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Hidden Markov Models for 
Speech Recognition 

B. H. Juang and L. R. Rabiner 

Speech Research Department 
AT&T Bell Laboratories 
Murray Hill, NJ 07974 

The use of hidden Markov models for speech recognition has become predominant in the 
last several years, as evidenced by the number of published papers and talks at major speech 
conferences. The reasons this method has become so popular are the inherent statistical 
(mathematically precise) framework: the ease and availability of training algorithms for es- 
timating the parameters of the models from finite training sets of speech data; the flexibility 
of the resulting recognition system in which one can easily change the size, type, or architecture 
of the models to suit particular words, sounds. and so forth; and the ease of implementation 
of the overall recognition system. In this expository article, we address the role of statistical 
methods in this powerful technology as applied to speech recognition and discuss a range of 
theoretical and practical issues that are as yet unsolved in terms of their importance and their 
effect on performance for different system implementations. 

KEY WORDS: 	Baum-Welch algorithm: Incomplete data problem; Maximum a posteriori 
decoding: Maximum likelihood. 

Speech recognition by machine has come of age source Management task (Chow et al. 1987; Lee 1989), 
in a practical sense. Numerous speech-recognition and other related efforts (Derouault 1987; Gupta, 
systems are currently in operation in applications Lennig, and Mermelstein 1987). The widespread 
ranging from a voice dialer for telephone to a voice popularity of the HMM framework can be attributed 
response system that quotes stock prices on verbal to its simple algorithmic structure, which is straight- 
inquiry. What makes these practical benefits happen forward to implement, and to its clear performance 
is the recent technological advances that enable superiority over alternative recognition structures. 
speech-recognition systems to respond reliably to Performance, particularly in terms of accuracy, is 
nonspecific talkers with a reasonably sized recogni- a critical factor in determining the practical value of 
tion vocabulary. One such major advance is the use a speech-recognition system. A speech-recognition 
of statistical methods, of which hidden Markov model task is often taxonomized according to its require- 
(HMM) is a particularly interesting one. ments in handling specific or nonspecific talkers 

The use of HMM's for speech recognition has be- (speaker-dependent vs. speaker-independent) and in 
come popular in the past decade. Although the num- accepting only isolated utterances or fluent speech 
ber of reported recognition systems based on HMM's (isolated word vs. connected word). At present, the 
is too large to discuss in detail here, it is worthwhile state-of-the-art technology can easily achieve almost 
to point out some of the most important as well as perfect accuracy in speaker-independent isolated- 
successful of these systems. These include the early digit recognition and would commit only 2-3% digit-
work of the Dragon System at Carnegie Mellon Uni- string errors when the digit sequence is spoken in a 
versity (Baker 1975), the longstanding effort of IBM naturally connected manner by nonspecific talkers. 
on a voice-dictation system (Averbuch et al. 1987; Furthermore, in speaker-independent continuous 
Bahl, Jelinek, and Mercer 1983; Jelinek 1976), the speech environments with a 1,000-word vocabulary 
work at AT&T Bell Laboratories, Institute for De- and certain grammatical constraints. several ad-
fense Analyses, MIT Lincoln Labs, and Philips on vanced systems based on HMM have been demon- 
whole-word recognition using HMM's (Bourlard, strated to be able to achieve 96% word accuracy. 
Kamp, Ney, and Wellekens 1985; Lee, Soong, and These results sometimes rival human performance 
Juang 1988; Lippman, Martin, and Paul 1987; Poritz and thus, of course, affirm the potential usefulness 
and Richter 1986; Rabiner, Juang, Levinson, and of an automatic speech-recognition system in des- 
Sondhi 1986; Rabiner, Levinson, and Sondhi 1983; ignated applications. 
Rabiner, Wilpon, and Soong 1989), the DARPA Re- Although hidden Markov modeling has sig-
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nificantly improved the performance of current 
speech-recognition systems, the general problem of 
completely fluent, speaker-independent speech rec- 
ognition is still far from being solved. For example, 
there is no system that is capable of reliably recog- 
nizing unconstrained conversational speech, nor does 
there exist a good way to infer statistically the lan- 
guage structure from a limited corpus of spoken sen- 
tences. The purpose of this expository article is, 
therefore, to provide an overview of the theory of 
HMM, discuss the role of statistical methods, and 
point out a range of theoretical and practical issues 
that deserve attention and are necessary to under- 
stand so as to further advance research in the field 
of speech recognition. 

1. MEASUREMENTS AND MODELING 
OF SPEECH 

Speech is a nonstationary signal. When we speak, 
our articulatory apparatus (the lips, jaw, tongue, and 
velum, as shown in Fig. 1) modulates the air pressure 
and flow to produce an audible sequence of sounds. 
Although the spectral content of any particular sound 
may include frequencies up to several thousand hertz, 
our articulatory configuration (vocal-tract shape, 
tongue movement, etc.) often does not undergo dra- 
matic changes more than 10 times per second. Speech 
modeling thus involves two aspects: (1) Analysis of 
the short-time spectral properties of individual 
sounds, performed at an interval on the order of 10 
milliseconds (msec), and (2) characterization of the 
long-time development of sound sequences, on the 
order of 100 msec, due to articulatory configuration 
changes. 

To see how speech may be viewed as a nonsta- 
tionary signal, we show in Figure 2 a short segment 
(approximately 450 msec long) of the speech wave- 
form corresponding to a recorded utterance of the 
word "judge." Note that digital processing of a speech 
signal requires discrete time sampling and quanti- 
zation of the waveform. Typically, an analog speech 
signal is sampled at a rate of 8-20 kilohertz (kHz), 
and the amplitude of each waveform sample is usu- 
ally represented by one of 216 = 65,536 values-that 
is, 16-bit quantization of the discrete time signal. 

Short-time spectral properties of the digital speech 
signal are analyzed by successively placing a window 
over the sampled waveform as illustrated in Figure 
2. The window generally has the property that it 
tapers toward 0 at the ends so as to minimize the 
discontinuity of the signal outside the window. A 
short-time spectral window has a typical analysis width 
of 10-50 msec, and successive windows are normally 
positioned 10-30 msec apart. A spectral-analysis 
method is then applied to the windowed signal to 
produce a parsimonious representation of the spec- 

tral properties of the speech waveform within the 
window. Many spectral-analysis methods have been 
proposed for speech-signal modeling. These include 
such standard methods as measurement of the dis- 
crete (fast) Fourier transform (FFT), all-pole mini- 
mum-phase linear prediction (LPC) methods, and 
autoregressive/moving average models (Allen and 
Rabiner 1977; Atal and Hanauer 1971; Cadzow 1982; 
Makhoul 1975; Markel and Gray 1976; Schafer and 
Rabiner 1971). Even the more traditional filter-bank 
method of spectral analysis is still used in some sys- 
tems (Dautrich, Rabiner, and Martin 1983), partic- 
ularly in hardware implementations. To emphasize 
spectral properties that are known to be important 
to a human listener, auditory models can be incor- 
porated in the overall spectral representation (Cohen 
1985; Ghitza 1986). In speech modeling, we often 
call this short-time spectral vector an observation 
vector or simply an observation. In Figure 2, where 
the analysis mechanism is illustrated, we use a 30- 
msec Hamming window (frame) with successive 
spectral frames spaced 15 msec apart. FFT spectra 
of the first four frames of the signal are plotted in 
the figure, each being fitted with a 10th order LPC 
all-pole smoothed model spectrum. 

To see the development of sound sequences on a 
relatively long-time basis, we show in Figure 3 a speech 
waveform corresponding to a sentence, "My cap is 
off for the judge" (approximately two seconds long), 
together with a spectrogram plot of the signal. A 
spectrogram is a plot of successive spectra in which 
the horizontal and vertical coordinates are time and 
frequency, respectively, and the darkness at each 
time-frequency point represents the corresponding 
spectral magnitude. 

TO LUNGS 

(POWER) 


Figure I. Schematic Description of the Human Vocal System. 
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Windowed Time Waveform LOG FFT 8 LPC Magnitude Spectrum 

FREQUENCY 

WAVE FORM 

Figure 2. A Segment of Speech Waveform Corresponding to the Word "Judge" and the Resulting Short-Time Spectral Analysis 
of the First Four Frames. 

It has been found (Juang, Rabiner, and Wilpon 
1987) that spectral vectors, as represented by the so- 
called cepstrum, which is defined as the Fourier 
transform of the log magnitude spectrum-particu- 
larly the log magnitude LPC-model spectrum-have 
several advantages in statistical modeling for speech 
recognition. Computationally, the cepstrum of a sta- 
ble all-pole system can be found recursively. Let the 
polynomialP(z) = 1 + plz-' + p g 2  + -.- + p K z K  
have all of its roots inside the unit circle. The LPC 
(smoothed) spectrum of a frame of speech has the 
form a/P(z), in terms of the z transform, where a 
is the gain term and K is typically on the order of 
10-16. Since In P(z-') is analytic inside the unit cir- 
cle, it can be represented in a Taylor series, leading 

to the Laurent expansion 

The coefficients c(k) defined previously are often called 
the LPC cepstrum. Figure 4 shows histograms of the 
first 12 LPC-cepstral coefficients (derived from 10th- 
order all-pole models) obtained from a speech data 
base of 70 sentences spoken by seven people. (The 
speech material in the data base includes many dif- 
ferent sentences and spans a wide range of speech 
sounds. The bandwidth of the speech signal was lim- 
ited to 4 kHz and a sampling rate of 8 kHz was used.) 
For speech recognition, a weighting is generally ap- 

Figure 3. Speech Amplitude and Resulting Spectrogram for the Sentence, "My Cap Is Off for the Judge." 

