as positive or negative, based on the average
semantic orientation of the extracted phrases. If the average was positive, then
the review was classified as positive; otherwise, negative. The experimental
results suggest that SO-PMI may be useful for classifying reviews, but the
results do not reveal how well SO-PMI can classify individual words or phrases.
Therefore, it is worthwhile to experimentally evaluate the performance of SO-
PMI on individual words, as we do in Section 5.

The reviewing application of SO-A illustrates the value of an automated ap-
proach to determining semantic orientation. Although it might be feasible to
manually create a lexicon of individual words labeled with semantic orienta-
tion, if an application requires the semantic orientation of two-word or three-
word phrases, the number of terms involved grows beyond what can be handled
by manual labeling. Turney [2002] observed that an adjective such as “unpre-
dictable” may have a negative semantic orientation in an automobile review, in
a phrase such as “unpredictable steering”, but it could have a positive (or neu-
tral) orientation in a movie review, in a phrase such as “unpredictable plot”.
SO-PMI can handle multiword phrases by simply searching for them using a
quoted phrase query.

Pang et al. [2002] applied classical text classification techniques to the task
of classifying movie reviews as positive or negative. They evaluated three dif-
ferent supervised learning algorithms and eight different sets of features, yield-
ing twenty-four different combinations. The best result was achieved using a
Support Vector Machine (SVM) with features based on the presence or absence
(rather than the frequency) of single words (rather than two-word phrases).

7The Rise and Fall of the Roman Empire is the title of a book by Edward Gibbon. Love and Death
is the title of a movie directed by Woody Allen.
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We expect that Pang et al.’s algorithm will tend to be more accurate than
Turney’s, since the former is supervised and the latter is unsupervised. On the
other hand, we hypothesize that the supervised approach will require retraining
for each new domain. For example, if a supervised algorithm is trained with
movie reviews, it is likely to perform poorly when it is tested with automobile
reviews. Perhaps it is possible to design a hybrid algorithm that achieves high
accuracy without requiring retraining.

Classifying reviews is related to measuring semantic orientation, since it is
one of the possible applications for semantic orientation, but there are many
other possible applications (see Section 2). Although it is interesting to evaluate
a method for inferring semantic orientation, such as SO-PMI, in the context of
an application, such as review classification, the diversity of potential applica-
tions makes it interesting to study semantic orientation in isolation, outside of
any particular application. That is the approach adopted in this article.

4.3 Subjectivity Analysis

Other related work is concerned with determining subjectivity [Hatzivas-
siloglou and Wiebe 2000; Wiebe 2000; Wiebe et al. 2001]. The task is to distin-
guish sentences (or paragraphs or documents or other suitable chunks of text)
that present opinions and evaluations from sentences that objectively present
factual information [Wiebe 2000].

Wiebe et al. [2001] list a variety of potential applications for automated
subjectivity tagging, such as recognizing “flames” [Spertus 1997], classifying
e-mail, recognizing speaker role in radio broadcasts, and mining reviews. In
several of these applications, the first step is to recognize that the text is subjec-
tive and then the natural second step is to determine the semantic orientation
of the subjective text. For example, a flame detector cannot merely detect that a
newsgroup message is subjective, it must further detect that the message has a
negative semantic orientation; otherwise a message of praise could be classified
as a flame.

On the other hand, applications that involve semantic orientation are also
likely to benefit from a prior step of subjectivity analysis. For example, a movie
review typically contains a mixture of objective descriptions of scenes in the
movie and subjective statements of the viewer’s reaction to the movie. In a
positive movie review, it is common for the objective description to include words
with a negative semantic orientation, although the subjective reaction may be
quite positive [Turney 2002]. If the task is to classify the review as positive or
negative, a two-step approach seems wise. The first step would be to filter out
the objective sentences [Wiebe 2000; Wiebe et al. 2001] and the second step
would be to determine the semantic orientation of the words and phrases in
the remaining subjective sentences [Turney 2002].

