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Abstract: Despite the wide application of bilinear
problems to problems both in computer vision and in other
fields, their behaviour under the effects of noise is still
poorly understood. In this paper, we show analytically that
marginal distributions on the solution components of a bi-
linear problem can be bimodal, even with Gaussian mea-
surement error. We demonstrate and compare three differ-
ent methods of estimating the covariance of a solution. We
show that the Hessian at the mode substantially underesti-
mates covariance.

Many problems in computer vision can be posed as bi-
linear problems: i.e. one must find a solution to a set of
equations of the form

ck =
∑
ij

gijkaibj

for ck a set of known terms (henceforth measurements),
and gijk a set of known interaction terms. Typically, ai and
bj are constrained in some way to allow a unique solution.
The most familiar example is Tomasi and Kanade’s formu-
lation of orthographic structure-from-motion [9]; shape-
from-shading and other vision problems can be framed this
way too (see [5] for a review. Other naturally bilinear
problems include: inverse kinematics for parallel manip-
ulators [6]; and molecular conformation [1]).

The effect of noise in the measurements is not well un-
derstood. Figure 1 shows a scatter plot of of point posi-
tions reconstructed from an orthographic image sequence
with Gaussian noise. Not only are the distributions quite
obviously not Gaussian, some even appear bimodal. There
is no reason to expect that they should be Gaussian. As we
shall see, noise can lead to bimodal marginal posteriors on
ai, meaning that straightforward covariance estimates are
extremely unreliable.

This paper compares three methods of estimating co-
variance for marginals on ai and bj in bilinear problems. In

section 1, we analyse some simple examples which illus-
trate the problem. We then examine three possible ways of
estimating a covariance, and show that two which appear in
the literature can be rather misleading in their estimates of
covariance. We focus on the orthographic structure-from-
motion problem because it is most familiar, but the conclu-
sions that we draw are equally applicable to any bilinear
problem.

1 Analytical examples
Even quite simple examples display considerable com-

plexity, but have the advantage that analysis is possible.
1.1 A One-Dimensional Example

Consider a 2 × 2 measurement matrix D, which is as-
sumed to be close to a rank-1 matrix, differing only by a
Gaussian noise matrixW, with wij ∼ N(0, σ2). We can
write this as: [

1
u

] [
x y

]
= D +W

We have constrained the first component of the column
vector to be 1 to remove the scaling ambiguity that would
otherwise be present.

Since the noise is iid Gaussian, we can easily write the
posterior pdf:

P (u, x, y|D) ∝

exp
[
− (x−d11)

2+(y−d12)
2+(ux−d21)

2+(uy−d22)
2

2σ2

]

Note that this distribution is not jointly Gaussian on u, x
and y. However, given some constant u, the conditional
is jointly Gaussian on x and y. We can use this fact to
calculate the marginal distribution on u by integrating out
x and y.

P (u|D) =

∫ ∞
−∞

∫ ∞
−∞
P (u, x, y|D)dxdy
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Figure 1: One should not assume variables are distributed according to a Gaussian without showing that it is justified—
there are many distributions which cannot be modelled by a Gaussian. Pictured left are samples of reconstructed point
positions, projected onto a plane parallel to the optical axis. None of these figures show a Gaussian distribution; the
figures on the right are even bimodal. Estimating the covariance of these scatter plots using the Hessian at the mode is
going to lead to serious problems, because large chunks of probability will not be accounted for. Marginal distributions
in bilinear problems can be bimodal, even in very simple problems. Pictured center are the marginal distributions on u
for the problem of section 1.1, assuming Gaussian measurement error. Even under this assumption, in three of the four
cases, we have two maxima in the marginal probability density function. Even the marginal distributions on point positions
have strange shapes. Pictured right are the marginals on x, y for the same four data matrices as in figure 1. While these
distributions are not bimodal, a Gaussian approximation will necessarily miss large regions of probability.

∝
exp
[
− (d

2
11+d

2
12)u

2−2(d11d21+d12d22)u+(d
2
21+d

2
22)

2σ2(1+u2)

]
1 + u2

To find the critical points of this function, we differen-
tiate with respect to u to obtain the product of a rational
function and an exponential. The numerator of the rational
function is a cubic, which means that there may be up to
three critical points. Figure 1 shows the marginal distribu-
tions on u for four different data matrices. In three of these
cases, the marginals are actually bimodal; in the fourth, the
marginal is unimodal, but very strongly asymmetric.