TECHNOMETRICS, AUGUST 1991, VOL. 33, NO. 3 
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CEPSTRAL COEFF. VALUE 

Figure 4. Histograms of the First 12 LPC Cepstral Coeffi- 
cients From a Seven-Speaker 70-Sentence Speech Data Base. 

plied to the LPC cepstrum before further processing 
(Juang et al. 1987). A vector, such as the cepstrum, 
that represents a short time speech spectrum is con- 
sidered an observation of speech. 

Another type of speech observation that is often 
used is a discrete-symbol representation of the spec- 
tral vector of each frame that results from a classi- 
fication procedure called spectral labeling. The dis- 
crete symbol is obtained by choosing one out of a 
finite collection of several hundred spectral proto- 
types. The chosen spectral prototype is the one that 
is closest (in some well-defined spectral sense) to the 
input speech spectrum. Statistical modeling is per- 
formed on the index sequence of the closest spectral 
prototypes. The concept of observation distribution 
is very different in this case of discrete symbols from 
that of the continuous distribution of parameters that 
define a spectrum. 

On a longer time basis, there are many ways to 
characterize the sequence of sounds-that is, run- 
ning speech-as represented by a sequence of spec- 
tral observations. The most direct way is to register 
the spectral sequence directly without further model- 
ing. If we denote the spectral vector at time t by 0, 
and the observed spectral sequence corresponding to 
the sequence of speech sounds lasts from t = 1 to t 
= T. a direct spectral sequence representation is 
then simply {O,),Cl = ( 0 1 ,02,. . . , OT). Alterna- 
tively, one can model the sequence of spectra in terms 
of a Markov chain that describes the way one sound 
changes to another. Some perspectives as to how 
these two seemingly different methodologies relate 
to each other were given by Juang (1984) and Bridle 
(1984). In this article, we only discuss the latter case 
in which an explicit probabilistic structure is imposed 
on the sound-sequence representation. 

TECHNOMETRICS, AUGUST 1991, VOL. 33, NO. 3 

HMM Formulation 

Consider a first-order N-state Markov chain as il- 
lustrated for N = 3 in Figure 5. The system can be 
described as being in one of the N distinct states 1, 
2, . . . , N at any discrete time instant t .  We use the 
state variable qr as the state of the system at discrete 
time t .  The Markov chain is then described by a state 
transition probability matrix A = [ a i j ] ,where 

with the following axiomatic constraints: 

aji 2 0 (2) 

and 

2 a,, = 1 for all i. ,= 1 

Note that in (1) we have assumed homogeneity of 
the Markov chain so that the transition probabilities 
do not depend on time. Assume that at t = 0 the 
state of the system qo is specified by an initial state 
probability 71, = Pr(qll = i). Then, for any state 
sequence q = (q,,, q , ,  q,, . . . , qT), the probability 
of q being generated by the Markov chain is 

Suppose now that the state sequence q cannot be 
readily observed. Instead, we envision each obser- 
vation Or,  say a cepstral vector as mentioned pre- 
viously, as being produced with the system in state 
q,, qr E {I,  2, . . . , N). We assume that the pro- 
duction of Or  in each possible state i (i = 1, 2, . . . , 
N) is stochastic and is characterized by a set of ob- 
servation probability measures B = {b,(O,)),Y=,, 

Figure 5. A First-Order Three-State Markov Chain With As- 
sociated Processes. 
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where 

b,(O,) = P r ( 0 ,  1 q, = i). ( 5 )  

If the state sequence q that led to the observation 
sequence 0 = ( O , ,  02,. . . , O r )  is known, the 
probability of 0 being generated by the system is 
assumed to  be 

Pr(O I q ,  B )  = b,](Ol)b,,(O,) . . . b,,(OT). (6) 

The joint probability of 0 and q being produced by 
the system is simply the product of (4) and (6), writ- 
ten as 

T 

P ~ ( o ,q I 71. A ,  B )  = n,,, n a,,_,, (7)b,,co,). 
I =  1 

It then follows that the stochastic process, repre- 
sented by the observation sequence 0,is character- 
ized by 

P r ( 0  1 n , A ,  B)  = P ( 0 ,  q 1 n , A ,  B )  
9 


which describes the probability of 0 being produced 
by the system without assuming the knowledge of the 
state sequence in which it was generated. The triple 
i = ( n ,  A .  B)  thus defines an H M M  (8). In the 
following, we shall refer to i as the model and the 
model parameter set interchangeably without am-
biguity. 

The particular formulation of (8) is quite similar 
to that of the incomplete data problem in statistics 
(Dempster. Laird, and Rubin 1977). In terms of the 
physical process of a speech signal. one interpreta- 
tion that may be helpful for initial understanding of 
the problem is that a state represents an  abstract 
speech code (such as a phoneme) embedded in a 
sequence of spectral observations. and because 
speech is normally produced in a continuous manner,  
it is often difficult and sometimes unnecessary to de- 
termine how and when a state transition (from one 
abstract speech code to another) is made. Therefore, 
in (8) we d o  not assume explicit, definitive obser- 
vation of the state sequence q ,  although the Mar- 
kovian structure of the state sequence is strictly im- 
plied. This is why it is called a "hidden" Markov 
model. 

2. 	 THE STATISTICAL METHOD OF THE 
HIDDEN MARKOV MODEL 

In the development of the H M M  methodology, 
the following problems are of particular interest. First, 
given the observation sequence 0 and a model i., 
how d o  we efficiently evaluate the probability of 0 

being produced by the source model ).-that is, P r ( 0  
1 i)?Second, given the observation 0, how d o  we 
solve the inverse problem of estitnating the param- 
eters in i?Although the probability measure of (8) 
does not depend explicitly on q ,  the knowledge of 
the most likely state sequence q that led to the ob- 
servation 0 is desirable in many applications. The  
third problem then is how to deduce from 0 the most 
likely state sequence q in a meaningful manner. Ac- 
cording to convention (Ferguson 1980) we call these 
three problems (1) the evaluation problem, (2) the 
estimation problem. and (3) the decoding problem. 
In the following sections, we describe several con- 
ventional solutions to these three standard problems. 

2.1 The Evaluation Problem 

The main concern in the evaluation problem is 
computational efficiency. Without complexity con- 
straints, one  can simply evaluate P r ( 0  / i )  directly 
from the definition of (8). Since the summation in 
(8) involves NT-I possible q sequences, the total 
computational requirements are on the order of 
2 T .  N T + '  operations. The need to compute (8) with- 
out the exponential growth of computation, as a 
function of the sequence length T, is the first chal- 
lenge for implementation of the H M M  technique. 
Fortunately. using the well-known forward-back-
ward procedure (Baum 1972), this exorbitant com- 
putational requirement of the direct summation can 
be easily alleviated. 

A forward induction procedure allows evaluation 
of the probability P r ( 0  i )to be carried out with 
only a computational requirement linear in the se- 
quence length T and quadratic in the number of states 
N. To  see how this is done,  let us define the forward 
variable a,(i) as a,(i) = P r ( O l .  O? .  . . . , O,, q, = i 
( >.)-that is. the probability of the partial observation 
sequence up to time t and state q, = i at time t .  With 
reference to Figure 6 ,  which shows a trellis struc- 
ture implementation of the computation of a,(i), 
we see that the forward variable can be calculated 
inductively by 

The desired result is simply P r ( 0  1 i )  = >=, aT(i) .  
This tremendous reduction in computation makes 

the H M M  method attractive and viable for speech- 
recognizer designs because the evaluation problem 
can be viewed as one of scoring how well an unknown 
observation sequence (corresponding to the speech 
to be recognized) matches a given model (or se- 
quence of models) source, thus providing an efficient 
mechanism for classification. 

TECHNOMETRICS, AUGUST 1991, VOL. 33, NO. 3 
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at(1)= "t-l(l)allb(ot) + 9-,(2)a,,b,(ot) 

STATE + "t-1(3) a31bl (Ot) + at-l(4)a,lbl (ot) 
1 

2 

3 

4 

at-1(4) at+l(4) 
t- 1 t t+l  

Figure 6. A Trellis Structure for the Calculation of the Forward Partial Probabilities a,(;). 

2.2 The Estimation Problem to improve E.' in the sense of increasing the likelihood 

Given an observation sequence (or a set of se- P r ( 0  E.). The maximization of the Q function over 

quences) 0 ,  the estimation problem involves finding i.is the second step of the algorithm. The algorithm 

the "right" model parameter values that specify a continues by replacing i.' with E. and repeating the 

model most likely to produce the given sequence. In two steps until some stopping criterion is met. The 

speech recognition, this is often called "training," algorithm is of a general hill-climbing type and is 

and the given sequence, on the basis of which we only guaranteed to produce fixed-point solutions, al- 

obtain the model parameters, is called the training though in practice the lack of global optimality does 

sequence, even though the formulation here is sta- not seem to cause serious problems in recognition 

tistical. performance (Paul 1985). Note that the classical EM 

In solving the estimation problem, we often follow algorithm of Dempster et al. (1977) parallels closely 

the method of maximum likelihood (ML); that is, the Baum-Welch algorithm. As noted by Baum in 
the discussion section of Dempster et al. (1977), the we choose E. such that P r (0  / i.), as defined by (8), 
incomplete data formulation of Dempster et al, is is maximized for the given training sequence 0 .  The 

Baum-Welch algorithm (Baum and Egon 1967; Baum essentially identical to the HMM formulation with- 

and Petrie 1966; Baum, Petrie, Soules, and Weiss out the Markov-chain constraints. The Q function of 

1970; Baum and Sell 1968) (often blended with the (9) is clearly an expectation operation, so the two- 

forward-backward algorithm because of its interpre- step algorithm is identical to the E(xpectation)-

tation as an extension of the forward induction pro- M(aximization) algorithm. 