5. EXPERIMENTS

In Section 5.1, we discuss the lexicons and corpora that are used in the following
experiments. Section 5.2 examines the baseline performance of SO-PMI, when
it is configured as described in Section 3.1. Sections 5.3, 5.4, and 5.5 explore
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Table III. Examples of “Positiv” and “Negativ” Words

Positiv Negativ
abide absolve abandon abhor
ability absorbent abandonment abject
able absorption abate abnormal
abound abundance abdicate abolish

variations on the baseline SO-PMI system. The baseline performance of SO-
LSA is evaluated in Section 5.6 and variations on the baseline SO-LSA system
are considered in Section 5.7. The final experiments in Section 5.8 analyze the
effect of the choice of the paradigm words, for both SO-PMI and SO-LSA.

5.1 Lexicons and Corpora

The following experiments use two different lexicons and three different cor-
pora. The corpora are used for unsupervised learning and the lexicons are used
to evaluate the results of the learning. The HM lexicon is the list of 1,336 labeled
adjectives that was created by Hatzivassiloglou and McKeown [1997]. The GI
lexicon is a list of 3,596 labeled words extracted from the General Inquirer lex-
icon [Stone et al. 1966]. The AV-ENG corpus is the set of English web pages
indexed by the AltaVista search engine. The AV-CA corpus is the set of English
web pages in the Canadian domain that are indexed by AltaVista. The TASA
corpus is a set of short English documents gathered from a variety of sources
by Touchstone Applied Science Associates.

The HM lexicon consists of 1,336 adjectives, 657 positive and 679 negative
[Hatzivassiloglou and McKeown 1997]. We described this lexicon earlier, in
Sections 1 and 4.1. We use the HM lexicon to allow comparison between the
approach of Hatzivassiloglou and McKeown [1997] and the SO-A algorithms
described here.

Since the HM lexicon is limited to adjectives, most of the following exper-
iments use a second lexicon, the GI lexicon, which consists of 3,596 adjec-
tives, adverbs, nouns, and verbs, 1,614 positive and 1,982 negative [Stone et al.
1966]. The General Inquirer lexicon is available at http://www.wjh.harvard.
edu/∼inquirer/. The lexicon was developed by Philip Stone and his colleagues,
beginning in the 1960s, and continues to grow. It has been designed as a tool for
content analysis, a technique used by social scientists, political scientists, and
psychologists for objectively identifying specified characteristics of messages
[Stone et al. 1966].

The full General Inquirer lexicon has 182 categories of word tags and 11,788
words. The words tagged “Positiv” (1,915 words) and “Negativ” (2,291 words)
have (respectively) positive and negative semantic orientations. Table III lists
some examples.

Words with multiple senses may have multiple entries in the lexicon. The
list of 3,596 words (1,614 positive and 1,982 negative) used in the subsequent
experiments was generated by reducing multiple-entry words to single entries.
Some words with multiple senses were tagged as both “Positiv” and “Negativ”.
For example, “mind” in the sense of “intellect” is positive, but “mind” in the
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sense of “beware” is negative. These ambiguous words were not included in our
set of 3,596 words. We also excluded the fourteen paradigm words (good/bad,
nice/nasty, etc.).

Of the words in the HM lexicon, 47.7% also appear in the GI lexicon (324 pos-
itive, 313 negative). The agreement between the two lexicons on the orientation
of these shared words is 98.3% (six terms are positive in HM but negative in
GI; five terms are negative in HM but positive in GI).

The AltaVista search engine is available at http://www.altavista.com/. Based
on estimates in the popular press and our own tests with various queries, we
estimate that the AltaVista index contained approximately 350 million English
web pages at the time our experiments were carried out. This corresponds to
roughly one hundred billion words. We call this the AV-ENG corpus. The set of
web pages indexed by AltaVista is constantly changing, but there is enough sta-
bility that our experiments were reliably repeatable over the course of several
months.

In order to examine the effect of corpus size on learning, we used AV-CA, a
subset of the AV-ENG corpus. The AV-CA corpus was produced by adding “AND
host:.ca” to every query to AltaVista, which restricts the search results to the
web pages with “ca” in the host domain name. This consists mainly of hosts that
end in “ca” (the Canadian domain), but it also includes a few hosts with “ca”
in other parts of the domain name (such as “http://www.ca.com/”). The AV-CA
corpus contains approximately 7 million web pages (roughly two billion words),
about 2% of the size of the AV-ENG corpus.

