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Abstract

We present a method for retexturing non-rigid objects from a single
viewpoint. Without reconstructing 3D geometry, we create realistic video
with shape cues at two scales. At a coarse scale, a track of the deforming
surface in 2D allows us to erase the old texture and overwrite it with a new
texture. At a fine scale, estimates of the local irradiance provide strong
cues of fine scale structure in the actual lighting environment. Comput-
ing irradiance from explicit correspondence is difficult and unreliable, so
we limit our reconstructions to screen printing — a common printing
techniques with a finite number of colors. Our irradiance estimates are
computed in a local manner: pixels are classified according to color, then
irradiance is computed given the color. We demonstrate results in two
situations: on a special shirt designed for easy retexturing and on nat-
ural clothing with screen prints. Because of the quality of the results,
we believe that this technique has wide applications in special effects and
advertising.

1 Overview

We describe a novel image-based rendering technique to retexture fast-moving,
deforming objects in video while preserving original lighting. Our method uses
simple correspondence reasoning to recover texture coordinates, and colour rea-
soning to recover a detailed, dense irradiance estimate. Our retextured images
have textures that appear to be stable on the surface, at spatial scales that
cannot, in fact, be recovered. We believe that our excellent irradiance estimate
is a significant component of the sense of shape that is produced.

Retexturing starts with [3], who demonstrate a method based on shape from
texture. The method is not notably successful, and does not use irradiance es-
timates. Fang and Hart show that, in static images, a local shape from shading
estimate of normals is sufficient to retexture an image patch satisfactorily [2]:
they do not need to estimate irradiance for synthesis because they combine im-
ages multiplicatively. The shape estimate is very weak (shape from shading is
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2 LIGHTING REPLACEMENT: MODELING IRRADIANCE 2

notoriously inaccurate [4, 12]), but sufficient for good results. Several methods
have been proposed to track nonrigid motion [10, 9]. Pilet et al [9] describe a
method to detect the surface deformation using wide-baseline matches between
a frontal view and the image to estimate a transformation smoothed using sur-
face energy. This method cannot stabilize texture for 3 reasons. First, there are
few reliable keypoints in the texture we consider, especially in oblique views.
Second, by using keypoints, the method does not track boundaries — and os-
cillations in the boundary conditions are noticeable in their videos. Third, the
rigid smoothing using surface energy makes their method stiff, and limited in
scope. In addition, they cannot obtain an irradiance — small errors in their
correspondence would make it impossible.

Irradiance estimation is now common in the image-based rendering commu-
nity [1, 7, 11], usually relying on objects of known geometry and albedo. More
recently, Lobay and Forsyth showed that a good irradiance estimate is available
from a repeating texture [7].

Applications: Retexturing is a useful and pleasing image level utility. Re-
texturing clothing has a variety of applications if it can be done cleanly. First,
one could sell the advertising space on the back of a sports-player’s shirt multiple
times — different adverts could be retextured for different television markets.
Second, one could change the clothing of figures in legacy images or footage to
meet modern tastes.

Conceptual advances: A growing theme of modern computer vision is the
number of useful applications that are possible with little or no shape informa-
tion. We show that high quality images can be rendered in realistic lighting
conditions without 3D geometry (figure 2, 5, 9, 10). This can be achieved
without high accuracy in localization. Furthermore, we adduce evidence that
suggests that good irradiance estimates may be very useful indeed in sustaining
a perception of 3D shape.

Procedure: Our method builds a non-parametric regression estimate of
irradiance (section 2). We then use quite simple correspondence reasoning to
obtain texture coordinates (section 3), from either a frontal view of the texture
or a known, engineered pattern. This information is then composited using a
new texture map to produce output frames. There is no elastic model of the
material and no dynamical model of correspondence — the video is handled
frame by frame.