In an analogous fashion, we can find the marginal on x
and y; the contour plots in figure 1 depict these distribu-
tions for the same data matrices as in figure 1. These are
very strange distributions, although none of them are tech-
nically bimodal, since the maximum value in the first three
cases is at the origin. (The value at the origin is actually
undefined, but the probability increases as we approach the
origin.) Nevertheless, these distributions will not be well-
described by a Gaussian (the contours for a Gaussian are
concentric ellipses).

Note that the property of being bimodal is not depen-
dent on the parametrisation for a diffeomorphic change of
parametrisation. Fixing the first component of the column
vector at 1 is one choice of parametrisation, but we could
have chosen any equivalent parametrisation—the station-
ary points of the distribution will remain stationary. This
means that the bimodality we observe here is not merely an
artefact of the parametrisation, but is inherent to the prob-
lem. In particular, if we chose some affine transformation

of the factors (as is often done in order to satisfy certain
constraints, for example, requiring the camera to be ortho-
graphic) we will observe the same qualitative behaviour.

This relatively simple example has shown that bilinear
problems are able to produce alarming behaviour. Even
a rank-1 matrix corrupted by Gaussian noise gives us bi-
modal marginals. Bimodal marginals are problematic for
several reasons: first, they cannot be approximated as eas-
ily (e.g. by a single Gaussian). Second, if we are not aware
of the multimodality, and simply maximise the probability,
we may miss an entire region of space with significant den-
sity, even if we do successfully find the large mode. If we
recognise the possibility of multiple modes, we can make
our system robust to their effects.
1.2 A Two-Dimensional Example

Now let us consider a two-dimensional case. Let us sup-
pose that we have a 3× 3 rank-2 data matrix, corrupted by
Gaussian noise. We can write:

 1 0
0 1
u1 u2


[ x1 x2 x3
y1 y2 y3

]
= D +W

where W is a Gaussian noise matrix again. The noise is
iid Gaussian, and the conditional on u1 and u2 is jointly
Gaussian in the xi and yi. The marginal distribution is thus
easily calculated.

Figure 2 shows a plot of P (u1|D, u2 = 0) and surface
plot of P (u1, u2|D). It is clear from the figure that the
marginal distribution is not Gaussian. We shall see in sec-
tion 2.1 that if we simply estimate the distribution by ex-
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Figure 2: Marginal distributions in bilinear problems are
not in general Gaussian. The problem depicted here is dis-
cussed in section 1.2. Left: The conditional distribution
p(u1|u2 = 0,D). Note the presence of two minima. Right:
The marginal p(u1, u2|D). There is a unique maximum,
but there is also a saddle and a local minimum. We have
assumed measurements with Gaussian noise, and even so,
we see that the distribution is very complex. There is a
region of low probability at the origin, surrounded by re-
gions of higher probability. This is likely to cause signifi-
cant underestimation of the covariance of the distribution.
Note that this is the marginal on two dimensions of a gen-
eral six-dimensional space—we have fixed the other four
dimensions so that we do not need to consider the ambigu-
ity.

amining its behaviour near the maximum, this will cause a
covariance estimate which is much smaller than reality.

2 Methods of estimating a covariance
Given a set of image measurements, we would like to

find a good solution for the camera parameters and point
positions which could have generated these images. But
such a solution is of little value if it has a huge variance—
if the solution we find is only slightly better than any ran-
domly chosen solution, then the claim that this is the “best”
solution is a rather vacuous one. Therefore, we would like
to be able to describe the covariance of the camera parame-
ters and point positions, given the measurements. We have
now seen several reasons why the covariance of the solu-
tion to a bilinear problem is difficult to estimate. We now
turn our attention to the problem of actually estimating the
covariance.
2.1 Laplace’s approximation

One common approach for dealing with complex co-
variances is to assume that they are Gaussian, an assump-
tion which, as we have seen, is often unjustified. This is
known in the numerical integration literature as Laplace’s
approximation [2]. When integrating a function, we care
mostly about where the function is big; the details of its
shape are less important. It is this observation that allows
us to approximate a unimodal distribution as a Gaussian.
However, if the distribution is bimodal, or if it is hard to
tell how large the mode is, a Gaussian approximation can
be very poor.