Our experiments with SO-LSA are based on the online demonstration of
LSA, available at http://lsa.colorado.edu/. This demonstration allows a choice
of several different corpora. We chose the largest corpus, the TASA-ALL corpus,
which we call simply TASA. In the online LSA demonstration, TASA is called
the “General Reading up to 1st year college (300 factors)” topic space. The
corpus contains a wide variety of short documents, taken from novels, newspa-
per articles, and other sources. It was collected by Touchstone Applied Science
Associates, to develop The Educator’s Word Frequency Guide. The TASA corpus
contains approximately 10 million words, about 0.5% of the size of the AV-CA
corpus.

The TASA corpus is not indexed by AltaVista. For SO-PMI, the following
experimental results were generated by emulating AltaVista on a local copy of
the TASA corpus. We used a simple Perl script to calculate the hits() function
for TASA, as a surrogate for sending queries to AltaVista.

5.2 SO-PMI Baseline

Table IV shows the accuracy of SO-PMI in its baseline configuration, as de-
scribed in Section 3.1. These results are for all three corpora, tested with the
HM lexicon. In this table, the strength (absolute value) of the semantic ori-
entation was used as a measure of confidence that the word will be correctly
classified. Test words were sorted in descending order of the absolute value of
their semantic orientation and the top ranked words (the highest confidence
words) were then classified. For example, the second row in Table IV shows the
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Table IV. The Accuracy of SO-PMI with the HM Lexicon and the Three Corpora

Percent of Size of Accuracy with Accuracy Accuracy
full test set test set AV-ENG with AV-CA with TASA
100% 1336 87.13% 80.31% 61.83%

75% 1002 94.41% 85.93% 64.17%
50% 668 97.60% 91.32% 46.56%
25% 334 98.20% 92.81% 70.96%

Approx. num. of words in corpus 1 × 1011 2 × 109 1 × 107

Fig. 1. Accuracy of SO-PMI with the HM lexicon and the three corpora.

accuracy when the top 75% (with highest confidence) were classified and the
last 25% (with lowest confidence) were ignored.

The performance of SO-PMI in Table IV can be compared to the performance
of the HM algorithm in Table II (Section 4.1), since both use the HM lexicon, but
there are some differences in the evaluation, since the HM algorithm is super-
vised but SO-PMI is unsupervised. Because the HM algorithm is supervised,
part of the HM lexicon must be set aside for training, so the algorithm cannot
be evaluated on the whole lexicon. Aside from this caveat, it appears that the
performance of the HM algorithm is roughly comparable to the performance of
SO-PMI with the AV-CA corpus, which is about one hundred times larger than
the corpus used by Hatzivassiloglou and McKeown [1997] (2 × 109words ver-
sus 2 × 107 words). This suggests that the HM algorithm makes more efficient
use of corpora than SO-PMI, but the advantage of SO-PMI is that it can easily
be scaled up to very large corpora, where it can achieve significantly higher
accuracy.

The results of these experiments are shown in more detail in Figure 1. The
percentage of the full test set (labeled threshold in the figure) varies from
5% to 100% in increments of 5%. Three curves are plotted, one for each of
the three corpora. The figure shows that a smaller corpus not only results in
lower accuracy, but also results in less stability. With the larger corpora, the
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Table V. The Accuracy of SO-PMI with the GI Lexicon and the Three Corpora

Percent of Size of Accuracy with Accuracy Accuracy
full test set test set AV-ENG with AV-CA with TASA
100% 3596 82.84% 76.06% 61.26%

75% 2697 90.66% 81.76% 63.92%
50% 1798 95.49% 87.26% 47.33%
25% 899 97.11% 89.88% 68.74%

Approx. num. of words in corpus 1 × 1011 2 × 109 1 × 107

Fig. 2. Accuracy of SO-PMI with the GI lexicon and the three corpora.

curves are relatively smooth; with the smallest corpus, the curve looks quite
noisy.

Table V shows the accuracy of SO-PMI with the GI lexicon, which includes
adverbs, nouns, and verbs, in addition to adjectives. Figure 2 gives more detail.
Compared with Table IV and Figure 1, there is a slight drop in accuracy, but
the general trends are the same.