2 Lighting Replacement: Modeling Irradiance

Careful estimates of irradiance are very useful, and appear to create a powerful
impression of shape. Their significance for renderings of clothing is probably
due to vignetting, an effect which occurs when a surface sees less light than it
could because other surfaces obstruct the view. The most significant form for
our purposes occurs locally, at the bottom of gutters where most incoming light
is blocked by the sides of the gutters. This effect appears commonly on clothing
and is quite distinctive [5, 6]. It is due to small folds in the cloth forming gutters
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Figure 1: Many common textured articles are made using screen printing —
where each color is printed in a separate pass. Often, this method is cheaper
than using a full color gamut. Screen printing is widespread: many T-shirts,
advertisements, and corporate logos are composed of a small number of solid col-
ors. Recovering irradiance is easier in this setting: correspondence to a frontal
view of the pattern is not required. Instead, each color can be detected indepen-
dently in order to recover irradiance. Because screen print items are composed
of large regions of uniform color, they are robust to motion blur.

and shadows, and could not be represented with a parametric irradiance model
unless one had a highly detailed normal map.

However, we do not have and cannot get a detailed normal map or depth
map. Furthermore, as we shall see in section 3, the estimates of material coordi-
nates are of limited accuracy. What this means is that it is not wise to estimate
irradiance by assuming that the estimate of material coordinates gives albedo
(by reference to the original texture map) and from this irradiance can be ob-
tained. A single pixel error in position on the texture map can, for example,
mean that an image location produced by a dark patch on the shirt is ascribed
to a light patch on the shirt — this would result in a catastrophically inaccurate
irradiance estimate. This probably explains why correspondence tracking meth-
ods ([9]) don’t estimate irradiance or use it to retexture — the correspondence
is not pixel accurate, meaning that irradiance estimation would probably fail.

What we do have is an assumption that the clothing pattern is screen-
printed, using a small set of highly coloured dyes in regions of constant color.
Furthermore, we assume that the pattern is sufficiently complex that colours
will fall next to a reference colour (which we call white, though any colour could
be used).

In this case, we do not need a formal estimate of irradiance. Instead, at
any point in the image, we need an estimate of what the reference colour would
look like, if it appeared at this point. By taking this view, we avoid difficulties
with scaling between pixel values and radiance, for example. We can obtain
this estimate in three steps. First, we build a table that indicates, for each of
the dyes in the screen print, what the reference colour looks like in illumination
that produces a given set of image R, G and B values from the dye. Second, at
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Figure 2: Lighting cues provide a strong sense of shape — with or without a
new texture. Left, an image from a video sequence taken directly from our video
camera. Middle, we remove the texture items by estimating the irradiance and
smoothing. Right, a retextured image. Notice that irradiance estimates capture
shape at two scales: the large folds in the cloth that go through the middle
(starting at the red arrow, follow the fold up and to the right) and the finer
creases.

each image pixel, we determine what (if any) dye is present, and use the look-up
table to estimate the appearance of the reference colour at that point. Third,
we smooth the resulting field.

2.1 Regressing the effects of irradiance

We do not require irradiance in fact. It is sufficient to know what a white
patch would look like, when a given dye patch has a given appearance. This
information can be obtained by regressing from observations. We build one
table for each dye, using the following approach. We use our colour classifier
(below) to identify pixels from that dye that lie next to pixels produced by white
patches. It is reasonable to assume that, if the pixels are sufficiently close, they
undergo the same irradiance. We now have a series of examples, linking image
RGB of the dye to image RGB of white. The number of examples is enormous;
one might have 105 or even 106 pixel pairs in a given video. However, some
examples may be inconsistent, and some image RGB values may have no entry.

We obtain a consistent entry for each image RGB value that occurs by
identifying the mode of the examples. We now have a table with some missing
entries (where there were no examples). We use a version of parzen windows to
obtain an interpolating smoothing of this table.
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Figure 3: We estimate lighting for each dye independently, throwing away con-
fusing pixels and boundary regions. Upper left, an un-altered image of a trian-
gle in our pattern contains strong lighting cues. However, the boundary regions
yield conflicting cues: boundary colors change in somewhat unpredictable ways,
hiding the strong lighting cues. Upper right, the output of our color classifier,
run on a per pixel basis. As noted, colors at edges can be confusing (indicated
in gray) or misclassified (notice the blue pixels at the right tip). Lower left,
after eroding each colored region, we extract lighting cues for each pixel inde-
pendently. At this stage, the are two problems in our lighting model: gaps in the
irradiance estimates and slight chromatic aberrations. In the lower right, we
interpolate regions using a gaussian of varying widths. To smooth out chromatic
aberrations, we convert to HSV and heavily smooth both hue and saturation.