To find the Gaussian approximation, we note that, for a
true Gaussian distribution, the mean and mode are equal.
We therefore set the mean of the Gaussian approximation
to the mode of the distribution. To find the covariance, we
note that, if g(x) is a Gaussian distribution,

g(x) ∝ exp

[
−
1

2
(x− µ)TΣ−1(x− µ)

]

log g(x) = k −
1

2
(x − µ)TΣ−1(x− µ)

H = −
∂2 log g(x)

∂x∂xT
= Σ−1

For a true Gaussian, the inverse covariance matrix is equal
to the Hessian of the negative logarithm. For our approxi-
mation, we evaluate the Hessian of the negative log of the
distribution at the mode, and take this to be the inverse co-
variance matrix.

If we wish to examine the marginals on just a few vari-
ables, it is important to note that the covariance of the
marginal distribution is obtained by extracting the relevant
rows and columns from the full covariance matrix, and not
by inverting only the relevant block of the inverse covari-
ance matrix. If the covariance matrix has a block diagonal
structure, then, of course, these two are equivalent, but any
bilinear problem will have a strong off-diagonal compo-
nent, due to the presence of terms with the product of two
variables (see figure 3).

If we pretend that the us and vs are independent (a fal-
lacy), then the inverse covariance on the vs is block diago-
nal, and therefore easy to invert. Note that this will yield a
smaller covariance than that obtained by inverting the full
Hessian, because it corresponds to fixing the cameras, and
then estimating the point positions; if we also allow the
cameras to move, we expect the point positions will vary
more.

One problem with Laplace’s approximation is that the
Hessian can seriously overestimate the covariance of a dis-
tribution if that distribution is rather flat at its peak. Con-
sider the distribution f(x) = k exp[−1

2
x4] depicted by

the solid line in figure 3. This distribution clearly has a
mean of zero, and we can integrate numerically to find that
the variance is 0.478. (The dotted line depicts a Gaussian
distribution with zero mean and this variance—not an un-
reasonable approximation.) Laplace’s approximation will
also put the mean at zero (this is the mode of the distri-
bution), but when we evaluate the Hessian at the mode
in order to find the covariance, we run into problems; the
variance is infinite, and all points are equally likely. Note
that the structure-from-motion problem does in fact have
fourth-order terms in the Hessian, because the exponent
contains the square of the product of camera parameters
and point positions. This suggests that the structure-from-
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Figure 3: Left: Schematic structure of the Hessian. White regions indicate zero entries in the matrix, while the grey regions
represent entries which are in general nonzero. The camera parameters (resp. points) at one frame are independent of
camera parameters (resp. points) at other frames. Off diagonal terms indicate that the camera parameters (resp. points)
do depend on the positions of all of the points (resp. camera parameters). Center left: Laplace’s approximation can
give extremely bad estimates for very flat distributions. The solid line depicts the density k exp[−12x

4], while the dotted
line depicts a Gaussian with the same mean and variance. The Laplace approximation is a Gaussian with zero mean and
infinite variance, and is therefore not pictured. Center right: Laplace’s approximation severely overestimates the variance
of the distribution (in each case, it yields the outside ellipse). If we assume independence of point positions and camera
parameters, we obtain a better estimate from Laplace’s approximation (in each case, the second smallest ellipse). The dots
are samples of marginal point positions for the hotel sequence, and the interior ellipse indicates the covariance of these
samples. Right: A marginal distribution from a toy bilinear problem (see section 1.2) and three Gaussian approximations.
(upper right) Estimating the covariance about the mean as E((x − µ)(x − µ)T ). (lower left) Estimating the covariance
about the mode asE((x−m)(x−m)T ). (lower right) Laplace approximation, estimating the covariance from the Hessian
at the mode. The Laplace approximation greatly underestimates the covariance.

motion problem may be susceptible to this difficulty.
In figure 3, we show the marginal distributions on six

points from the hotel sequence.1 Note that the Laplace
approximation significantly overestimates the variance, for
the reason we have already noted. The independence as-
sumption decreases this variance, but is still an overesti-
mate.