5.3 Varying the Laplace Smoothing Factor

As we mentioned in Section 3.1, we used a Laplace smoothing factor of 0.01
in the baseline version of SO-PMI. In this section, we explore the impact of
varying the smoothing factor.

Figure 3 graphs the accuracy of SO-PMI as a function of the smoothing
factor, which varies from 0.0001 to 10,000 (note the logarithmic scale), using
the AV-ENG corpus and the GI lexicon. There are four curves, for four different
thresholds on the percentage of the full test set that is classified. The smoothing
factor has relatively little impact until it rises above 10, at which point the
accuracy begins to fall off. The optimal value is about 1, although the difference
between 1 and 0.1 or 0.01 is slight.
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Fig. 3. Effect of Laplace smoothing factor with AV-ENG and the GI lexicon.

Fig. 4. Effect of Laplace smoothing factor with AV-CA and the GI lexicon.

Figure 4 shows the same experimental setup, except using the AV-CA corpus.
We see the same general pattern, but the accuracy begins to decline a little ear-
lier, when the smoothing factor rises above 0.1. The highest accuracy is attained
when the smoothing factor is about 0.1. The AV-CA corpus (approximately
2 × 109 words) is more sensitive to the smoothing factor than the AV-ENG
corpus (approximately 1 × 1011 words). A smoothing factor of about 0.1 seems
to help SO-PMI handle the increased noise, due to the smaller corpus (compare
Figure 3 and Figure 4).

Figure 5 plots the performance with varying smoothing factors using the
smallest corpus, TASA. The performance is quite sensitive to the choice of
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Fig. 5. Effect of Laplace smoothing factor with TASA and the GI lexicon.

smoothing factor. Our baseline value of 0.01 turns out to be a poor choice for
the TASA corpus. The optimal value is about 0.001. This suggests that, when
using SO-PMI with a small corpus, it would be wise to use cross-validation to
optimize the value of the Laplace smoothing factor.

These three figures show that the optimal smoothing factor increases as the
size of the corpus increases, as expected. The figures also show that the impact
of the smoothing factor decreases as the corpus size increases. There is less
need for smoothing when a large quantity of data is available. The baseline
smoothing factor of 0.01 was chosen to avoid division by zero, not to provide
resistance to noise. The benefit from optimizing the smoothing factor for noise
resistance is small for large corpora.

5.4 Varying the Neighborhood Size

The AltaVista NEAR operator restricts search to a fixed neighborhood of ten
words, but we can vary the neighborhood size with the TASA corpus, since we
have a local copy of the corpus. Figure 6 shows accuracy as a function of the
neighborhood size, as we vary the size from 2 to 1000 words, using TASA and
the GI lexicon.

The advantage of a small neighborhood is that words that occur closer to
each other are more likely to be semantically related. The disadvantage is that,
for any pair of words, there will usually be more occurrences of the pair within
a large neighborhood than within a small neighborhood, so a larger neighbor-
hood will tend to have higher statistical reliability. An optimal neighborhood
size will balance these conflicting effects. A larger corpus should yield better
statistical reliability than a smaller corpus, so the optimal neighborhood size
will be smaller with a larger corpus. The optimal neighborhood size will also
be determined by the frequency of the words in the test set. Rare words will
favour a larger neighborhood size than frequent words.
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Fig. 6. SO-PMI with varying neighborhoods, using TASA and the GI lexicon.

Fig. 7. AND versus NEAR with AV-ENG and the GI lexicon.

Figure 6 shows that, for the TASA corpus and the GI lexicon, it seems best to
have a neighborhood size of at least 100 words. The TASA corpus is relatively
small, so it is not surprising that a large neighborhood size is best. The baseline
neighborhood size of 10 words is clearly suboptimal for TASA.

With AltaVista, we can use the AND operator instead of the NEAR operator,
which increases the neighborhood size from ten words to a whole document.
Figure 7 is a graph of accuracy as a function of the percentage of the test set
that is classified (threshold), using AV-ENG and the GI lexicon. With the whole
test set, NEAR is clearly superior to AND, but the gap closes as the threshold
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Fig. 8. AND versus NEAR with AV-CA and the GI lexicon.

decreases. This is not surprising, since, as the threshold decreases, the selected
testing words have increasingly high confidences. That is, the absolute values
of the semantic orientations of the remaining words grow increasingly large.
The words with a very strong semantic orientation (high absolute value) do
not need the extra sensitivity of NEAR; they are easily classified using the less
sensitive AND operator.