cedure to the evaluation problem) cleverly accom- The ML method is, however, not the only possible 

plishes this maximization objective in a two-step choice for solving the estimation problem. As will 

procedure. Based on an existing model 3.' (possibly be discussed later, other alternatives are attractive 

obtained randomly), the first step transforms the ob- and offer different modeling perspectives. 

jective function P r ( 0  I E.) into a new function Q(3.', 2.3 The Decoding Problem 
E.) that essentially measures a divergence between 
the initial model i '  and an updated model i.. The Q As noted previously, we often are interested in 
function is defined, for the simplest case, as uncovering the most likely state sequence that led to 

the observation sequence 0 .  Although the proba- 
Q(3.', i.) = 2 Pr(0 ,  q ( E.')log P r (0 ,  q i.), (9) bility measure of an HMM, by definition, does not 

9 explicitly involve the state sequence, it is important 
where P r ( 0 ,  q I i.) is given in (7). Because Q(E.', E.) in many applications to have the knowledge of the 
r Q ( i l ,  i.') implies P r ( 0  I i.) 2 P r ( 0  / E.'), we can most likely state sequence for several reasons. As an 
then simply maximize the function Q(E.', 3.) over i. example, if we use the states of a word model to 

TECHNOMETRICS, AUGUST 1991, VOL. 33, NO. 3 
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represent the distinct sounds in the word, it may be 
desirable to know the correspondence between the 
speech segments and the sounds of the word, because 
the duration of the individual speech segments pro- 
vides useful information for speech recognition. 

As with the second problem, there are several ways 
to define the decoding objective. The most trivial 
choice is, following the Bayesian framework, to max- 
imize the (instantaneous) a posteriori probability 

that is, we decode the state at time t by choosing q, 
to be 

-
qr = 	arg max yr(i). 

l s i s N  

It is also possible to extend the definition of (10) 
to the cases of pairs of states or triples of states and 
so on. For example, the rule 

(ql, q l+ , )  = arg max Pr(q, = i, q,+, = j 1 0 ,  E.1 
15i.j5.V 

will produce the maximum a posteriori (MAP) result 
of the minimum number of incorrectly decoded state 
pairs, given the observation sequence 0. 

Although the preceding discussion shows the flex- 
ibility of possible localized decoding, we often choose 
to work on the entire state sequence q by maximizing 
Pr(q / 0,i.)for three reasons: (1) It is optimal for 
the unknown observation 0 in the MAP sense, (2) 
speech utterances are usually not prohibitively long 
so as to require locally (rather than globally) optimal 
decoding, and (3) it is possible to formulate the max- 
imization of Pr(q 0 ,  E.) in a sequential manner to 
be solved by dynamic programming methods such as 
the Viterbi algorithm (Forney 1973). 

Maximization of Pr(q / 0 ,  i.) is equivalent to max- 
imization of Pr(q, 0 1 i.) because P r ( 0  I i.) is not 
involved in the optimization process. From (7), we 
see that 

If we define 
A 

dr(i) = max Pr(ql ,  q2, . . . , q, = i, 
41.92.. 	 .4r-1 

then the following recursion is true: 

d,+,(j)  = [max Gr(i)ai,]bj(Ol+,). (15) 
I 

The optimal state sequence is thus the one that leads 

to dT(qT) = maxi dT(i). This recursion is in a form 
suitable for the application of the Viterbi algorithm. 

2.4 	 Speech Recognition Using HMM's 

The typical use of HMM's in speech recognition 
is not very different from the traditional pattern- 
matching paradigm (Duda and Hart 1973). Success- 
ful application of HMM methods usually involves the 
following steps: 

1. Define a set of L sound classes for modeling, 
such as phonemes or words; call the sound classes V 
= {Ul, u2, . . . , uL). 

2. For each class, collect a sizable set (the training 
set) of labeled utterances that are known to be in 
the class. 

3. Based on each training set, solve the estima- 
tion problem to obtain a "best" model i.i for each 
class v, (i = 1, 2, . . . , L) .  

4. During recognition, evaluate P r ( 0  I i.,) (i = 
1,  2, . . . , L)  for the unknown utterance 0 and 
identify the speech that produced 0 as class u, if 

P r (0  / I.,) = max P r (0  ( E,,). (16)
I C I ~ L  

Since the detailed characteristics of how to imple- 
ment an HMM recognizer are not essential to this 
article, we will omit them here. Interested readers 
should consult Jelinek, Bahl, and Mercer (1975) and 
Levinson, Rabiner, and Sondhi (1983) for more spe- 
cifics related to individual applications. 

3. STRENGTHS OF THE METHOD OF 
HIDDEN MARKOV MODELS AS APPLIED 

TO SPEECH RECOGNITION 

The strengths of the HMM method lie in two broad 
areas: (1) Its mathematical framework and (2) its 
implementational structure. In terms of the mathe- 
matical framework, we discuss the method's consis- 
tent statistical methodology and the way it provides 
straightforward solutions to related problems. In terms 
of the implementational structure, we discuss the in- 
herent flexibility the method provides in dealing with 
various sophisticated speech-recognition tasks and 
the ease of implementation, which is one of the cru- 
cial considerations in many practical engineering sys- 
tems. 

3.1 	 The Consistent Statistical Framework of 
the HMM Methodology 

The foundation of the HMM methodology is built 
on the well-established field of statistics and proba- 
bility theory. That is to say, the development of the 
methodology follows a tractable mathematical struc- 
ture that can be examined and studied analytically. 

TECHNOMETRICS, AUGUST 1991, VOL. 33, NO. 3 
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The basic theoretical strength of the HMM is that 
it combines modeling of stationary stochastic pro- 
cesses (for the short-time spectra) and the temporal 
relationship among the processes (via a Markov chain) 
together in a well-defined probability space. The 
measure of such a probability space is defined by 
(8).This combination allows us to study these two 
separate aspects of modeling a dynamic process (like 
speech) using one consistent framework. 

In addition, this combination of short-time static 
characterization of the spectrum within a state and 
the dynamics of change across states is rather elegant 
because the measure of (8) can be decomposed sim- 
ply into a summation of the joint probability of 0, 
the observation, and q ,  the state sequence, as defined 
by (7). The decomposition permits independent study 
and analysis of the behavior of the short-time pro- 
cesses and the long-term characteristic transitions. 
Since decoding and recognition are our main con- 
cerns, this also provides an intermediate level of de- 
cision that can be used to choose among alternate 
configurations of the models for the recognition task. 
This kind of flexibility with consistency is particularly 
useful for converting a time-varying signal such as 
speech, without clear anchor points that mark each 
sound change, into a sequence of (sound) codes. 

3.2 The Training Algorithm for HMM's 

Another attractive feature of HMM's comes from 
the fact that it is relatively easy and straightforward 
to train a model from a given set of labeled training 
data (one or more sequences of observations). 

When the ML criterion is chosen as the estimation 
objective-that is. maximization of P r ( 0  I i.) over 
i.-the well-known Baum-Welch algorithm is an it- 
erative hill-climbing procedure that leads to, at least, 
a fixed-point solution as explained in Section 2.2. If 
we choose the state-optimized (or decoded) likeli- 
hood defined by 

Lj (q)  = max P r (0 ,  q / i ) ,  (17) 
q 

where 

-q = arg max P r (0 ,  q 1 i )  (18) 

as the optimization criterion, the segmental k-means 
algorithm (Juang and Rabiner 1990; Rabiner, Wil- 
pon, and Juang 1986), which is an extended version 
of the Viterbi traininglsegmentation algorithm (Je- 
linek 1976), can be conveniently used to accomplish 
the parameter training task. 

The segmental k-means algorithm, as can be seen 
from the objective function of (17), involves two op- 

'4 

timization steps-namely, the segmentation step and 
the optimization step. In the segmentation step. we 
find a state sequence q such that (17) is obtained for 
a given model E. and an observation sequence 0 .  
Then, given a state sequence tj and the observation 
0, the optimization step finds a new set of model 
parameters 7so as to maximize (17): that is. 

-
i = arg max{max Pr (0 .  q i.)). (19) 

"4 

Equation (19) can be rewritten as 
-3. = arg max{max [log P r ( 0  / q,  j . )  

' q 

+ log Pr(q i.)]). (20) 

Note that max,[logPr(O / q, i ) + log Pr(q / 3.)) 
consists of two terms that can be separately opti- 
mized since log Pr(q / 3.) is a function of only A ,  the 
state transition probability matrix, and log P r ( 0  I ij, 
i.) is a function of only B, the family of (intrastate) 
observation distributions. (We neglect the initial state 
probability for simplicity in presentation.) This sep- 
arate optimization is the main distinction between 
the Baum-Welch algorithm and the segmental k- 
means algorithm. 

These two training algorithms (Baum-Welch and 
segmental k means) both result in well-formulated 
and well-behaved solutions. [For a theoretical com- 
parison of the two methods in terms of likelihood 
differences and state posteriori probability devia- 
tions. interested readers should consult Merhav and 
Ephraim (in press).] The segmental k-means algo- 
rithm, however, due to the separate optimization of 
the components of the model parameter set, leads 
to a more straightforward (simpler with less com- 
putation and numerical difficulties) implementation. 

The ease of HMM training also extends to the 
choice of observation distributions. It is known (Juang 
1985; Juang and Rabiner 1985; Liporace 1982) that 
these algorithms can accommodate observation den- 
sities that are (a) strictly log-concave densities, (b) 
elliptically symmetric densities, (c) mixtures of dis- 
tributions of the preceding two categories, and (d) 
discrete distributions. These choices of observation 
distribution in each state of the model allow accurate 
modeling of virtually unlimited types of data. 

3.3 Modeling Flexibility 

The flexibility of the basic HMM is manifested in 
three aspects of the model, namely: model topology, 
observation distributions, and decoding hierarchy. 

Many topological structures for HMM's have been 
studied for speech modeling. For modeling isolated 
utterances (i.e., whole words or phrases), we often 
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(b) 

Figure 7. (a) Left-to-Right Hidden Markov Model, (b) Er-
godic Hidden Markov Model. 

use left-to-right models (Bakis 1976; Rabiner et al. 
1983) of the type shown in Figure 7a, since the ut- 
terance begins and ends at well-identified time in- 
stants (except in the case of very noisy or corrupted 
speech) and the sequential behavior of the speech is 
well represented by a sequential HMM. or other 
speech-modeling tasks, the use of ergodic models 
(Levinson 1987) of the type shown in Figure 7b is 
often more appropriate. The choice of topological 
configuration and the number of states in the model 
is generally a reflection of the a priori knowledge of 
the particular speech source to be modeled and is 
not in any way related to the mathematical tracta- 
bility or implementational considerations. 

In Section 3.2, we pointed out that the range of 
observation distributions that can be accommodated 
by well-developed training algorithms is rather large. 
There are no real analytical problems that make the 
use of any of this rather rich class of distributions 
impractical. Since speech has been shown to display 
quite irregular probability distributions (Jayant and 
No11 1984; Juang, Rabiner, Levinson, and Sondhi 
1985), both in waveform and spectral parameters, 

one indeed needs the freedom to choose an appro- 
priate distribution model that fits the observation 
well and yet is easy to obtain. 

In modeling spectral observations, we have found 
the use of mixture densities (Juang 1985; Juang and 
Rabiner 1985) beneficial. With f,(.)denoting the ker- 
nal density function, the mixture density assumes the 
form 

where c, is the mixture component weight, xz,c, = 

1, and M is the number of mixture components. This 
mixture distribution function is used to characterize 
the distribution of the observations in each state. By 
varying the number of mixture components, M, it 
can be shown that it is possible to approximate den- 
sities of virtually any shape (unimodal, multimodal, 
heavy-tail, etc.). 

With specific constraints, the basic form of the 
mixture distribution of (21) can be modified to ac- 
commodate several other types of distributions, giv- 
ing rise to the so-called vector quantizer HMM (Ra- 
biner et al. 1983), semicontinuous HMM (Huang and 
Jack 1989), or continuous HMM (Bahl, Brown, de 
Souza, and Mercer 1988b; Poritz and Richter 1986; 
Rabiner et al. 1986). 

The choice of observation distributions also ex- 
tends to the case of the HMM itself. One can form 
an HMM with each state characterized by another 
HMM; that is, b,(O) of each state (i = 1, 2. . . . , 
N) can assume the form of an HMM probability 
measure as defined by (8). This principle is the basis 
of many of the subword unit-based speech-recogni- 
tion algorithms (Lee, Juang, Soong, and Rabiner 
1989; Lee et al. 1988). 

3.4 Ease of Implementation 

Two areas of concern in the implementation of any 
algorithm are the potential for numerical difficulties 
and the computational complexity. The HMM is no 
exception. 

The potential numerical difficulties in implement- 
ing HMM systems come from the fact that the terms 
in the HMM probability measure of (7) and (8) are 
multiplicative. A direct outcome of the multiplicative 
chain is the need for excessive dynamic range in nu- 
merical values to prevent overflow or overflow prob- 
lems in digital implementations. 

Numerical scaling and interpolation are two rea- 
sonable ways of avoiding such numerical problems. 
The scaling algorithm, well documented by Levinson 
et al. (1983) and Juang and Rabiner (1985), alleviates 
the dynamic-range problem by normalizing the par- 
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tial probabilities, such as the forward variable de- 
fined in Section 2.1, at each time instance before they 
cause overflow or underflow. The scaling algorithm 
is naturally blended in the forward-backward pro- 
cedure. Normalization alone, however, does not en- 
tirely solve the numeric problems that result from 
insufficient data support. Insufficient data support can 
cause spurious singularities in the model parameter 
space. One may resort to parameter smoothing and 
interpolation to alleviate such numerical singularity 
problems. A particularly interesting method to deal 
with sparse data problems is the scheme of deleted 
interpolation proposed by Jelinek and Mercer (1980). 
For HMM speech recognition, some trivial measures 
such as setting a numeric floor to prevent singularity 
are often found beneficial and are straightforward to 
implement (Lee, Lin, and Juang 1991; Rabiner et al. 
1986). 

With the understanding of the relationship be- 
tween the trellis structure (Juang 1984) and the de- 
coding structure of the HMM, as discussed in the 
evaluation problem, we are able to apply the HMM 
to many complicated problems without much con- 
cern as to computational complexity. A simple cal- 
culation could verify that a typical off-the-shelf digital 
signal processor of 10 million floating point opera- 
tions per second would be able to support a 100- 
word recognition vocabulary for a real-time perform- 
ance. Even as recognition vocabularies increase to 
size 1,000 or more, the required processing often 
remains pretty much the same because of grammat- 
ical constraints that limit the average number of words 
following a given word to somewhere on the order 
of 100 words. [This effect is called word-average 
branching factor or perplexity and has been shown 
to be on the order of 100 for several large vocabulary- 
recognition tasks (Bahl et al. 1980; Chow et al. 1987).] 

4. 	 HIDDEN MARKOV MODEL ISSUES FOR 
FURTHER CONSIDERATION 

The basic theory of hidden Markov modeling has 
been developed over the last two decades. When 
applied to speech recognition, however, there are 
still some remaining issues to be resolved. We begin 
with a discussion of parameter-estimation criteria as 
applied to optimal decoding of the observation se- 
quence. 

4.1 Parameter-Estimation Criteria 

The original HMM parameter estimation was for- 
mulated as an inverse problem: Given an observation 
sequence 0 and an assumed source model, estimate 
the (source) parameter set i.,which maximizes the 
probability that 0 was produced by the source. The 
ML method, which seeks to maximize P r (0  ( E . ) ,  is 

optimal according to this criterion. The Baum-Welch 
reestimation algorithm, as described previously, is a 
convenient, straightforwardly implementable solu- 
tion to the ML HMM estimation problem. 

The ML method, however, need not be optimal 
in terms of minimizing classification error rate in rec- 
ognition tasks in which the observation 0 is said to 
be produced by one of the many (say L)  source classes, 
{C,),L,,. This is the classic problem in isolated and 
connected word-recognition tasks. To achieve the 
minimum classification error rate, the classical Bayes 
rule (Duda and Hart 1973) requires that 

C*(O) = C, if C, = arg max Pr(C, I O),  (22) 
1 

where 0 is the unknown observation to be classified 
into (recognized as) one of the L classes, C"(.) de- 
notes the decoded class of 0 ,  and Pr(C, 0 )  is the 
(true) a posteriori probability of C, given the obser- 
vation 0 .  The decision rule of (22) is the well-known 
MAP decoder. The decision rule of (22) is often 
written as 

c*(O) = C, if C, = arg max Pr(O C,) Pr(C,) 
1 

(23) 

in terms of the class prior Pr(C,) and the conditional 
probability P r ( 0  C,). It is clear that the difficulty 
in minimizing misclassification rate stems from the 
fact that both the prior distribution Pr(C,) and the 
conditional distribution P r (0  1 C,) are generally un- 
known and have to be estimated from a given, finite 
training set. There are practical reasons why this dif- 
ficulty is hard to overcome. 

For instance, to obtain reliable estimates of Pr(C,) 
and P r ( 0  / C,), we generally need a sufficient size 
training set (i.e., large enough to adequately sample 
all relevant class interactions). When the vocabulary 
is large, this is difficult if not impossible to achieve. 
For example, suppose the vocabulary has 10,000 
words, each of which represents a class. If we assume 
that 10 occurrences each, on average, are needed for 
reliable estimates of both Pr(C,) and P r (0  I C,), this 
amounts to a total of 10,000 x 10 = 10' word ut- 
terances. (This is equivalent to -14 hours of speech, 
assuming two words per second.) Therefore, some 
other strategy is required to estimate Pr(C,) and P r ( 0  
I C,) reliably from a smaller size training set. One 
possibility is to choose a set of classes to represent, 
instead of words, a reduced set of subword units- 
that is, phonemes. This greatly reduces the require- 
ments on the amount of training data since the num- 
ber of subword classes essentially does not grow with 
the size of vocabulary. A consequence of using sub- 
word unit classes to represent the basic set of speech 
sounds is that an estimate of class probability, Pr(C,), 
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can be obtained directly from a lexical description 
of the words, independent of the spoken training set. 
Furthermore, we can estimate P r ( 0  I Ci) from each 
of the subword units in the lexical entry for the words. 
This type of decomposition-namely, breaking large 
sound classes like words and phrases into smaller 
ones like subword units-leads to one particular 
problem in HMM speech recognition; that is, given 
an independent (and possibly incorrect) estimate of 
word probability, Pr*(C,), how do we estimate P r y 0  
1 C,) such that the Bayes minimum error rate is at- 
tained? (Although we have used the example of de- 
composing words into subword classes, the same con- 
cept applies to high levels-that is, decomposing 
phrases into words.) Note that in this discussion the 
association between the training data 0 and the (sub- 
word) class is assumed to be known a priori (often 
as a result of hand labeling). We call this case the 
complete label case. Typical examples of complete 
label systems include most isolated-word and con- 
nected-word tasks and the case of hand-segmented 
and hand-labeled continuous speech recognition. This 
case is illustrated in Figure 8a, which shows the speech 
waveform and energy contour for a sequence of iso- 
lated digits spoken in a stationary background. It is 
relatively easy to define (roughly) the point in time 
at which each spoken digit begins and ends. 