2.1.1 Zero eigenvalues
Another issue which arises when attempting to find
Laplace’s approximation for a bilinear problem is that the
Hessian will have several zero eigenvalues, due to the pres-
ence of ambiguities (also known as gauge freedoms). In the
structure-from-motion problem, there is an arbitrary scale
and an arbitrary choice of frame (rotation and translation).
There is thus a seven dimensional manifold corresponding
to the actions of these arbitrary choices of scale and frame
that preserve the value of the posterior. This means that
the Hessian will have seven zero eigenvectors. By fixing
the scale and frame (i.e. removing seven rows and columns
from the Hessian) we can eliminate the singular directions
and invert the matrix. If our parametrisation of the problem
were gauge independent (see [8]), removing these rows and
columns would be unnecessary, but it is necessary to ac-

1The hotel sequence is courtesy of the Modeling by Videotaping group
in the Robotics Institute, Carnegie Mellon University.

count for these ambiguities in some fashion. If we do not
take this effect into account, we will be attempting to invert
a singular matrix in order to find the covariance matrix. For
a real problem, this matrix may not be exactly singular, but
there will still be numerical issues that arise when we invert
it.

2.2 Morris and Kanade’s method
Another method to estimate a covariance is to examine

the maximum likelihood estimates corresponding to sam-
ples of perturbed data. In [7], Morris and Kanade take the
measurements, perturb them by Gaussian noise, and find
the maximum likelihood estimate of the camera param-
eters and point positions for the perturbed measurement.
They then repeat this many times to obtain many sam-
ples and then use this as their “ground truth”. Because the
Morris-Kanade method uses samples, it does have the ex-
pressive power to represent an arbitrary distribution (given
enough samples) unlike the Laplace approximation, which
assumes a priori that the distribution is Gaussian. Unfor-
tunately, the procedure is only valid in the special case of
linear transformations.

Let us consider a problem in which we are attempting
to estimate the state x, based on our observation of the ran-
dom variable y given by y = φ(x)+εwhere ε ∼ N(0, σ2).
We shall assume that φ is invertible. Then the distribution



of x given y is

p(x|y) = k exp

[
−
1

2σ2
(φ(x)− y)2

]

To find k, we note that
∫
p(x|y)dx = 1, so that

k =

(∫
exp

[
−
1

2σ2
(φ(x)− y)2

]
dx

)−1

=


∫ e−

z2

2σ2

φ′(φ−1(z + y))
dz



−1

where we have made the substitution z = φ(x)− y. Using
the same substitution, we can write expressions for the true
conditional expectations of x and x2:

E[x|y] = k

∫
φ−1(y + z)e−

z2

2σ2

φ′(φ−1(y + z))
dz

E[x2|y] = k

∫
[φ−1(y + z)]2e−

z2

2σ2

φ′(φ−1(y + z))
dz

Morris and Kanade’s method takes the measured value
of y, and adds Gaussian noise to it to obtain samples of yi.
Given yi, we find the maximum likelihood estimate xi, and
consider these to be samples from the distribution p(x|y).
Let us examine this claim. We write yi = y + ζi where
ζi ∼ N(0, η2) and xi = φ−1(yi) = φ−1(y + ζi) Note that
we need not necessarily take η = σ; in fact, often we will
not know the exact value of σ.

Calculating expectations,

E[xi|y] =
1

η
√
2π

∫
φ−1(y + ζ)e

− ζ2

2η2 dζ

E[xi
2|y] =

1

η
√
2π

∫
[φ−1(y + ζ)]2e

− ζ2

2η2 dζ

Comparing the expressions for E[x|y] and E[xi|y], we see
that the integrand differs by a factor of φ′(φ−1(z + y)) in
the denominator. Thus, the Morris-Kanade method does
not give an unbiased estimate of the mean (or the variance)
of a general distribution. If we take φ(x) = x2, y = 1, σ =
η = 0.2, this method overestimates the mean by 1.1%, and
underestimates the variance by 5%. If we choose η so that
E[yi|x] is an unbiased estimator of the mean (η = 0.336),
we will overestimate the variance by a factor of 3!

If φ is linear, then the factor φ′(φ−1(z + y)) will be a
constant, and it can then be taken outside the integral. In
particular, k simplifies to

(
φ′(φ−1(y))

)
/
(√
2πσ
)

and the
numerator will cancel with the denominator in E[y|x] and
E[y2|x], giving the same expressions as for E[yi|x] and
E[yi

2|x] if η = σ. So, for linear functions, the Morris-
Kanade method works fine, but, for nonlinear functions,
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Figure 4: Morris and Kanade’s method is better than the
Laplace approximation, since it allows the possibility that
a distribution may not be Gaussian; however, it is not cor-
rect for nonlinear estimation functions. Top: Histograms
of z-coordinates of point positions calculated by Morris
and Kanade’s method (solid line); Gaussian distribution
calculated from mean and variance of samples (broken
line); Gaussian distribution calculated from the Hessian at
the mode (dotted line). Bottom: Scatterplots of points pro-
jected onto a plane through optical axis. Contour of equal
probability is plotted for the Gaussian calculated from the
samples (broken line) and from the Hessian (solid line).
The distributions are clearly not Gaussian (they have a
longer tail in one direction than the other), and further-
more, the Laplace approximation is a very poor estimate
of the best Gaussian approximation.

it will give biased estimates, especially for functions with
very large second derivatives.