Figure 8, with AV-CA (2 × 109 words), displays the same general pattern as
Figure 7, with AV-ENG (1 × 1011 words). However, on the smaller corpus, AND
is superior to NEAR for the words with the strongest semantic orientation
(threshold below 10%). The smaller corpus shows more clearly the tradeoff
between the greater sensitivity of a small neighborhood (with NEAR) and the
greater resistance to noise of a large neighborhood (with AND).

5.5 Product versus Disjunction

Recall Eq. (10), for calculating SO-PMI(word ):

SO-PMI(word ) =

log2


∏

pword∈Pwords
hits(word NEAR pword ) · ∏

nword∈Nwords
hits(nword )∏

pword∈Pwords
hits(pword ) · ∏

nword∈Nwords
hits(word NEAR nword )

 .
(17)

As we discussed in Section 3.1, this equation requires fourteen queries to
AltaVista for each word (ignoring the constant terms). In this section, we inves-
tigate whether the number of queries can be reduced by combining the paradigm
words, using the OR operator.
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For convenience, we introduce the following definitions:

Pquery = OR
pword∈Pwords

pword (18)

Nquery = OR
nword∈Nwords

nword. (19)

Given the fourteen paradigm words, for example, we have the following (from
Eq. (5), (6), (18), and (19)):

Pquery = (good OR nice OR · · ·OR superior) (20)
Nquery = (bad OR nasty OR · · ·OR inferior). (21)

We attempt to approximate (17) as follows:8

SO-PMI(word ) = log2

(
hits(word NEAR Pquery) · hits(Nquery)
hits(word NEAR Nquery) · hits(Pquery)

)
. (22)

Calculating the semantic orientation of a word using Eq. (22) requires only two
queries per word, instead of fourteen (ignoring the constant terms, hits(Pquery)
and hits(Nquery)).

Figure 9 plots the performance of product (Eq. (17)) versus disjunction
(Eq. (22)) for SO-PMI with the AV-ENG corpus and the GI lexicon. Figure 10
shows the performance with the AV-CA corpus and Figure 11 with the TASA
corpus. For the largest corpus, there is a clear advantage to using our original
Eq. (17), but the two equations have similar performance with the smaller cor-
pora. Since the execution time of SO-PMI is almost completely dependent on the
number of queries sent to AltaVista, Eq. (22) executes seven times faster than
Eq. (17). Therefore the disjunction equation should be preferred for smaller
corpora and the product equation should be preferred for larger corpora.

5.6 SO-LSA Baseline

Table VI shows the performance of SO-LSA on TASA with the HM lexicon. The
experiment used the online demonstration of LSA, mentioned in Section 5.1.
The TASA corpus was used to generate a matrix X with 92,409 rows (words)
and 37,651 columns (each document in TASA corresponds to one column), and
SVD was used to reduce the matrix to 300 dimensions. This is the baseline
configuration of SO-LSA, as described in Section 3.2.

For ease of comparison, Table VI also gives the performance of SO-PMI on
TASA with the HM lexicon, copied from Table IV. LSA has not yet been scaled
up to corpora of the sizes of AV-ENG or AV-CA, so we cannot compare SO-
LSA and SO-PMI on these larger corpora. Figure 12 presents a more detailed
comparison, as the threshold varies from 5% to 100% in increments of 5%.

Table VII and Figure 13 give the corresponding results for the GI lexicon.
The accuracy is slightly lower with the GI lexicon, but we see the same general
trend as with the HM lexicon. SO-PMI and SO-LSA have approximately the

8We use OR here, because using AND or NEAR would almost always result in zero hits. We add
0.01 to the hits, to avoid division by zero.
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Fig. 9. Accuracy of product versus disjunction with AV-ENG and GI.

Fig. 10. Accuracy of product versus disjunction with AV-CA and GI.

same accuracy when evaluated on the full test set (threshold 100%), but SO-
LSA rapidly pulls ahead as we decrease the percentage of the test set that is
classified. It appears that the magnitude of SO is a better indicator of confidence
for SO-LSA than for SO-PMI, at least when the corpus is relatively small.

In addition to its lower accuracy, SO-PMI appears less stable than SO-LSA,
especially as the threshold drops below 75%. Comparing with Figure 6, we
see that, although a larger neighborhood makes SO-PMI more stable, even a
neighborhood of 1000 words (which is like using AND with AltaVista) will not
bring SO-PMI up the accuracy levels of SO-LSA.
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Fig. 11. Accuracy of product versus disjunction with TASA and GI.

Table VI. The Accuracy of SO-LSA and SO-PMI with the
HM Lexicon and TASA

Percent of Size of Accuracy of Accuracy of
full test set test set SO-LSA SO-PMI
100% 1336 67.66% 61.83%

75% 1002 73.65% 64.17%
50% 668 79.34% 46.56%
25% 334 88.92% 70.96%

Fig. 12. Comparison of SO-LSA and SO-PMI with the HM lexicon and TASA.
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Table VII. The Accuracy of SO-LSA and SO-PMI with the
GI Lexicon and TASA

Percent of Size of Accuracy of Accuracy of
full test set test set SO-LSA SO-PMI
100% 3596 65.27% 61.26%

75% 2697 71.04% 63.92%
50% 1798 75.58% 47.33%
25% 899 81.98% 68.74%

Fig. 13. Comparison of SO-LSA and SO-PMI with the GI lexicon and TASA.

5.7 Varying the Number of Dimensions

The behavior of LSA is known to be sensitive to the number of dimensions of
the matrix (the parameter k in Section 3.2). In this section, we investigate the
effect of varying the number of dimensions for SO-LSA with the TASA corpus
and the GI lexicon. Figure 14 shows the accuracy of SO-LSA as a function of the
number of dimensions. The k parameter varies from 50 to 300 dimensions, in
increments of 50. The highest accuracy is achieved with 250 dimensions. Second
highest is 200 dimensions, followed by 300 dimensions. The graph suggests that
the optimal value of k, for using SO-LSA with the TASA corpus, is somewhere
between 200 and 300 dimensions, likely near 250 dimensions.

5.8 Varying the Paradigm Words

The standard methodology for supervised learning is to randomly split the la-
beled data (the lexicon, in this context) into a training set and a testing set.
The sizes of the training and testing sets are usually approximately the same,
within an order of magnitude. We think of SO-A as an unsupervised learn-
ing method, because the “training” set is only fourteen words (two orders of
magnitude smaller than the testing set) and because the paradigm words were
carefully chosen instead of randomly selected (defining rather than training).
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Fig. 14. The effect of varying the number of dimensions for SO-LSA.

Table VIII. Original Paradigm Words and Corresponding
Frequency-Matched New Paradigm Words

Original Frequency of Matched Frequency Semantic
paradigm word original word new word of new word orientation
good 55,289,359 right 55,321,211 positive
nice 12,259,779 worth 12,242,455 positive
excellent 11,119,032 commission 11,124,607 positive
positive 9,963,557 classic 9,969,619 positive
fortunate 1,049,242 devote 1,052,922 positive
correct 11,316,975 super 11,321,807 positive
superior 5,335,487 confidence 5,344,805 positive
bad 18,577,687 lost 17,962,401 negative
nasty 2,273,977 burden 2,267,307 negative
poor 9,622,080 pick 9,660,275 negative
negative 5,896,695 raise 5,885,800 negative
unfortunate 987,942 guilt 989,363 negative
wrong 12,048,581 capital 11,721,649 negative
inferior 1,013,356 blur 1,011,693 negative

The fourteen paradigm words were chosen as prototypes or ideal exam-
ples of positive and negative semantic orientation (see Section 3). All fourteen
paradigm words appear in the General Inquirer lexicon. The positive paradigm
words are all tagged “Positiv” and the negative paradigm words are all tagged
“Negativ” (although they were chosen before consulting the General Inquirer
lexicon). As we mentioned, the paradigm words were removed from the testing
words for our experiments.

The following experiment examines the behaviour of SO-A when the
paradigm words are randomly selected. Since rare words would tend to require
a larger corpus for SO-A to work well, we controlled for frequency effects. For
each original paradigm word, we found the word in the General Inquirer lexicon
with the same tag (“Positiv” or “Negativ”) and the most similar frequency. The
frequency was measured by the number of hits in AltaVista. Table VIII shows
the resulting new paradigm words.
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Fig. 15. Original paradigm versus new, using SO-PMI with AV-ENG and GI.

The inclusion of some of the words in Table VIII, such as “pick”, “raise”,
and “capital”, may seem surprising. These words are only negative in certain
contexts, such as “pick on your brother”, “raise a protest”, and “capital offense”.
We hypothesized that the poor performance of the new paradigm words was
(at least partly) due to their sensitivity to context, in contrast to the original
paradigm words. To test this hypothesis, we asked 25 people to rate the 28 words
in Table VIII, using the following scale:

1=negative semantic orientation (in almost all contexts)
2=negative semantic orientation (in typical contexts)
3=neutral or context-dependent semantic orientation
4=positive semantic orientation (in typical contexts)
5=positive semantic orientation (in almost all contexts)

Each person was given a different random permutation of the 28 words, to
control for ordering effects. The average pairwise correlation between subjects’
ratings was 0.86. The original paradigm words had average ratings of 4.5 for the
seven positive words and 1.4 for the seven negative words. The new paradigm
words had average ratings of 3.9 for positive and 2.4 for negative. These judg-
ments lend support to the hypothesis that context sensitivity is higher for the
new paradigm words; context independence is higher for the original paradigm
words. On an individual basis, subjects judged the original word more context
independent than the corresponding new paradigm word in 61% of cases (sta-
tistically significant, p < .01).

To evaluate the fourteen new paradigm words, we removed them from the
set of 3,596 testing words and substituted the original paradigm words in their
place. Figure 15 compares the accuracy of the original paradigm words with the
new words, using SO-PMI with AV-ENG and GI, and Figure 16 uses AV-CA. It
is clear that the original words perform much better than the new words.
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Fig. 16. Original paradigm versus new, using SO-PMI with AV-CA and GI.

Fig. 17. Original paradigm versus new, using SO-PMI with TASA and GI.

Figure 17 and Figure 18 compare SO-PMI and SO-LSA on the TASA-ALL
corpus with the original and new paradigm words. Again, the original words
perform much better than the new words.

6. DISCUSSION OF RESULTS

LSA has not yet been scaled up to corpora of the sizes that are available for
PMI-IR, so we were unable to evaluate SO-LSA on the larger corpora that were
used to evaluate SO-PMI. However, the experiments suggest that SO-LSA is
able to use data more efficiently than SO-PMI, and SO-LSA might surpass the
accuracy attained by SO-PMI with AV-ENG, given a corpus of comparable size.
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Fig. 18. Original paradigm versus new, using SO-LSA with TASA and GI.

PMI measures the degree of association between two words by the frequency
with which they co-occur. That is, if PMI(word1, word2) is positive, then word1
and word2 tend to occur near each other. Resnik [1995] argues that such word-
word co-occurrence approaches are able to capture “relatedness” of words, but
do not specifically address similarity of meaning. LSA, on the other hand, mea-
sures the degree of association between two words by comparing the contexts
in which the two words occur. That is, if LSA(word1, word2) is positive, then
(in general) there are many words, wordi, such that word1 tends to occur near
wordi and word2 tends to occur near wordi. It appears that such word-context
co-occurrence approaches correlate better with human judgments of seman-
tic similarity than word-word co-occurrence approaches [Landauer 2002]. This
could help explain LSA’s apparent efficiency of data usage.

Laplace smoothing was used in SO-PMI primarily to prevent division by
zero, rather than to provide resistance to noise, which is why the relatively
small value of 0.01 was chosen. The experiments show that the performance of
SO-PMI is not particularly sensitive to the value of the smoothing factor with
larger corpora.

The size of the neighborhood for SO-PMI seems to be an important parame-
ter, especially when the corpus is small. For the TASA corpus, a neighborhood
size of 1000 words (which is the same as a whole document, since the largest
document is 650 words long) yields the best results. On the other hand, for
the larger corpora, a neighborhood size of ten words (NEAR) results in higher
accuracy than using the whole document (AND). For best results, it seems that
the neighborhood size should be tuned for the given corpus and the given test
words (rarer test words will tend to need larger neighborhoods).