The decomposition described previously (namely, 
from text to words or subword units), although cir- 
cumventing some of the training problems, leads to 

" s e v e n  

" how many 

other problems-for example, the need for a detailed 
segmentation and exact labeling of the speech. For 
large-vocabulary continuous speech recognition in 
which the training data is extensive, this labor-inten- 
sive task cannot realistically be accomplished. In- 
stead, we often have to rely on only partial knowl- 
edge of the data. For example, we generally know 
or assume we know the phoneme sequence of the 
words in the string, but not the direct correspondence 
between each phoneme and the segment of speech. 
We call this case the incomplete label case, and typ- 
ical examples are the problems of estimating models 
of subword speech units from continuous speech and 
those of words in connected word tasks without prior 
word segmentation. An illustration of this case is 
given in Figure 8b, which shows the speech waveform 
and an energy contour for the sentence, "How many 
ships are there"; the boundaries for either individual 
words or the phonemes making up the words are not 
shown, nor are they known precisely. 

Another problem with the estimation procedure 
arises when the distribution, particularly the condi- 
tional probability P r ( 0  1 Ci), is postulated to be the 
same as P r ( 0  I the HMM to be estimated. Since i.,), 
we generally choose the form of the observation dis- 
tribution before we have any solid knowledge of the 
characteristics of the source in each HMM state, there 
is the risk of a serious mismatch between the chosen 
observation distribution model and the actual data 
source. A similar mismatch potential exists in the 

f o u r  o n e "  

*acoustic background 

s h i p s are there " 

Figure 8. (a) The Waveform and Energy Contour of Three Digits Spoken in Isolation; (b) The Waveform and Energy Contour 
of a Naturally Spoken Sentence, "How Many Ships Are There?" 
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Markovian structure of the model; that is, speech 
signals need not be Markovian. We therefore need 
to provide a mechanism for compensating such po- 
tential errors in modeling. We call this problem the 
model-mismatch case. 

Note that if the chosen class model (the conditional 
as well as the a priori probability) is indeed the cor- 
rect one the ML method will lead to the asymptot- 
ically best recognition performance (in terms of high- 
est correct classification rate) while allowing classes 
to be added or removed from the system specification 
without the need for complete retraining of all class- 
reference rnodels. These assumptions, however. are 
rarely true in practice. An alternative to the preced- 
ing distribution estimate ideas, called corrective train- 
ing. tries to minimize the recognition error rate di- 
rectly by identifying. during training, sources that 
lead to recognition errors (or near errors) and ap- 
plying some type of correction rule to the parameter 
estimation to reduce the probability of these errors 
or near-misses. Unlike the preceding three cases, 
corrective training uses the HMM as a form of dis- 
criminant function and is not concerned about model- 
ing accuracy per se but more with minimizing the 
number of recognition errors that occur during train- 
ing. A more complete discussion of these cases fol- 
lows. 

The Complete-Label Case. In the complete-label 
case, the association between the training data 0 and 
the class Ci is precisely known a priori during training 
(e.g.. as shown in Fig. 8a). This is a typical situation 
in classical pattern-classification theory, and all the 
concerns about supervised learning (Duda and Hart 
1973) apply. What is unique in the current speech- 
recognition problem, however, is the use of a pre- 
scribed class prior model Pr(C,). 

A detailed account of the issues involved in the 
complete-label case was given by Nadas, Nahamoo, 
and Picheny (1988). Consider the set of L HMM class 
models, 12 = {i i)f=, ,  which are used to model the 
classes {C,}f.=, , respectively. The complete set of 
models, A ,  defines a probability measure 

The notation of (24) is slightly different from that 
used earlier because of the fact that we are explicitly 
using both classes and associated models simulta- 
neously for classification purposes. Assume that the 
prior Pr:(C,) = Pr,,(C,) is given or obtained inde- 
pendent of the spoken training set {Ool}, where 0 ' ' )  
are the portion of the training data that are labeled 
as C,. For this case, Nadas et al. (1988) proposed the 
use of a slightly different training measure-namely, 
the conditional maximum likelihood estimator, 
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(CMLE) obtained by 

A:,,, = arg max n Pr ,(C, / O('j). (25) 
1 I 

The motivation for choosing this estimator is that the 
assumed model, Pr,,(Oi'j / C,) or Pr(O"j I EVi), may be 
inappropriate for Pr(O0) 1 C,) so that the asymptotic 
optimality of the standard ML estimator is no longer 
guaranteed. Furthermore, the prior model Pro(Ci) 
could be incorrect (poor estimate, etc.), so that the 
true MAP decoder of (22) is virtually impossible to 
implement. 

When the class prior Pro(Ci) is obtained indepen- 
dent of ( 0 )  and is not part of the model A to be 
optimized, then 

A;LfLE = arg max n Pr,(C, 0' ' ') 
1 , 

= arg max 2 log 
Pr ,(O('j, C,) 

1 , ~ ~ , ~ ~ 

which is the well-known maximum mutual infor- 
mation (MMI) estimator. [Note that the second 
equality comes from the fact that the logarithm is 
monotonic and the additive term log Pr,(C,) does not 
affect the maximization result.] 

The effect of conditional ML estimation in terms 
of class prior robustness-that is, uncertain or in- 
correct Pr,(C,)-can best be illustrated by the fol- 
lowing example from Nadas et al. (1988). Suppose 
in the training data that there are N, occurrences of 
the class C, and, among these occurrences, the (dis- 
crete) observation 0 occurs jointly with class C, N,,, 
times. Then, the ML estimates of the prior and the 
conditional probabilities are, respectively, 

and 

The decoder that uses these estimates then decides 
that an observation 0 belongs to class C, if 

which is simply 

N,,, = max N,,,. (30)
k 

This is optimal when the total number of observa- 
tions approaches infinity. When the prior Pr(C,) is 
prescribed as Pr,,(C,) rather than PrGL(Ci), however, 

~ 1
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the dependence of the decision rule on the a priori 
probability becomes obvious if we continue to use 
Pr;,(O 1 C,); that is, (29) becomes 

. pr,,(C,) = max N,-0 Pr,,(C,). 
Nr 1 N, 

The CMLE criterion of (25), on the other hand, leads 
to a set of equations 

P~:MLE(OI Ci) 

where No = Cb,  Nj,,. This is obtained with the 
variational method by defining the Lagrangian for 
maximization as 

where Oi (i  = 1, 2, . . . , L) are the Lagrange mul- 
tipliers. Plugging (32) into the MAP rule of (22), we 
decide an unknown 0 to be from class C, if 

which can be reduced to 

which is independent of the prior Pr,,(C,). In this 
sense, it was concluded that if Pr,,(C,) is not the true 
prior (because of bad assumptions or estimation er- 
rors), the MLE will implement a suboptimal decoder 
(31), while the CMLE of (25) will lead to the correct 
MAP decoding result (asymptotically) because of the 
compensation built into the estimate of P r (0  ( C,). 

Although the criterion of CML or MMI (for train- 
ing) is attractive in terms of compensation problems 
associated with MAP decoding, some important con- 
cerns remain unanswered. The most immediate con- 
cern in using this criterion is the lack of a convenient 
and robust algorithm to obtain the estimate PrcMLE(O 
/ C,).In many practical situations, the procedure for 
obtaining the solution may be far more complicated 
than (32) would imply, particularly when HMM's are 
involved and the observation distribution is not of a 
discrete type. Previous attempts (Bahl et al. 1986; 

Brown 1987) at using the MMI criterion have not 
produced an estimation procedure that is guaranteed 
to converge to an optimal solution either. Moreover, 
even though the preceding example demonstrates the 
robustness of CMLE against errors in the class prior, 
it is still not clear if CMLE is more robust than MLE 
when the form of the model (i.e., HMM) is incorrect 
for the speech source. Another problem is that the 
CMLE has a larger variance than the MLE. This 
therefore undermines the potential gain in offsetting 
the sensitivity due to inaccurate Pr,,(C,) when the 
decoder based on finite training data is used on test 
data not included in the training set. In the case of 
insufficient training data (as is almost always the sit- 
uation), there are other problems with practical im- 
plementations of the procedure. 

The Incomplete-Label Case. The case of incom- 
plete labeling arises because of (a) practical difficul- 
ties in labeling and segmenting any large continuous- 
speech data base and (b) the inherent ambiguity 
among different sound classes in terms of both class 
definition (i.e., inherent similarities in sound classes) 
and time uncertainty as realized in speech signals 
(i.e., it is not clear that exact segmentation bound- 
aries between adjacent sounds universally exist; see 
Fig. 8b as an example). For the case of decomposing 
an isolated word into a prescribed phoneme se-
quence, we usually have a lexical description of the 
word in terms of the phoneme sequence (as described 
in a dictionary) and the spoken version of the word 
without any explicit time segmentation into corre- 
sponding phonemes. Under these conditions (which 
are typical for speech recognition), training of the 
prescribed subword unit models is rather difficult due 
to the lack of a definitive labeling relating subword 
classes to specific intervals of speech. After all, if we 
do not know for sure that a training token 0 is in 
sound class C,, the likelihood function P r ( 0  1 C,) 
cannot be defined, not to mention optimized. 

There are several ways to handle the problem of 
incomplete labeling based on the idea of embedded 
decoding. One way is to retain the constraints of the 
known class sequence (in the previous example, the 
phoneme sequence) and solve for the "optimal" set 
of class models sequentially. Another alternative is 
to solve for the models of the sound classes simul- 
taneously with the class decoding. 

Consider first the case in which we have partial 
knowledge; that is, a given training token 0 is known 
to correspond to a sequence of u class labels h = 
(h,,h,, . . . ,h,) (as determined from dictionary lookup 
of the words realized by 0 ) ,  where h,E {C,},L_,.The 
goal is to obtain the L models h = {i.,),L=, corre- 
sponding to the L sound classes C = {C,)f=,, using 
the number of segments u and the class labels h as 
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hard constraints in the decoding. Figure 9 illustrates 
the decomposition of a word into u = 4, 5, or 6 
segments. We see the varying segmentations asso- 
ciated with different numbers of base units within the 
word. The procedure begins by assuming a uniform 
segmentation X = (x,,  x?, . . . , xu) of 0 into u 
speech intervals with the ith interval, x,, correspond- 
ing to sound class h,. (Note that each interval is a 
sequence of spectral vectors.) Based on this initial 
segmentation, the likelihood functions are defined 
and individual class models are obtained by ML (via 
the forward-backward procedure). For example, if 
h, = C,, then the segment x, is used to define a 
likelihood function Pr(x, / C,) for maximization. As 
a result, a set of sound unit models are created. With 
the new set of unit models, we further refine the 
segmentation of 0 into X (again assuming exactly u 
segments) by optimally decoding 0 using the Viterbi 
algorithm. This leads to an improved segmentation 
of 0 that can then be used to give a refined set of 
sound models. This process is iterated until a rea- 
sonably stationary segmentation of 0 into intervals 
X is obtained. 

This constrained decoding approach to the incom- 
plete label case has been used in explicit acoustic 
modeling of phonemic classes (Lee et al. 1989; Lee, 
Rabiner, Pieraccini, and Wilpon 1990) with good suc- 
cess. There are, however, some theoretical short- 
comings to the method. One problem is that the 
segmentationldecoding results will be different for 
different numbers of segments u in the given string 
(see Fig. 9). Thus even the simple expedient of hav- 
ing multiple dictionary definitions for a word can lead 
to inconsistent segmentation in terms of sound classes. 
Although the procedure is practical, there appears 
to be room for theoretical improvements, which in 
turn may prove beneficial in practical implementa- 
tions. 

An alternative and probably more thorough way 

"AIR" 

of handling the incomplete-label problem is to com- 
bine the ideas of segmentation, decoding, and model- 
ing together and try to solve a large network for both 
the class models and segmentations simultaneously, 
without any prescribed label-sequence constraint. In 
this approach, the preceding iterative procedure- 
that is, recursively and interleavingly improving data 
segmentation and model estimation via the sequen- 
tial k-means algorithm-is again used. The key dif- 
ference, in contrast to the constrained decoding ap- 
proach discussed previously, is that the label-sequence 
constraint is no longer retained in each iteration. 
This allows globally optimal decoding of 0, given 
a set of sound unit models. This advantage, however, 
comes at the price of giving up the convenient and 
readily available lexical representation h from the 
dictionary. 

As previously pointed out, the goal of signal 
modeling is to come up with a parsimonious, con- 
sistent representation of the source that displays a 
certain kind of variation in the observed output. 
Speech signals are known to have inherent time un- 
certainty due to speaking style and speaking rate 
variations, as well as spectral uncertainty because of 
coarticulation effects, individual speaker character- 
istics, and so forth. This justifies the use of HMM 
for an individual sound class. The reason is that the 
incomplete data problem formulation (Dempster et 
al. 1977; Rabiner and Juang 1986), based on which 
the fundamental HMM probability measure of (8) is 
defined, is particularly appropriate when explicit 
knowledge of the exact position (labeling) of the par- 
ticular sound in the middle of an utterance is lacking. 
On the other hand, speech is a linear code (Chao 
1968) in the sense that decoded symbols come out 
one after another and no two symbols can appear at 
the same time. Therefore, the objective of optimizing 
the quantity defined by (7) will have to be accom- 
plished during the recognition process, and alternate 

TIME (FRAME) 

Figure 9. Decomposition of the Word "Air" Into Different Numbers of Segment Units. 
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use of the Baum-Welch algorithm and the segmental 
k-means algorithm as laid out by Lee et al. (1989) 
appears to be a reasonable approach to the problems 
associated with incomplete-label cases. 

Model-Mismatch Issues. In speech modeling, we 
often choose (assume) the form of model before we 
actually know enough about the characteristics of the 
source. When we choose P r ( 0  1.) to model P r (0  

C) for class C and perform ML estimation, the 
optimality in decoding is meaningful only when 0 is 
indeed generated by the source i.. When the actual 
source is inconsistent with i., we need to either im- 
prove P r ( 0  / I . )  based on 0 or revise the decoding 
rule in some way. Here, we discuss the first possi- 
bility. 

Consider two statistical populations with proba- 
bility densities f,and f 2 ,  respectively. The Kullback- 
Leibler number, cross entropy, I divergence, or dis- 
crimination information (Good 1963; Hobson and 
Cheng 1973; Johnson 1979; Kullback 1958) defined 
by 

is the mean information for discriminating f,against 
f 2 .  This discrimination information can be used in 
HMM (Ephraim, Dembo, and Rabiner 1989). 

Let R = (R,, R?, . . . ,Rr) be a sequence of con- 
straints associated with the observation sequence 
0 = (O, ,  02,. . . ,OT), which we attempt to model. 
For example, R could be considered as the autocor- 
relation of the actual speech data. Let R(R) be the 
set of all models (probability distributions) that sat- 
isfy the constraints R.  The minimum discrimination 
information (MDI) approach to HMM modeling is 
to find the HMM parameter set i. which minimizes 
the MDI defined by 

v(R, P)  2 inf I (Q :P) 
V E W R )  

= inf jq ( 0 )  log q'O) d o .  (36) 
Q E W R )  ~ ( 0I 

The estimation criterion is thus the minimum over i 
of the MDI of (36). Note that in (36) we have as- 
sumed that both distributions P and Q have gener- 
alized pdf's, denoted b y p (  1.) and q(.) ,  respectively. 
Clearly, the idea of (minimum) MDI model design 
is to allow a search into a general set of models 
(distributions) R with the HMM measure P r ( 0  I i.) 
as a contrasting reference so that the form of the 
chosen model P(.  1 E.) and what is revealed in the 
given data 0 can be better matched under the MDI 
measure. 

MDI modeling involves two steps. First, given an 
HMM p(.  I I.), we find the solution, q,  to the MDI 
problem of (36). Then, with q given, we optimize 
the parameter values 1. such that u(R, P) is mini- 
mized. 

The MDI modeling criterion carries some infor- 
mation-theoretic justification and can be related to 
the MMI approach (Ephraim and Rabiner 1988). 
There remain several unresolved issues with this 
method, however. The objective to improve the match 
between the observations 0 and the model 1. is 
embedded in v(R, P) ,  which is computed for all Q 
E R(R) with respect to the chosen model P(.  1 i ) .  
Since P(. I i.) is often not a good measure of how 
well the model matches the data because of model 
mismatch, the goodness of the MDI pdf, q ,  which 
minimizes v(R, P) ,  is difficult to measure in recog- 
nition tasks, not to mention the effects on classifi- 
cation errors. Furthermore, the nice computational 
structure of the HMM that makes possible the 
modeling of long training sequences is not preserved 
in the MDI pdf, q ,  resulting in an exceptionally high 
computational complexity. In practice, some ap-
proximations are made to reduce the complexity 
problem (Ephraim et al. 1989). To date, it has not 
been demonstrated that the MDI model-design pro- 
cedure can bring about significant improvements in 
recognition performance (Ephraim et al. 1989). It is 
also not clear whether MDI (for model correctness) 
and CMLEiMMIE (for robust decoding) can be eas- 
ily jointly formulated for an improved recognizer 
design. 

Corrective Training. As explained earlier, the 
minimum Bayes risk or error rate is the theoretical 
recognizer performance bound conditioned on the 
exact knowledge of both the prior and the condi- 
tional distributions. When both distributions are not 
known exactly and the classifier needs to be designed 
based on a finite training set, there are several ways 
to try to reduce the error rate. One method is based 
on the theoretical link between discriminant analysis 
and distribution estimation (Duda and Hart 1973). 
The idea here is to design a classifier (discriminant 
function) such that the minimum classification-error 
rate is attained on the training set. In particular, we 
wish to design a classifier that uses estimates of Pr(C,) 
and P r (0  I C,) and that achieves a minimum error 
rate for the training set in the same way a discrimi- 
nant function is designed. The reason for using the 
HMM Pr (0  / 2,) as opposed to other discriminant 
functions, is to exploit the strengths of the HMM-
namely, consistency, flexibility and computational 
ease, as well as its ability to generalize classifier per- 
formance to independent (open) data sets. The 
generalization capability of HMM's, as discriminant 

TECHNOMETRICS, AUGUST 1991, VOL. 33, NO. 3 



266 B. H. JUANG AND L. R. RABINER 

functions, is somewhat beyond the scope of this ar- 
ticle and will not be discussed here. In the following, 
we focus on the issue of treating the estimation of 
the distributions Pr(C,) and P r ( 0  / 2,) as a discrim- 
inant-function design to attain the minimum error 
rate. 

Bahl, Brown, de Souza, and Mercer (1988a) were 
the first to propose an error-correction strategy, which 
they named corrective training, to specifically deal 
with the misclassification problem. Their training al- 
gorithm was motivated by analogy with an error- 
correction training procedure for linear classifiers 
(Nilsson 1965). In their proposed method, the ob- 
servation distribution is of a discrete type, B = [b,], 
where b, is the probability of observing a vector 
quantization code index (acoustic label) j when the 
HMM source is in state i. Each b,, is obtained via the 
forward-backward algorithm as the weighted fre- 
quency of occurrence of the code index (Rabiner et 
al. 1983). The corrective training algorithm of Bahl 
et al. (1988a) works as follows. First, use a labeled 
training set to estimate the parameters of the HMM's 
h = (3.)) with the forward-backward algorithm. For 
each utterance 0, labeled as Ck, for example, eval- 
uate P r ( 0  / E+) for the correct class Ck and P r ( 0  1 i,) 
for each incorrect class C,. (The evaluation of like- 
lihood for the incorrect classes need not be exhaus- 
tive.) For every utterance in which log P r ( 0  2,) > 
log P r ( 0  E.J - S ,  where d is a prescribed threshold, 
modify i.k and i., according to the following mecha- 
nism: (a) Apply the forward-backward algorithm to 
obtain estimates bll and b;' , using the labeled utter- 
ance 0 only, for the correct class Ck and incorrect 
class C,, respectively, and (b) modify the original b,, 
in i., to b,, + ;lb,\ and the b, in i., to b, - ybi. When 
the state labels are tied for certain models, the pre- 
ceding procedure is equivalent to replacing the 
original b,, with b,, + ;(b; - b:;). The prescribed 
adaptation parameter, controls the "rate of;I, 

convergence," and the threshold, S ,  defines the "near- 
miss" cases. This corrective training algorithm there- 
fore focuses on those parts of the model that are 
most important for word discrimination, a clear dif- 
ference from the ML principle. 

Although Bahl et al. (1988a) reported that the 
corrective training procedure worked better (in iso- 
lated-word recognition tasks) than models obtained 
using the MMI or the CMLE criteria, the lack of a 
rigorous analytical foundation for the algorithm is 
one problem. Without a better theoretical under- 
standing of the algorithm, the appeal of the method 
is primarily experimental. Other attempts to design 
HMM's for minimum error rate or some form of class 
separation include the work by Ljolje, Ephraim, and 
Rabiner (1990) and by Sondhi and Roe (1983). 

Several other forms of discriminative training were 

also proposed by Katagiri, Lee, and Juang (1990), 
who combined the adaptive learning concept in 
learning vector quantizer design (Kohonen 1986) and 
the corrective training method described previously, 
leading to a framework for the analysis of related 
trainingilearning ideas. Although this work is still in 
progress, the key result is that these adaptive learn- 
ing methods can be formulated as a general-risk min- 
imization procedure based on a probabilistic descent 
algorithm, ensuring a stochastic convergence result. 
The generalized risks considered by Katagiri et al. 
(1990) include the regular classification error, the 
mean squared error, nonlinear functions (e.g., sig- 
moid) of the likelihood, and several other general 
measures. The corrective training algorithm of Bahl 
et al. (1988a) is just one possible choice for the min- 
imization of a prescribed risk function. 

4.2 	 Integration of Nonspectral and 
Spectral Features 

The use of HMM's in speech recognition has been 
mostly limited to the modeling of short-time speech 
spectral information; that is, the observation 0 typ-
ically represents a smoothed representation of the 
speech spectrum at a given time. The spectral feature 
vector has proved extremely useful and has led to a 
wide variety of successful recognizer designs. This 
success can be attributed both to the range of spec- 
tral-analysis techniques developed in the past three 
decades, as well as to our understanding of the per- 
ceptual importance of the speech spectrum to the 
recognition of sounds. The success of spectral pa- 
rameters for characterizing speech was further aug- 
mented by the introduction of the so-called delta- 
cepstrum (Furui 1986), which attempts to model the 
differential speech spectrum. 

Besides spectral parameters, there are other speech 
features that are believed to contribute to the rec- 
ognition and understanding of speech by humans. 
One such category of nonspectral speech features is 
prosody as it is manifested on both the segmental 
and the supra-segmental level (Lea 1980). Physical 
manifestations of prosody in the speech signal in- 
clude signal energy (suitably normalized), differen- 
tial energy, and signal pitch (fundamental fre- 
quency). There are at least two issues of concern in 
integrating nonspectral with spectral features in a 
statistical model of speech: Do such features con- 
tribute to the performance of the statistical model 
for actual recognition tasks, and how should the fea- 
tures be integrated so as to be consistent with their 
physical manifestations in the production and per- 
ception of speech? The first issue is relatively easy 
to resolve based on experimental results. Several 
HMM-based recognition systems have incorporated 
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log energy (and differential log energy) either di- 
rectly into the feature vector or as an additional fea- 
ture whose probability (or likelihood) is factored into 
the likelihood calculation (Bahl et al. 1983; Rabiner 
1984; Shikano 1985) with moderate success (i.e., 
higher recognition performance). The level of per- 
formance improvement, however, is considerably 
smaller than one might anticipate based on the im- 
portance of prosody in speech. 

The problem with combining spectral and non- 
spectral features in a statistical framework is one of 
temporal rate of change. To attain adequate time 
resolution for the spectral parameters that charac- 
terize the varying vocal tract, we need to sample the 
spectral observations at a rate on the order of 100 
times per second (10-msec frame update). The pro- 
sodic features of speech characterize stress and in- 
tonation, and these occur at a syllabic rate of about 
10 times per second. [Of course, we can always over- 
sample the features associated with the prosodic 
parameters to keep the rate the same as that of the 
spectral parameters; this in fact is what is currently 
done in most systems-e.g., Rabiner (1984) and Shi- 
kano (1985)]. Furthermore, the sequential charac- 
teristic change of different features may be too dif- 
ferent to warrant a single, unified Markov chain. Thus 
one key question is: How do we combine two feature 
sets with fundamentally different time scales and pos- 
sibly different sequential characteristics so as to be 
able to perform optimum modeling and decoding? 

A second problem in combining fundamentally dif- 
ferent (in nature) features concerns their statistical 
characterization. To be technically correct, we need 
to know the joint distribution of the two feature sets. 
For statistically independent (or often just uncorre- 
lated) feature sets, we can represent the joint density 
as a product of the individual densities. In practice, 
however, there is usually some correlation between 
any pair of speech feature sets; hence some correc- 
tion for the correlation is usually required. One pro- 
posed method of handling this problem is to perform 
a principal-component analysis on the joint feature 
set before hidden Markov modeling is performed 
(Bocchieri and Doddington 1986). Although this al- 
leviates the difficulties somewhat, it is not a totally 
satisfying solution because the resulting feature set 
usually has no straightforward physical significance. 
Furthermore, the set of principal components is a 
function of the data and hence need not be optimal 
for unseen data (open-set problem). 

4.3 Duration Modeling in HMM's 

One of the inherent limitations of the HMM ap- 
proach is its treatment of temporal duration. Inher- 
ently, within a state of an HMM, the probability 

distribution of state duration is exponential; that is, 
the probability of staying in state i for exactly d ob- 
servations is Pr,(d) = (a,,)"-'(1 - a,,). This expo- 
nential duration model is inappropriate for almost 
any speech event. 

Several alternatives for implementing different 
state duration models have been proposed. The most 
straightforward approach is the concept of a semi- 
Markov chain (Ferguson 1980; Russell and Moore 
1985) in which state transitions do not occur at reg- 
ular time intervals. More formally, we assume that 
for a given state sequence q in which there are r -
1 state transitions such that the states visited are q , ,  
q,, . . . , q, with associated state durations of d l ,  dz, 
. . . , d, (frames), the joint probability of the obser- 
vation sequence 0 and the state sequence q,  given 
the model J., becomes 

P r (0 ,  q / i) 

The probability measure for such a Markov model 
is, accordingly, P r ( 0  / i ) = C,  Pr(0 ,  q / 2). Based 
on these definitions, modeling of the source, includ- 
ing the duration model Pr,(d,), can be implemented 
using a hill-climbing reestimation procedure of the 
type used previously (Levinson 1986). Typically, Pri (d,) 
is treated as a discrete distribution over the range 1 
5 di 5 Dm,,, where Dm,, represents the longest pos- 
sible dwell in any state. 

Although preceding formulation handles the du- 
ration model simultaneously with the Markovian 
transition and the local (state) distribution models 
and can lead to analytical solutions, there are draw- 
backs with such a duration model for speech rec- 
ognition. One such drawback is the greatly increased 
computational complexity due to the loss of regu- 
larity in transition timing. In the traditional HMM, 
transitions are allowed to occur at every time frame. 
In the semi-Markov model, transitions do not occur 
at regular time [the return transition is part of the 
duration model Pr,(d,)], and this leads to a signifi- 
cantly more complicated lattice for decoding an input 
string. It was estimated by Rabiner (1989) that the 
semi-Markov model incurs a factor of 300 increase 
in computational complexity for a value of Dm,, = 

25. The much increased complication in decoding 
lattice often renders many search algorithms such as 
the beam search (Lowerre and Reddy 1980) and the 
stack algorithm (Jelinek 1969) for handling large 
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problems extremely difficult to implement. Another 
problem with the semi-Markov model is the large 
number of parameters (D,,,) associated with each 
duration model that must be estimated in addition 
to the usual HMM parameters. Finally, it is not clear 
how accurate or how robust the estimated Pri(di) 
needs to be in order to be beneficial in speech rec- 
ognition. 

One proposal (Levinson 1986) to alleviate some 
of these problems is to use a parametric state-du- 
ration distribution model instead of the nonpara- 
metric ones used previously. Several parametric dis- 
tributions have been considered, including the 
Gaussian family (with constraints to avoid negative 
durations) and the gamma family. Other less in- 
volved attempts include modeling the state duration 
with a uniform distribution, requiring only the esti- 
mate of the duration range, with minimum and max- 
imum duration allowed in a particular state. This 
simple duration model has been applied with good 
success (Lowerre and Reddy 1980) for some tasks. 

The major difficulty in modeling the durational 
information is that it is much more sparse than spec- 
tral information; that is, there is only one duration 
per state. Hence we either alter the structure of the 
HMM (e.g., to a semi-Markov model), thereby los- 
ing much of the regularity of the original HMM for- 
mulation, or we seek alternative implementation 
structures, as in the case of prosodic information. 
For durational information a simple-minded ap-
proach is to treat the spectral modeling and the du- 
ration modeling as two separate, loosely connected 
problems. Hence the regular HMM estimation (spec- 
tral) is performed on the given observation sequence 
0.Then the best state sequence ij,which maximizes 
P r (0 ,  q / E.), is found using the Viterbi algorithm. 
Finally, esimates of Pri(di) are obtained based on the 
optimal state sequence ij by either the ML method 
or from simple frequency of occurrence counts (Ra- 
biner et al. 1986). Often the duration di for state i is 
normalized by the overall duration T to account for 
the inherent variation in speaking rate. This ap- 
proach is usually called the postprocessor duration 
model because the standard decoding is performed 
first and the duration information is only available 
after the initial processing is finished. Although the 
postprocessor duration model has had some success 
(Rabiner et al. 1986), the questions of optimality of 
the estimate, robustness of the solution, and other 
criteria for successful use of duration information, 
especially as applied to speech recognition, remain 
unanswered. 

4.4 Model Clustering and Splitting 

One of the basic assumptions in statistical model- 
ing is that the variability in the observations from an 

information source can be modeled by statistical dis- 
tributions. For speech recognition, the source could 
be a single word, a subword unit like a phoneme, or 
a word sequence. Because of variability in the source 
production (e.g., accents, speed of talking) or the 
source processing (e.g., transmission distortion, 
noise), it is often expedient to consider using more 
than a single HMM to characterize the source. There 
are two motivations behind this multiple HMM ap- 
proach. First, lumping all of the variability together 
from inhomogeneous data sources leads to unneces- 
sarily complex models, often yielding lower modeling 
accuracy. Second, some of the variability, or rather 
the inhomogeneity in the source data, may be known 
a priori, thus warranting separate modeling of the 
source data sets. Here, our main concern is the first 
case-that is, automatic modeling of an inhomoge- 
neous source with multiple HMM's, because the lat- 
ter (manual) case is basically straightforward. 

Several generalized clustering algorithms exist, 
such as the k-means clustering algorithm, the gen- 
eralized Lloyd algorithm widely used in vector quan- 
tizer designs (Linde, Buzo, and Gray 1980) or the 
greedy growing algorithm found in set-partition or 
decision-tree designs (Breiman 1984), all of which 
are suitable for the purpose of separating inconsistent 
training data so that each divided subgroup becomes 
more homogeneous and therefore is better modeled 
by a single HMM. The nearest neighbor rule re- 
quired in these clustering algorithms is simply to as- 
sign an observation sequence 0 to cluster i if P r ( 0  
/ i , )  = max,Pr(O 1 3, ) ,  where i,'s denote the models 
of the clusters. Successful application of the model- 
clustering algorithms to the speech-recognition prob- 
lem, using the straightforward ML criterion, has been 
reported (Rabiner, Lee, Juang, and Wilpon 1989). 
When other estimation criteria are used, however, 
the interaction between multiple HMM modeling and 
the Bayes minimum-error-classifier design remains 
an open question in need of further study. 

An alternative to model clustering is to arbitrarily 
subdivide a given speech source into a large number 
of subclasses with specialized characteristics and then 
consider a generalized procedure for model merging 
based on source likelihood considerations. By way 
of example, for large-vocabulary speech recognition 
we often try to build specialized units (context sen- 
sitive) for recognition. We could consider building 
units that are a function of the sound immediately 
preceding the unit (left-context) and the sound im- 
mediately following the unit (right-context). There 
are about 10,000 such units in English. Many of the 
units are functionally almost identical. The problem 
is how to determine which pairs of units should be 
merged (so that the number of model units is man- 
ageable and the variance of the parameter estimate 
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is reduced). To set ideas, consider two unit models, 
3., and i,,corresponding to training observation sets 
0, and Oh,  and the merged model correspond-
ing to the merged observation sets {0,,  Oh). We can 
then compute the change in entropy (i.e., loss of 
information) resulting from the merged models as 

(Lee 1989). Whenever AH,, is small enough, it means 
that the change in entropy resulting from merging 
the models will not affect system performance (at 
least on the training set) and the models can be 
merged. The question of how small is acceptable is 
dependent on specific applications. Other practical 
questions of a similar nature also remain. 

4.5 	 Parameter Significance and 
Statistical Independence 

Although in theory the importance of the state 
transition coefficients aii is the same as that of the 
state observation density b,(O) [in training, aii affects 
the parameter estimate of bj(.) and vice versa], in 
normal practice of speech recognition, this is not 
usually the case. This paradox is due to the discrim- 
ination capability of the a,'s relative to that of the 
bi(0)'s. Since a;, is the relative frequency of state 
transition from state i to state j ,  its dynamic range 
(especially in a left-to-right model) is severely con- 
strained. The bi(0) densities, nevertheless, often have 
almost unlimited dynamic range, particularly when 
continuous density functions are used, as each of the 
state densities is highly localized in the acoustic pa- 
rameter space. When we combine the a,'s and the 
bi(0) 's to give the probability distribution of the 
HMM, we find in practice that, for a left-to-right 
model, the atj's can be neglected entirely (i.e., set all 
a, = ai,,,, = .5) with no effect on recognition per- 
formance. 

The preceding analysis points out the existence of 
the unbalanced numerical significance of the a's and 
the b's in the likelihood calculation of the HMM as 
applied to speech recognition. This, however, should 
not be taken as to totally discredit the usefulness of 
the Markov-chain contribution in terms of signal 
modeling. In fact, the transition probability still plays 
an important role in parameter estimation. 

The introduction of semi-Markov models as dis- 
cussed in Section 3.7 is one way to enhance the sig- 
nificance of the Markov-chain contribution. The 
probability of a Markovian sequence of (4) is revised 

to a general form of product Pr9,(dl)Prq2(d2) . . . as 
in (37). This more general form of Markov-chain 
dependence allows introduction of a singularity in 
Pr,(d), thereby increasing its numerical significance 
under certain conditions. [For example, if we specify 
Pr,(d) = 0 for d 5 do, the HMM system has to 
undergo at least d,, frames in state q before it moves 
out of that state, regardless of the value of b,(O,) 
during that period of time.] Such a provision for 
introducing singularities could have a major impact 
on the recognition performance (Lowerre and Reddy 
1980). 

A separate issue associated with the observation 
densities is the statistical independence assumption. 
If the state sequence that led to the production of 0 
is known, the conditional probability of 0 as defined 
in (6) involves a product form that implies statistical 
independence (Sondhi, Levinson, and de la Noue 
1988; Wellekens 1987). The partial HMM measure 
of (7) shows that the contribution of the underlying 
Markov chain [as expressed in (4)] is to multiply the 
result of (6), a result equivalent to assuming that the 
observations within a state are independent. This 
greatly simplified assumption may be an area for im- 
provement. The argument is that within a state (es- 
pecially one representing a stationary sound like a 
vowel) the observations are highly correlated. Thus 
assuming independence gives far too much emphasis 
to the match within such stationary states. The prob- 
lem is one of form as well as substance. It is difficult 
to choose an appropriate form for P r (  1 andq ,  i.), 
it is even more difficult to estimate the parameters 
of the chosen form from any reasonably sized train- 
ing set. The problems are similar to those of any 
reduced-rate measurement-namely, one measure- 
ment of Pr(. ) q ,  j.) for each state rather than several 
measurements per state. Hence we are trying to es- 
timate parameters of a much more complicated rep- 
resentation from far less data than in the simple, 
uncorrelated observations case. As such, this prob- 
lem is one for which there may never be a good 
solution. 

4.6 	 Higher Order HMM 

Until now, almost all HMM formulations for speech 
recognition have been based on a simple first-order 
Markov chain. At the acoustic signal-processing level, 
this low-order modeling may be acceptable because 
the time scale of processing for each frame of signal 
is kept on the order of 10 msec. When an HMM is 
used in higher levels of a recognition system, such 
as syntactic or semantic processing, the first-order 
formulation often turns out to be inadequate. This 
is because the grammatical structure of the English 
language (and perhaps any other language) obviously 
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cannot be properly modeled by a first-order Markov 
chain. Although the structural simplicity of a first- 
order model makes the computation simple and 
straightforward, there may be a need to complete 
the analytical framework of higher order models. 
Moreover, for such higher order models to be prac- 
tically useful, many of the implementational advan- 
tages of the first-order case may have to be formu- 
lated in an appropriate manner. 

5. SUMMARY 

In this article, we have reviewed the statistical 
method of HMM's. We showed that the strengths of 
the method lie in the consistent statistical framework 
that is flexible and versatile, particularly for speech 
applications, and the ease of implementation that 
makes the method practically attractive. We also 
pointed out some areas of the general HMM method 
that deserve more attention with the hope that in- 
creased understanding will lead to performance im- 
provements for many applications. These areas in- 
clude the modeling criteria, particularly the problem 
of minimum classification error, incorporation of new 
(nonspectral) features as well as prior linguistic 
knowledge, and the modeling of state durations and 
its use in speech recognition. With our current un- 
derstanding, HMM systems have been shown capa- 
ble of achieving recognition rates of more than 95% 
word accuracy in certain speaker-independent tasks 
with vocabularies on the order of 1,000words. With 
further progress, it is not difficult to foresee HMM- 
based recognition systems that perform well enough 
to make the technology usable in everyday life. 
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