2.2 What dye is present?

We determine what dye is present with a classifier that quantizes the color
of each pixel to a pre-determined finite set (determined by the user) based
on the pixels component colors. The classifier is a set of one-vs-all logistic
regressions on first and second order powers of RGB and HSV. To classify pixels,
the maximal response from the array of classifiers is selected, except when all
classifiers respond weakly, in which case the pixel is labeled as ambiguous. We
do not attempt to classify pixels close to colour boundaries, because blur effects
in the camera can lead to classifier errors. At present, we require the user to
click on each color to train the classifier, but believe that clustering could remove
this step of user intervention.
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Figure 4: A custom color-printed pattern provides more accurate deformation
models. Our custom pattern is not screen printed, but follows the same model:
a discrete number of colors composed in uniform colored blobs. This pattern
creates a grid like structure over the image and allows us to track many more
points than the deforming models we use on natural textures. Our transforma-
tions are computed locally — triangles are individually detected, colors classified,
and correspondences computed. Missing correspondences can cause artifacts in
video. On the left a single triangle is not detected. We interpolate the location
of the triangle using a linear estimate based on the locations of the other trian-
gles (shown as white Xs). In the next frame (right), the corresponding triangle
is detected with a substantially different position — causing a pop in the video
sequence.

2.3 Interpolating, Smoothing, and Blending

We now take the pool of relevant pixels, determine what dye is present, then
present the RGB values to the table indicated by that dye. The result is a
representation of what the image would look like at that pixel if the dye had
been white. However, this is not available at every pixel — the classifier might
refuse to classify, the pixel might be close to a colour boundary and so dangerous
to classify. Missing pixels are interpolated using a gaussian weight to sum up
nearby pixels, with the variance corresponding to the distance to the nearest
pixel. Our irradiance estimates often have slight errors in color. Observing that
color variations in lighting tend to be low frequency, we heavily smooth the hue
and saturation of the recovered irradiance. (figure 3). Finally, using the domain
of the texture map (derived below), we combine our lighting estimate with the
original pixels to get a ‘blank’ surface. We replace pixels in the textured region,
blend nearby pixels, then use the original image pixels for the rest of the image
(figure 2).
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Figure 5: In some cases, our estimate of the transformation is poor. On the left,
vertex locations for missed triangles were approximated inaccurately. Because
our method does not rely on explicit correspondence to compute an irradiance
estimate, the reconstructed image on the right does not contain obvious arti-
facts. While the image appears plausible, the re-textured surface is not physically
plausible — the texture and lighting cues disagree. Again, we point out that ir-
radiance captures shape at multiple scales: fine creases (follow the red arrow)
and larger folds.

3 Texture Replacement

We need to compute a set of texture coordinates (or, equivalently, material co-
ordinates) from our observed image. There are two possible strategies. First, we
could engineer a pattern that worked like a map; it would be easy to determine
where a particular colour lies in the map, and so we could use the colour clas-
sifier outputs to determine which point on the map corresponds to a particular
pixel in the image. Second, we could — at the expense of less precise estimates
of texture coordinates — compare the image to a frontal view of the texture.
Both methods are successful.

3.1 Using a map

We use a custom printed pattern composed of colored triangles to create high
quality texture mappings. The pattern is designed to ensure that neighborhoods
are unique and easily discriminable. As a result, our method for computing the
planar transformation is essentially local: for each region of image, we compute
a map to the source image, then stitch together these neighborhoods to compute
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Figure 6: Specialized patterns make it possible to track very large numbers of
points. However, such large numbers are not necessary and can even be slightly
detrimental: irradiance estimation becomes difficult because more pixels are clas-
sified as edge pixels.

a complete mapping using nearby transformations to fill in gaps.
Our neighborhoods maps are encoded using uniquely colored triangles: we

detect triangles independently, use the color to determine the triangle’s iden-
tity, then use a deformable model to localize the vertices — creating an accurate
transformation between domains. When triangles are detected and correspon-
dences computed properly, this process is very accurate: experiments indicate
that typical errors are less than a third of a pixel. Figures 4 and 6 show two
sample frames with point locations. We now obtain detailed texture coordinates
by a bilinear interpolate within each triangle.