Given the TASA corpus and the GI lexicon, SO-LSA appears to work best
with a 250 dimensional space. This is approximately the same number as other
researchers have found useful in other applications of LSA [Deerwester et al.
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1990; Landauer and Dumais 1997]. However, the accuracy with 200 or 300
dimensions is almost the same as the accuracy with 250 dimensions; SO-LSA
is not especially sensitive to the value of this parameter.

The experiments with alternative paradigm words show that both SO-PMI
and SO-LSA are sensitive to the choice of paradigm words. It appears that the
difference between the original paradigm words and the new paradigm words
is that the former are less context-sensitive. Since SO-A estimates semantic
orientation by association with the paradigm words, it is not surprising that
it is important to use paradigm words that are robust, in the sense that their
semantic orientation is relatively insensitive to context.

7. LIMITATIONS AND FUTURE WORK

A limitation of SO-A is the size of the corpora required for good performance.
A large corpus of text requires significant disk space and processing time. In
our experiments with SO-PMI, we paused for five seconds between each query,
as a courtesy to AltaVista. Processing the 3,596 words taken from the General
Inquirer lexicon required 50,344 queries, which took about 70 hours. This can
be reduced to 10 hours, using Eq. (22) instead of Eq. (17), but there may be a
loss of accuracy, as we saw in Section 5.5.

However, improvements in hardware will reduce the impact of this limita-
tion. In the future, corpora of a hundred billion words will be common and the
average desktop computer will be able to process them easily. Today, we can
indirectly work with corpora of this size through web search engines, as we
have done in this article. With a little bit of creativity, a web search engine can
tell us a lot about language use.

The ideas in SO-A can likely be extended to many other semantic aspects
of words. The General Inquirer lexicon has 182 categories of word tags [Stone
et al. 1966] and this paper has only used two of them, so there is no shortage of
future work. For example, another interesting pair of categories in General In-
quirer is strong and weak. Although strong tends to be correlated with positive
and weak with negative, there are many examples in General Inquirer of words
that are negative and strong (e.g., abominable, aggressive, antagonism, attack,
austere, avenge) or positive and weak (e.g., delicate, gentle, modest, polite, sub-
tle). The strong/weak pair may be useful in applications such as analysis of
political text, propaganda, advertising, news, and opinions. Many of the appli-
cations discussed in Section 2 could also make use of the ability to automatically
distinguish strong and weak words.

As we discussed in Section 5.8, the semantic orientation of many words de-
pends on the context. For example, in the General Inquirer lexicon, mind#9
(“lose one’s mind”) is Negativ and mind#10 (“right mind”) is Positiv. In our ex-
periments, we avoided this issue by deleting words like “mind”, with both Pos-
itiv and Negativ tags, from the set of testing words. However, in a real-world
application, the issue cannot be avoided so easily.

This may appear to be a problem of word sense disambiguation. Perhaps,
in one sense, the word “mind” is positive and, in another sense, it is negative.
Although it is related to word sense disambiguation, we believe that it is a
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separate problem. For example, consider “unpredictable steering” versus “un-
predictable plot” (from Section 4.2). The word “unpredictable” has the same
meaning in both phrases, yet it has a negative orientation in the first case
but a positive orientation in the second case. We believe that the problem is
context sensitivity. This is supported by the experiments in Section 5.8. Eval-
uating the semantic orientation of two-word phrases, instead of single words,
is an attempt to deal with this problem [Turney 2002], but more sophisticated
solutions might yield significant improvements in performance, especially with
applications that involve larger chunks of text (e.g., paragraphs and documents
instead of words and phrases).

8. CONCLUSION

This article has presented a general strategy for measuring semantic orienta-
tion from semantic association, SO-A. Two instances of this strategy have been
empirically evaluated, SO-PMI and SO-LSA. SO-PMI requires a large corpus,
but it is simple, easy to implement, unsupervised, and it is not restricted to
adjectives.

Semantic orientation has a wide variety of applications in information sys-
tems, including classifying reviews, distinguishing synonyms and antonyms,
extending the capabilities of search engines, summarizing reviews, tracking
opinions in online discussions, creating more responsive chatbots, and analyz-
ing survey responses. There are likely to be many other applications that we
have not anticipated.
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