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Abstract

This paper investigates conditions under
which modi�cations to the reward function
of a Markov decision process preserve the op�
timal policy� It is shown that� besides the
positive linear transformation familiar from
utility theory� one can add a reward for tran�
sitions between states that is expressible as
the di	erence in value of an arbitrary poten�
tial function applied to those states� Further�
more� this is shown to be a necessary con�
dition for invariance� in the sense that any
other transformation may yield suboptimal
policies unless further assumptions are made
about the underlying MDP� These results
shed light on the practice of reward shap�
ing� a method used in reinforcement learn�
ing whereby additional training rewards are
used to guide the learning agent� In par�
ticular� some well�known 
bugs� in reward
shaping procedures are shown to arise from
non�potential�based rewards� and methods
are given for constructing shaping potentials
corresponding to distance�based and subgoal�
based heuristics� We show that such po�
tentials can lead to substantial reductions in
learning time�

� Introduction

In sequential decision problems� such as are studied
in the dynamic programming and reinforcement learn�
ing literatures� the 
task� is represented by the reward
function� Given the reward function and a model of
the domain� the optimal policy is determined� An ele�
mentary theoretical question that arises is this� What

freedom do we have in specifying the reward function�
such that the optimal policy remains unchanged


In the �eld of utility theory� which studies pri�
marily single�step decisions� the corresponding ques�
tion for the utility function can be answered very
simply� For single�step decisions without uncer�
tainty� any monotonic transformation on utilities
leaves the optimal decision unchanged� with uncer�
tainty� only positive linear transformations are al�
lowed �von Neumann and Morgenstern� ������ These
results have important implications for designing eval�
uation functions in games� eliciting utility functions
from humans� and many other areas�

To our knowledge� the question of policy invariance un�
der reward function transformations has not been fully
explored for sequential decision problems�� Policy�
preserving transformations are important at least in
these areas�

� The task of structural estimation of MDPs
�Rust� ����� involves recovering the model and
reward function from observed optimal behav�
ior� �See also the discussion of inverse rein�
forcement learning in �Russell� ������� Policy�
preserving transformations determine the extent
to which a reward function can be recovered�

� The practice of reward shaping in reinforcement
learning consists of supplying additional rewards
to a learning agent to guide its learning process�
beyond those supplied by the underlying MDP� It
is important to understand the impact of shaping
on the learned policy�

�Some results are known for approximate invariance�
if rewards are perturbed by at most �� the new policy�s
value is within ����� � �� of the original optimal pol�
icy �Singh and Yee� �		
� Williams and Baird� �		
��



This paper focuses primarily on reward shaping� which
has the potential to be a very powerful technique for
scaling up reinforcement learning methods to han�
dle complex problems �Dorigo and Colombetti� �����
Mataric� ����� Randl�v and Alstr�m� ������ �Similar
ideas have arisen in the animal training literature�
see �Saksida et al�� ����� for a discussion�� Often� a
very simple pattern of extra rewards su�ces to render
straightforward an otherwise completely intractable
problem�

To see why policy invariance is important in shaping�
consider the following examples of bugs that can arise�
�Randl�v and Alstr�m� ����� describes a system that
learns to ride a simulated bicycle to a particular lo�
cation� To speed up learning� they provided positive
rewards whenever the agent made progress towards the
goal� The agent learned to ride in tiny circles near the
start state because no penalty was incurred for riding
away from the goal� A similar problem occurred with
a soccer�playing robot being trained by David Andre
and Astro Teller �personal communication�� Because
possession in soccer is important� they provided a re�
ward for touching the ball� The agent learned a policy
whereby it remained next to the ball and 
vibrated��
touching the ball as frequently as possible� These poli�
cies are clearly not optimal for the original MDP�

These examples suggest that the shaping rewards must
obey certain conditions if they are not to mislead the
agent into learning suboptimal policies� The di��
culty with positive�reward cycles leads one to consider
rewards derived from a conservative potential�that
is� the reward for executing a transition between two
states is �essentially� the di	erence in the value of
a potential function applied to each state� It turns
out that not only is this a su�cient condition for
guaranteeing policy invariance under reward transfor�
mations� but that� assuming no prior knowledge of
the MDP� this is also a necessary condition for be�
ing able to make such a guarantee� Section � gives
the de�nitions needed to state this claim precisely�
and Section � states and proves the claim� Section �
shows how to construct shaping potentials of various
kinds and demonstrates their e�cacy in speeding up
learning on some simple domains� Finally� Section �
connects our results to existing algorithms such as
Advantage learning �Baird� ����� and ��policy itera�
tion �Bertsekas and Tsitsiklis� ������ and closes with
discussion and future work�

� Preliminaries

��� De�nitions

In this section� we provide some of the de�nitions used
throughout the paper� focusing on the case of �nite�
state Markov decision processes �MDPs�� Shaping is
of interest to us in both �nite�state and in�nite�state
problems� but the underlying MDP theory for the
in�nite�state case is signi�cantly more di�cult� even
in the absence of shaping� Nevertheless� our analy�
sis and methodology are easily generalized from the
�nite to the in�nite�state space case once the underly�
ing MDP theory is laid out� and we will mention this
again later� but for now� let us start our de�nitions
with explicitly considering only �nite�state domains�

A ��nite�state� Markov decision process �MDP��
is a tuple M � �S�A� T� ��R�� where� S is a �nite set
of states� A � fa�� � � � � akg is a set of k � � actions�
T � fPsa���js � S� a � Ag are the next�state tran�
sition probabilities� with Psa�s�� giving the proba�
bility of transitioning to state s� upon taking action a
in state s� � � ��� �� is the discount factor� and R
speci�es the reward distributions� For simplicity� we
will assume rewards are deterministic� in which case
R is a bounded real function called the reward func�
tion� In the literature� reward functions are typically
written R � S �A �� R� with R�s� a� being the reward
received upon taking action a in state s� Though we
will often write reward functions in this form� we will
also allow a more general form� R � S � A � S �� R�
with R�s� a� s�� being the reward received upon taking
action a in state s and transitioning to state s��

Given a �xed set of actions A� a policy over a set
of states S is any function � � S �� A� Note that
policies are de�ned over states and not over MDPs�
so the same policy may be applied to two di	erent
MDPs so long as the two MDPs use the same states
and actions� Given any policy � over states S and any
MDP M � �S�A� T� ��R� using the same states and
actions� we may then de�ne the value function V �

M �
which evaluated at any state s gives V �

M �s� � E�r� �
�r� � ��r� � � � � ��� s�� where ri is the reward received
on the ith step of executing the policy � from state s�
and the expectation is over the state�transitions taken
upon executing �� We then de�ne the optimal value
function to be V �

M �s� � sup� V
�
M �s�� the Q�function�

evaluated at any s � S� a � A as

Q�
M �s� a� � Es��Psa��� �R�s� a� s�� � �V �

M �s��� ���

�where the notation s� � Psa��� means that s� is drawn
according to the distribution Psa����� and the optimal



Q�function as Q�
M �s� a� � sup� Q

�
M �s� a�� Finally� we

de�ne the optimal policy for an MDP M as ��M �s� �
arg maxa�AQ

�
M �s� a�� The optimal policy may not be

unique� and we more generally say a policy � is optimal
in M if ��s� � arg maxa�AQ

�
M �s� a� for all s � S�

Lastly� when the context MDP is clear� we may also
drop the M �subscript� and write V � rather than V �

M �
etc�

We also need some �largely standard� regularity con�
ditions so as to make sure all of the above de�nitions
make sense� For undiscounted �� � �� MDPs� we as�
sume that S contains a distinguished state s� called
an absorbing state� so that the MDP 
stops� after a
transition into s�� with no further rewards thereafter�
Moreover� again for undiscounted MDPs� we assume
all policies are proper� meaning that upon execut�
ing any policy starting from any state� we will with
probability � eventually transition into s�� Since this
is really a condition on T � we will in this paper say
the transition probabilities T are proper if this condi�
tion holds� Discounted MDPs have no corresponding
absorbing state and are always in�nite�horizon� note
therefore that for them� we can write S � fs�g � S�

The above were the standard regularity conditions
needed for MDPs with �nite state spaces �see�
e�g� �Sutton and Barto� ������� which is the case which
we had explicitly said we would focus on� For MDPs
with in�nite state spaces� more would be needed� for
example� in the undiscounted case� the expectation in
our de�nition of V �

M �s� � E�r� ��r� ���r� � � � � ��� s�
may not even exist�� These issues need to be prop�
erly addressed before we can even de�ne things such
as optimal policies� and excellent sources for this mate�
rial include �Bertsekas� ����� Hern�andez�Lerma� �����
Bertsekas and Shreve� ������ But unfortunately� ex�
plaining the in�nite jSj case in full generality would
require more measure theory than we wish to delve into
here� and we only comment that� with the appropriate
generalizations of the required regularity conditions on
the MDP� all of our results are easily generalized to the
in�nite jSj case� Throughout this paper� we will how�
ever continually draw links to how the results may be
proved for in�nite jSj� though we defer the more gen�
eral proofs for in�nite jSj to the full paper� For now�
we note only that for the in�nite�state case� an impor�
tant and useful condition is that the reinforcements
are bounded in absolute value� this will be mentioned
again later in the paper�

�This is in a similar sense to the 
mean� of a Cauchy
distribution not existing�

��� Shaping Rewards

In this section� we introduce our formal framework
of shaping rewards� Intuitively� we are trying to
learn a policy for some MDP M � �S�A� T� ��R��
and we wish to help our learning algorithm by giv�
ing it additional 
shaping� rewards which will hope�
fully guide it towards learning a good �or optimal� pol�
icy faster� To formalize this� we assume that� rather
than running our reinforcement learning algorithm on
M � �S�A� T� ��R�� we will run it on some trans�
formed MDP M � � �S�A� T� ��R��� where R� � R � F
is the reward function in the transformed MDP� and
F � S � A � S �� R is a bounded real�valued func�
tion called the shaping reward function� �Simi�
lar to R� the domain of F for the undiscounted case
should strictly be S � fs�g � A � S� but we will not
be overly pedantic about this point for now�� So� if in
the original MDP M we would have received reward
R�s� a� s�� for transitioning from s to s� on action a�
then in the new MDP M � we would receive reward
R�s� a� s�� � F �s� a� s�� on the same event�

For any �xed MDP and assuming additive� memory�
less shaping reward functions� this R� � R � F is the
most general possible form of shaping rewards�� More�
over� they cover a fairly large range of possible shap�
ing rewards one might come up with� For example�
to encourage moving towards a goal� a shaping�reward
function that one might choose is F �s� a� s�� � r when�
ever s� is closer �in whatever appropriate sense� to the
goal than s� and F �s� a� s�� � � otherwise� where r is
some positive reward� Or� to encourage taking action
a� in some set of states S�� one might set F �s� a� s�� � r
whenever a � a�� s � S�� and F �s� a� s�� � � otherwise�

One elementary but important property of this form
of reward transformation is that it can generally be
implemented� In many reinforcement learning ap�
plications� we are not explicitly given M as a tu�
ple �S�A� T� ��R�� but are allowed to learn about M
only through taking actions in the MDP and by ob�
serving the resulting state transitions and rewards�
Given such access to M � we can simulate having the
same type of access to M � simply by taking actions

�In the full paper� we will consider an even more general�
not necessarily additive� form� R��s� a� s�� � F �r� s� a� s��
for arbitrary F � and where r � R�s� a� s�� is the reward we
would have received in the original MDP M � Under the
appropriate conditions� it turns out that� if we are to give
optimality guarantees similar to those we will give here�
then the only additional freedom this gives us in choosing
shaping rewards is it allows us to rescale rewards by any
�xed positive factor� Since this does not add any interest�
ing richness to F � we defer this result to the full paper�



in M � and then 
pretending� we observed reward
R�s� a� s�� � F �s� a� s�� whenever we actually observed
reward R�s� a� s�� in M � Naturally� the simple rea�
son that this works is that M and M � use the same
actions� states and transition probabilities� Thus�
online�o�ine model�based�model�free algorithms that
may be applied to M may in general be readily applied
to M � in the same way�

Since we are learning a policy for M � in the hope of us�
ing it in M � the question at hand is thus the following�
For what forms of shaping�reward functions F can we
guarantee that ��M � � the optimal policy in M �� will also
be optimal in M
 The next section will answer this to
a fair degree of generality�

� Main results

In practical applications� we often do not exactly know
T a priori �and may or may not know R�s� a� s���� Our
goal is therefore� given S and A �and possibly R�� to
come up with a shaping�reward function F � S � A�
S �� R that is 
good� and so that ��M � will be optimal
in M � In this section� we will give a form for F under
which we can guarantee ��M � will be optimal in M � We
also provide a weak converse showing that� without
further knowledge of T and R� this is the only type of
shaping function that can always give this guarantee�

First focusing on the undiscounted case �� � ��� let us
try to gain some intuition about what F might give rise
to the shaping 
bug� pointed out in the Introduction�
On Randl�v and Altr�m s bicycle task� when the agent
was rewarded for riding towards the goal but not pun�
ished for riding away from it� it learned to ride in a tiny
circle and thereby obtain positive reward whenever it
happened to be moving towards the goal� More gen�
erally� if there is some sequence of states s�� s�� � � � � sn
such that the agent can travel through them in a cycle
�s� � s� � � � � � sn � s� � � � ��� and gain net posi�
tive shaping�reward by doing so �F �s�� a�� s�� � � � � �
F �sn��� an��� sn� � F �sn� an� s�� � ��� then it seems
that the agent may be 
distracted� from whatever it
really should be trying to do �such as ride towards
the goal�� and instead try to repeatedly go round this
cycle�

To address this di�culty with cycles� a form for F that
immediately comes to mind is to let F be a di�erence
of potentials� F �s� a� s�� � !�s�� � !�s�� where ! is
some function over states� This way� F �s�� a�� s�� �
� � � � F �sn��� an��� sn� � F �sn� an� s�� � �� and we
have eliminated the problem of cycles that 
distract�
the agent� Are there other ways to choose F 
 And

aside from cycles� are there any other problems with
shaping that we need to address
 It turns out that�
without more prior knowledge about T and R� such
potential�based shaping functions F are the only F
that will guarantee consistency with the optimal policy
in M � Moreover� this turns out to be essentially all we
need in order to make this guarantee� This is made
formal in the following theorem�

Theorem � Let any S� A� �� and any shaping reward
function F � S � A � S �� R be given� We say F
is a potential�based shaping function if there exists
a real�valued function ! � S �� R such that for all
s � S � fs�g� a � A� s� � S�

F �s� a� s�� � �!�s�� � !�s�� ���

�where S � fs�g � S if � � ��� Then� that F
is a potential�based shaping function is a necessary
and su�cient condition for it to guarantee consis�
tency with the optimal policy �when learning from
M � � �S�A� T� ��R � F � rather than from M �
�S�A� T� ��R��� in the following sense�

� �Su�ciency� If F is a potential�based shaping
function� then every optimal policy in M � will also
be an optimal policy in M �and vice versa��

� �Necessity� If F is not a potential�based shap�
ing function �e�g� no such ! exists satisfying
Equation �	��� then there exist �proper� transition
functions T and a reward function R � S�A �� R�
such that no optimal policy inM � is optimal inM �

Also note the following� For the in�nite�state case� if
one were to choose some ! to construct a potential�
based shaping function� then for the formal results
to go through� we really should demand that ! be
bounded� so that the shaping rewards F are also
bounded �similar to the condition that R be bounded�
in Section ����� this issue will be discussed again later�
Note that for the �nite�state case� this is a vacuous
condition since ! would� having a range of �nite car�
dinality� automatically be bounded� Also� the neces�
sity and su�ciency conditions above might seem a lit�
tle more complicated than usual� and this is because
there can be multiple optimal policies in M or in M ��
Nevertheless� it should be clear that the quanti�ca�
tions used make this the strongest possible theorem of
this form� The su�ciency condition says that so long
as we use a potential�based F � then we are guaranteed
any ��M � we might be trying to learn will also be op�
timal in M � The necessity condition says that if we



have no knowledge of T and R� then we must choose
a potential�based F for learning in M �� if we want to
guarantee consistency with learning the optimal pol�
icy in M � �If we do have intimate knowledge of T�R�
then the necessity condition does not say much� and it
is possible that we might be able to use other shaping
functions��

The proof of necessity is given in Appendix A� Here� we
only prove that Equation ��� is a su�cient condition�
that if F is indeed of the form in ���� then we may
guarantee that every optimal policy in M � will also
be optimal in M � Again� we prove this result fully
rigorously only for the case of �nite jSj� the proof for
in�nite jSj is nearly identical� but requires a little more
care in justifying the use of the Bellman Equations�

Proof �of su�ciency�	 Let F be of the form given
in ���� If � � �� then since replacing !�s� with !��s� �
!�s��k for any constant k would not change the shap�
ing rewards F �which is a di	erence of these poten�
tials�� we may� by replacing !�s� with !�s� �!�s�� if
necessary� assume without loss of generality that the
! used to express F via ��� satis�es !�s�� � ��

For the original MDP M � we know that its optimal
Q�function Q�

M satis�es the Bellman Equations �see
e�g� �Sutton and Barto� ������

Q�
M �s� a� � Es��Psa���

�
R�s� a� s�� � � max

a��A
Q�
M �s�� a��

�

Some simple algebraic manipulation then gives us

Q�
M �s� a� �!�s� � Es�

�
R�s� a� s�� � �!�s�� � !�s�

�� max
a��A

�Q�
M �s�� a�� � !�s���

�

If we now de�ne "QM ��s� a�
�
� Q�

M �s� a� � !�s� and
substitute that and F �s� a� s�� � �!�s�� � !�s� back
into the previous equation� we get

"QM ��s� a�

� Es�

�
R�s� a� s�� � F �s� a� s�� � � max

a��A

"QM ��s�� a��

�

� Es�

�
R��s� a� s�� � � max

a��A

"QM ��s�� a��

�

But this is exactly the Bellman equation for M �� For
the undiscounted case� we moreover have "QM ��s�� a� �
Q�
M �s�� a��!�s�� � �� � � �� So� "QM ��s� a� satis�es

the Bellman equations for M �� and must in fact be
the unique optimal Q�function� Thus� Q�

M ��s� a� �

"QM ��s� a� � Q�
M �s� a� � !�s�� and the optimal policy

for M � therefore satis�es

��M ��s� � arg max
a�A

Q�
M ��s� a�

� arg max
a�A

Q�
M �s� a� �!�s�

� arg max
a�A

Q�
M �s� a�

and is therefore also optimal in M � To show every
optimal policy in M is also optimal in M �� simply ap�
ply the same proof with the roles of M and M � inter�
changed �and using the shaping function �F �� This
completes the proof� �

Corollary � Under the conditions of Theorem 
� sup�
pose that F does indeed take the form F �s� a� s�� �
�!�s���!�s�� Suppose further that !�s�� � � if � � ��
Then for all s � S� a � A�

Q�
M ��s� a� � Q�

M �s� a� �!�s�� ���

V �
M � �s� � V �

M �s� � !�s�� ���

Proof	 ��� was proved in the su�ciency proof above�
��� follows immediately from the identity V ��s� �
maxa�AQ

��s� a�� �

Remark � �Robustness and learning�	 Although
we have not proved it here� the identities in Corollary �
actually hold for arbitrary policies �� not just the opti�
mal policy� V �

M ��s� � V �
M �s� �!�s� �and similarly for

Q�functions�� A consequence of this is that potential�
based shaping is robust in the sense that near�optimal
policies are also preserved� that is� if we learn a near
optimal policy � in M � �say� jV �

M ��s��V �
M � �s�j � �� us�

ing potential�based shaping� then � will also be near�
optimal in M �jV �

M �s� � V �
M �s�j � ��� �To see this�

apply the identity we just pointed out to policies �
and to ��M � ��M � � and subtract��

Remark � �All policies optimal under !�	 To
better understand why potential�based F preserve op�
timal policies� it is worth noting if we have an MDP
M that has a potential�based reinforcement function
R�s� a� s�� � �!�s���!�s�� then any policy is optimal
in M � Thus� potential�based shaping functions are in�
di	erent to policies� in the sense that they give us no
reason to prefer any policy over any other� at an intu�
itive level� this accounts for why they do not give us
any reason to prefer any policy other than ��M when
we switch from M to M ��

The Theorem suggests that we choose shaping rewards
of the form F �s� a� s�� � �!�s���!�s�� In applications�
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Figure �� �a� Experiment with ��x�� grid�world� Plot of steps taken to goal vs� trial number� Dot is no shaping�
dot�dash is ! � ���!�� solid is ! � !�� �b� Experiment with ��x�� grid�world�

! should of course be chosen using expert knowledge
about the domain� As to how one may do this� Corol�
lary � suggests a particularly nice form for !� if we
know enough about the domain to try choosing it as
such� We see that if !�s� � V �

M �s� �with !�s�� � �
in the undiscounted case�� then Equation ��� tells us
that the value function in M � is V �

M ��s� 	 � � and
this is a particularly easy value function to learn� even
lacking a model of the world� all that would remain
to be done would be to learn the non�zero Q�values�
Though to avoid misconception� we also stress this
is not the only way of choosing useful !� and that
such shaping rewards can help signi�cantly even if
! is far from V �

M �say in the sup�norm�� such as by
guiding exploration� etc�� and we will see examples of
this in the next section� But in any case� so long as
we choose potential�based F � we have the guarantee
that any �near��optimal policy we learn in M � will also
be �near��optimal in M � Let us now turn our atten�
tion to some small experiments that demonstrate how
potential�based shaping might be applied in practice�

� Experiments

Much empirical work before us has convinc�
ingly justi�ed the use of shaping �Mataric� �����
Randl�v and Alstr�m� ������ and we will not bother
to try to further justify its use� Here� our goal in�
stead is to show how potential�style shaping functions
�t into the picture� and to demonstrate how such shap�
ing functions might be derived in practice�

Towards these goals� we chose for simplicity and clarity
to use very simple grid�world domains to showcase the
interesting aspects of potential�based shaping� The
�rst domain was a shortest�path�to�goal ��x�� grid�
world with start and goal states in opposite corners�
no discounting� and a �� per�step reinforcement� Ac�
tions are the � compass directions� and move � step in
the intended direction ��# of the time and a random
direction ��# of the time� and agent stays in the same
place if it tries to walk o	 the grid� What might be
a good shaping potential !�s�
 We had pointed out
earlier that Equation ��� suggests !�s� � V �

M �s� might
be a good shaping potential� So let us now go through
the type of reasoning that might suggest a crude esti�
mate of V �

M � by doing so� we hope to demonstrate how�
with a little expert knowledge about distances and the
location of the goal� similar reasoning may perhaps be
used to similarly derive ! for other minimum�cost�to�
goal problems�

Upon trying to take a step towards the goal� we have
an ��# chance of taking the desired step towards the
goal� and a ��# chance of a random action� If we
take a random action� then unless we are at the bor�
der of the gridworld� we are as likely to move towards
as away from the goal� Hence� from most states� we
would expect the optimal policy to make about ���
steps of �Manhattan distance� progress towards the
goal per timestep� and a crude estimate of the ex�
pected number of steps needed to get to the goal from
s would be manhattan�s�goal������ Thus� we set
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our estimate of the value function and therefore !�s�
to be !��s� � "VM �s� � �manhattan�s�goal������
This is what we used as our guess of a 
good� shap�
ing function� Also� as a shaping�reward that would
be quite far �in the sup�norm� from V �

M � �s�� we also
tried using !�s� � ���!��s�� The results of this �rst
experiment� are shown in Figure �a� �All experiments
reported in this section are averages over �� indepen�
dent runs�� As can be readily seen� using either of
these shaping functions signi�cantly helped speed up
learning� Moreover� it is worth re�stressing that even
though ���!� is quite far from V �

M � it still signi�cantly
helped the initial stages of learning� For a larger ��x��
grid�world� the results become even more dramatic�
Figure �b shows the result of the same experiment re�
peated on the larger grid� The plots for !� and ���!�

are so low in the graph that they can barely be seen�
learning without shaping is clearly losing hopelessly to
the potential�based shaping algorithm�

Reiterating� the goal of these experiments was not to
try to justify shaping � that has been done far more
convincingly by others� Instead� what we have demon�
strated here is a style of some very simple reasoning
that� by putting together a distance�to�goal heuristic�
has enabled us to pick a sensible ! that dramatically