3.2 Using Frontal Appearance

While the pattern detection approach in Section 3.1 is compelling, it is somewhat
specific to the custom printed pattern. For arbitrary screen print textures,
localization becomes a problem. Instead, we adopt a top-down method to fit
the texture: first, search for the rough shape (figure 7) then refine the mapping
(figure 8). We use a triangle mesh to represent the mapping, splitting triangles
as the mapping is refined.

This method has several advantages. First, that no region of the pattern
needs to be particularly discriminative only the pattern as a whole has to be
unique. Second, highly oblique views still exhibit the overall shape and can be
detected. Third, edges are powerful cues in this model: they provide a con-
straint that isn’t easily recorded using point feature correspondences. Fourth,
in contrast to surface energy methods, this method does not have many of the
common stiffness properties. However, the disadvantages of a top-down ap-
proach are not insignificant: it is not robust to occlusions and subject to local
minima. Practically, this means that partial views of the surface may not be
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Figure 7: Our method requires a frontal view of the texture (top row) and a
target image (bottom row). We quantize the colors using a color classifier,
then compute a 4×4 color histogram, with separate bins for each color chan-
nel. In this case, with three colors (black, orange and yellow), our descriptor is
4×4×3. We visualize this descriptor by reconstructing the colors and normaliz-
ing appropriately (right). A search for the descriptor in a subsampled version
of the target image reveals the closest match (bottom right).

retextured properly.
Estimating an Initial Correspondence: Our method of fitting proceeds

in two steps: first, estimate the rough location and scale of the logo, then refine
the estimate. Because the quantized image has fewer lighting effects, both stages
are performed on the output of our color classifier, not the original image. To
detect the rough location of the object we use a color histogram with 16 spatial
bins (arranged in a 4 × 4 grid) and the same number of color bins as colors in
the texture, resulting in a histogram of size 4 × 4 × C. Following other work
with histograms [8], we normalize the values, suppress values above 0.2, then re-
normalize. Using the descriptor from the frontal image as a query, we perform
a combinatorial search over scale, location and aspect ratio in a downsampled
version of the target image.

Refining the Transformation: Once the rough transformation has been
computed, we refine over scales. (figure 8) At each stage in the refinement,
we implement the same algorithm: blur the color quantized image (giving each
quantized color its own channel), then run gradient descent over the locations
of the vertices using the sum of squared distances between the transformed
frontal texture and the blurred target image. Our model of the transformation
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Figure 8: Our method refines estimates of texture location over scale. Starting
with the output of initialization step (figure 7), we have an axis aligned box
that corresponds roughly to the location. We use gradient descent on blurred
versions of the color quantized image to improve the transformation. Iteratively,
we refine the number of vertices (and correspondingly the number of triangles)
while reducing the blur to get a better match. Our final model contains only 16
triangles.

is coarse: we start with a 4 vertex 2 triangle model, then refine to 9 vertices
and 8 triangles, and finally 13 points and 16 triangles.

4 Results and Discussion

We have demonstrated the power of retexturing using irradiance on several
videos of deforming non-rigid surfaces, including t-shirts and plastic bags. In
general, results using a map are better: large numbers of correspondences pro-
vide a better replacement texture (figures 2, 9). However, our irradiance esti-
mation is robust — meaning that irradiance estimates are correct even when
the texture map is coarse (figure 10). This is important because irradiance es-
timates are a powerful cue to surface shape. As a result, denser maps do not
provide better estimates of irradiance (figure 6). Different background colors do
not present a problem: we show results on a shirt with a dark albedo as well
(figure 11).

Our results suggest several areas for future work. First, the local method
does not interpolate missing triangles well — implying that a hybrid approach
may be more effective. Second, our method of interpolating irradiance can be
improved: we believe that using texture synthesis could provide more realistic
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Figure 9: Retexturing isn’t limited to static images — here we retexture with
a ticking clock. (there are 4 frames between each image) On the left, the red
arrow points to a strong folds that pierces the middle of the clock — giving a
strong cure about surface shape.

results.
We interpret our results to indicate that surface energy terms may be un-

necessary for retexturing. Furthermore, a model that reflects the underlying
mechanics poorly can result in significant correspondence errors. A 2D elastic
model has difficulty managing the very large appearant strains created by folds
and occlusions.
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