In figure 4, we show samples from this method applied
to 25 points in 10 widely-spaced frames from the hotel data
set. The samples clearly indicate a distribution with heav-
ier tails on one side than the other. The Laplace approxi-
mation is also shown for reference, and may once again be
seen to be a very poor estimate of the covariance.
2.3 Markov Chain Monte Carlo sampling

In [4], Forsyth et al. present a sampling approach to the
structure-from-motion problem. They use a hybrid Markov
Chain Monte Carlo method to draw samples from the pos-
terior distribution of the camera parameters and point po-
sitions, given the measurements. If the chain has burnt in
and the mixing rate is fast enough, the samples will have
the correct covariance. As with other sampling methods,
this approach has the advantage that it does not make any
assumptions about the shape of the distribution.



We use a similar method here to find samples of point
positions, which we have already seen are not Gaussian.
In figure 1, the three sets of samples on the left are clearly
non-Gaussian—their tails are much too light to be Gaus-
sian. The three plots on the right even suggest two modes,
which we cannot hope to represent with a single Gaussian.

One of the difficulties with any MCMC method is that
it is usually exceedingly hard to tell if the chain has burnt
in (it has forgotten its starting position) and whether it is
mixing well (it is moving freely between different parts of
its distribution). A correctly formulated MCMC sampler
is guaranteed to converge to the desired distribution even-
tually, but this may take an impractically large number of
samples. Any use of an MCMC method should be accom-
panied by some evidence that the samples are taken from a
chain that has burnt in, and that enough samples have been
generated so that we can consider the samples to be inde-
pendent. Actual proofs that a chain will have a reasonable
burn-in time and mixing rate are possible only for a very
small number of very simple chains; usually, we must re-
sort to some heuristics to convince ourselves that the chain
has converged.

While it is possible to start the chain at a random po-
sition and have it converge to the region around the mode
after a thousand samples or so, if we can start the chain
close to the mode, we do not need to wait for such a long
burn-in period. In our case, we start the chain at the fac-
torisation solution, which will be reasonably close to the
mode, and then reject the first hundred samples, which is
probably more than necessary.

If a chain is mixing well, it will revisit the same part of
its state space several times over the course of the number
of samples. A plot of the trace of samples, in the order they
are drawn from the chain, appears in [3]. This plot, and the
fact that our chain will move to the region about the mode
after sufficient samples, indicate that it is rather likely that
our samples are from a chain that has burnt in, and that
mixes well. This means that, after shuffling the samples,
we can consider them to be independent samples from the
desired distribution, in this case, the posterior on camera
parameters and point positions, given the image feature po-
sitions.

3 Conclusions
It is very important to get accurate estimates of the co-

variance of the solution to any problem; if we draw some
conclusion on the basis of the mode alone, our conclusion
may often be incorrect, because the distribution actually
has a very large covariance about the mode. We need to
have some estimate of confidence in our solution in order
to be able to make statements about it.

Even with additive Gaussian noise on the measure-
ments, the distribution of the solutions can behave rather

wildly, even exhibiting bimodal distributions on some of
the marginal distributions, which we have observed in both
real and toy problems. This behaviour is inherent to bilin-
ear problems, and is not merely an artefact of the solution
method or the specifics of the problem. The application of
an affine transformation (e.g. to ensure that the camera ma-
trix satisfies a particular model) also does not change this
behaviour.

Simple methods for estimating covariances can give
rather misleading estimates. Laplace’s approximation as-
sumes a priori that the distribution is Gaussian, which
causes significant biases in the covariance estimates. Fur-
thermore, in many cases, it does not even describe the
best Gaussian approximation. The method of Morris and
Kanade is better, but is still inaccurate for nonlinear func-
tions. A properly designed and carefully used MCMC sam-
pler will generate independent samples from the distribu-
tion, from which accurate estimates of mean and covari-
ance may be obtained.
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