�Using Sarsa �Sutton and Barto� �		��� �����greedy ex�
ploration� learning rate ����� Experiments with Sarsa���
also gave analogous results showing shaping signi�cantly
speeding up learning�

sped up learning�

Next� another class of problems for which a similar
style of reasoning might work is domains where we can
assign subgoals� Consider the grid�world in Figure �a�
where we start in the lower�left hand corner� and must
pick up a set of 
$ags� in sequence before going to the
�nal goal state� Actions and rewards are the same as
in the previous grid�world� and the state�space is ex�
panded to keep track of the collected $ags� Since each
$ag is a subgoal� it is tempting to choose F so that we
are rewarded for visiting the subgoals� Let us now see
how a potential�function style of reasoning can indeed
lead us to choose such an F � and how Equation ���
further suggests magnitudes for the subgoal rewards�

With knowledge of the subgoal locations and using rea�
soning analogous to that suggested earlier ���� steps of
progress per timestep� etc��� we may estimate the ex�
pected number of timesteps� say t� needed to reach
the goal� If we imagine that each subgoal is about
equally hard to reach from the previous one� then hav�
ing reached the n�th subgoal� we would still have about
���� n����t steps to go� A slightly more re�ned argu�
ment changes this to ��� � n � �������t steps �where
��� comes from the 
typical case� where we are halfway
between the n�th and n � ��st subgoals�� and so our
�rst choice of !�s� is !��s� � ���� � ns � �������t�
where ns denotes the number of subgoals we have
achieved when we are at s� Using this form of shaping�
reward function� we see that !�s� � !��s� jumps by



t�� whenever we reach any subgoal �other than the
�nal goal state�� and so the shaping reward function
F �s� a� s�� � !�s���!�s� is giving t�� reward for reach�
ing each of these subgoals� This is exactly what our in�
tuition had suggested might be a good shaping reward�
For comparison� we also carried out this experiment
using a more �ne�tuned shaping reward that� simi�
lar to the previous grid�world experiments� explicitly
estimated the remaining time�to�goal for each state
and constructed the corresponding !��s� � "VM �s� po�
tential function� The result of these experiments are
shown in Figure �b� and we see that using our �rst
crude shaping function !� has allowed us to signi��
cantly speed up learning over not using shaping �and
the �ne�tuned !� unsurprisingly gave even better per�
formance�� When repeating this experiment on larger
domains or with more subgoals� the results �not re�
ported here� become even more dramatic�

� Discussion and Conclusions

We have shown necessary and su�cient conditions for
a shaping function F to leave optimal policies invari�
ant� Here are two easy generalizations worth men�
tioning� Aside from guaranteeing consistency while
trying to learn the optimal policy� it is easy to
show �by an argument similar to Remark � in Sec�
tion �� that potential�based F also work when try�
ing to learn a good policy from within a restricted
class of policies� such as in the framework studied
in �Kearns et al�� ����� �and which for example in�
cludes the task of �nding the best weights for a neural
network mapping from states to actions�� Also� for
Semi�Markov decision processes �SMDPs� where ac�
tions take varying amounts of time to complete� Equa�
tion ��� unsurprisingly generalizes to F �s� a� s�� 	� �
e���!�s���!�s�� where 	 is the time the action took
to complete� and 
 is the discount rate�

Finally� the 
�!�s���!�s�� form also seems on the sur�
face reminiscent of terms in some of the equations used
in Advantage learning �Baird� ����� and ��policy iter�
ation �Bertsekas and Tsitsiklis� ������ At a very crude
level� it turns out that each of them may be thought
of as trying to modify ! so to gain some computa�
tional or representational advantage� If we consider
the problem of modifying !� then trying to learn a
rough shaping function seems to lead quite naturally
to an algorithm for multi�scale value�function approx�
imation� and although it may initially seem unusual
to try to learn a shaping function� it is the multiscale

rough vs� �ne� approximation aspect that this leads

to which makes it possibly powerful�� this will be the
subject of future work�

In this paper� we have shown that potential�based
shaping rewards �!�s�� � !�s� leave �near��optimal
policies unchanged� Moreover� this was proved to be
the only type of shaping that can guarantee such in�
variance unless we make further assumptions about
the MDP� But just as some practitioners use discount�
ing even on undiscounted problems �perhaps to im�
prove convergence of algorithms�� we believe that fu�
ture experience with potential�style shaping rewards
may also lead one to occasionally try shaping rewards
that are inspired by potentials� but which are perhaps
not strictly of the form we have given� For example�
in analogy to using discounting even on undiscounted
problems� it is conceivable that for certain problems�
it may be easier for an expert to propose a potential !
for an 
undiscounted� shaping function !�s�� � !�s��
even when � 
� �� Even though our theorem may no
longer guarantee optimality in this case� such a shap�
ing function may� purely from an engineering point of
view� still be worth trying � judiciously and with care�
In the same spirit� whereas our regularity conditions
had demanded using bounded !� it is also plausible
that some practitioners might want to try certain un�
bounded !� Naturally� if expert knowledge about the
domain is available� then non�potential shaping func�
tions might also be fully appropriate�

As guidelines for choosing shaping functions� we have
suggested a distance�based heuristic and a subgoal�
based heuristic for choosing potentials� because shap�
ing is often crucial to making learning tractable� we
believe the task of �nding good shaping functions will
be a problem of increasing importance�
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Appendix A� Proof of necessity

In this Appendix� we sketch the proof of the neces�
sity part of Theorem �� For brevity� we give the proof
only for the case of jAj � �� the generalization is ob�
vious but more tedious� We begin with the following
Lemma�

Lemma 
 If there exists s � S � fs�g� s
� � S and

a� a� � A such that F �s� a� s�� 
� F �s� a�� s��� then there
exists �proper� transition functions T and a reward
function R such that no optimal policy in M � is op�
timal in M �

Proof �Sketch� Lemma ��� Assume without loss of
generality that F �s� a� s�� � F �s� a�� s��� and let & �
F �s� a� s��� F �s� a�� s�� � �� In the undiscounted case�
also assume for simplicity that s 
� s�� �When � � ��
the proof for s � s� is nearly the same� but hav�
ing to ensure properness just makes it much more te�
dious�� We then construct M as follows� Let Psa�s�� �
Psa��s�� � ���� and let R�s� a� s�� � � and R�s� a�� s�� �
&��� Clearly ��M �s� � a�� On the other hand� since
R� � R � F � we have R��s� a� s�� � F �s� a� s�� and
R��s� a�� s�� � &�� � F �s� a�� s�� � F �s� a� s�� � &�� �
R��s� a� s��� and hence ��M � �s� � a� �

We are now ready to show the main necessity result�

Proof �of necessity�� Assume F is not potential�
based� We need to show we can construct T�R such
that no optimal policy ��M � in M � is also optimal in
M � By Lemma �� if F �s� a� s�� depends on a� we are
done� hence we need only consider shaping functions
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Figure �� The unlabeled thick edges correspond to
both actions� All edges have probability �� The edge
�s�� a� "s�� carries a reward &��� and all other edges
have zero reward�

of the form F �s� a� s�� � F �s� s�� �which do not depend
on a��

If � � �� let "s� � s� be the distinguished absorbing
state� otherwise let "s� be some �xed state� Noting
that constant o	sets of the reward do not a	ect the
optimal policy when � � �� we may� by replacing all
F �s� s�� with F �s� s�� � F �"s�� "s�� if necessary� assume
without loss of generality that F �"s�� "s�� � �� Now de�
�ne !�s� � �F �s� "s�� for all s� By assumption of F
not being potential�based� there exists s�� s� such that
�!�s���!�s�� 
� F �s�� s�� �let us assume s�� s�� "s� are
distinct� the other cases are either impossible or han�
dled similarly�� We then construct M in the follow�
ing way �still assuming jAj � ��� From state s�� let
Ps�a�"s�� � Ps�a��s�� � ���� and from states s� and "s�
let both actions a and a� lead to "s� with probability ��
Also de�ne & � F �s�� s�� � �F �s�� "s���F �s�� "s�� and
let R�s�� a� "s�� � &��� R��� �� �� � � elsewhere� This
model is illustrated in Figure �� Then we have

Q�
M �s�� a� �

&

�
Q�
M �s�� a

�� � �

Q�
M ��s�� a� �

&

�
� F �s�� "s��

� F �s�� s�� � �F �s�� "s�� �
&

�
Q�
M ��s�� a

�� � F �s�� s�� � �F �s�� "s���

where we have relied on the fact that V �
M �"s�� �

V �
M � �"s�� � � by construction� Hence

��M �s�� �

�
a if & � ��
a� otherwise

��M ��s�� �

�
a� if & � ��
a otherwise

�


