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Abstract

It is known that rotationally symmetric surfaces can
be recognized from their outlines alone, using cross-
ratio’s of bitangent intersections. This paper demon-
strates a successful implementation of this technique,
using a novel bitangent finder, that works on images
of real scenes. We report on the stability of the cross-
ratio’s, and compare this lo affine invariants. The
recognition technique is shown to extend to the case of
straight homogeneous generalised cylinders.

1 Introduction

This paper continues the work described in [9],
where it was shown that surfaces of revolution can be
recognised from their outline alone, without knowl-
edge of object pose or camera calibration. The recog-
nition method involves commputing indezes [8, 11, 17,
21] from the outline which are used to recognise the
object via a hash table. In this paper, we demon-
strate successful indexing for a range of images of real
objects using the constructions of [9]. We show that
these constructions also yield indexing functions for
straight homogeneous generalised cylinders.

1.1 Description for recognition

This paper concentrates on the problem of recog-
nising curved surfaces from a single outline. Previous
approaches include attempts to extend line labelling
[10, 12], the development of constraint-based systems
[4], the study of how the topology of a surface’s out-
line changes as it is viewed from different points, for-
malised into a structure known as an aspect graph (for
example, [13, 15, 16]), and attempts to represent the
system of outlines of a curved surface as a linear com-
bination of some small number of outlines (see, for
example, [1, 2]).

Much attention has been focussed on particular
classes of surface; straight homogenous generalised
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cylinders have been particularly popular. Relation-
ships between sections of the outline of a straight ho-
mogeneous generalised cylinder have been widely stud-
ied, and are known to yield a variety of surface param-
eters in orthographic views [14, 19, 20]. Dhome et al.
showed that for a class of rotationally symmetric sur-
face, object pose could be recovered for a known, cali-
brated camera, and incorporated this fact into a recog-
nition scheme [5], which was later extended to include
straight homogeneous generalised cylinders [6)].

1.2 The outline and its geometry

Throughout the paper we assume an idealized pin-
hole camera, where all rays pass through the focal
point. If the focal point is fixed and the image plane
is moved, the resulting distortion of the image is a
collineation!. In what follows, it is assumed that nei-
ther the position of the image plane with respect to
the focal point nor the size and aspect ratio of the pix-
els on the camera plane is known?, so that the image
presented to the algorithm is within some arbitrary
collineation of the “correct” image. In this abstract
model, the image plane makes no contribution to the
geometry, and its position in space is ignored. An
orthographic view occurs when the pinhole is “at in-
finity”.

The outline of a surface is a plane curve in the im-
age, which itself is the projection of a space curve,
known as a contour generator®. The contour genera-
tor is given by those points on the surface where the
surface turns away from the image plane; formally, the
ray through the focal point to the surface is tangent
to the surface. As a result, at an outline point, if the

1A collineation is a continuous, one-to-one map taking the
projective plane to the projective plane which maps lines to
lines; any collineation is a plane projective transformation.

2These quantities can be measured with varying degrees of
difficulty; they do not appear to be particularly stable when
cameras are moved, shaken or dropped, however.

3There are a number of widely used terms for both curves,
and no standard terminology has yet emerged.



relevant surface patch is visible, nearby pixels in the
image will see vastly different points on the surface,
and so outline points usually have sharp changes in
image brightness associated with them.

1.3 Indexing rotationally symmetric ob-
jects

It is shown in [9] that the intersections of corre-
sponding pairs of lines, bitangent to the outline, are
projections of points on the axis of the object. These
points are defined solely by the geometry of the object,
so that finding these points and forming their cross-
ratio’s yields a set of geometric invariants of the object
which can be measured from image information alone.

Thus, cross-ratio’s of intersection points of corre-
sponding bitangent lines yield indexing functions for
rotationally symmetric surfaces. Note, in particular,
that these cross-ratio’s are invariant to camera cali-
bration, and so can be used with an unknown camera.
The rest of the paper shows how these cross-ratio’s can
be computed from image data using a novel bitangent
finder, that they can be used successfully for recog-
nition, and that this technique will work for straight
homogenous generalised cylinders as well.

2 A recognition system using cross-
ratio’s
A recognition system using cross-ratio’s as indexing
functions works as follows:

e cross-ratio’s are constructed for corresponding
pairs of bitangents in an image;

e these cross-ratio’s are used as keys to a hash-
table that contains the correspondence between
surfaces and cross-ratio’s to yield recognition hy-
potheses;

e the recognition hypotheses are tallied, verified
and accepted or rejected.

In our existing system, we do not verify recognition
hypotheses, as edge-based verification for curved sur-
faces is difficult without pose information, which is not
available. The system’s model-base contains three sur-
faces, and it is assumed that there is only one surface
in each image to simplify the computation of corre-
sponding bitangents.

The main step is computing cross-ratio’s from out-
lines. This process requires that:

1. all bitangents to the outline be found, and

2. corresponding bitangents identified and inter-
sected.
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Figure 1: A Hough transformation table at the right is
created with 6 and v indices. A tangent line to curve
C is represented by 8 and v and stored in the cell (6, ¥)
in the Hough transformation table.

2.1

A tangent line can be represented by Hough trans-
formation as (8, v), where 8 is the orientation of the
line and v is the distance from the image center to
the line, as shown in figure 1. Any line in the im-
age can be mapped into a particular cell in the Hough
transform table by its location and its orientation. If
tangent lines derived from two different points fall into
the same cell in the Hough transformation table, then
those tangent lines are a bitangent line. The process
of finding bitangents proceeds, therefore, by:

Finding bitangent lines to a curve

1. computing the tangents to the curve and Hough
transforming these lines;

2. checking the Hough transformed system for cells
containing more than one line, which are bitan-
gents.

2.1.1 Computing and Hough transforming
tangents

Tangent lines are computed using an eigenvector line-
fitting method [7]. As shown in the left half of figure 2,
[ is the best eigenvector fitting line based on the 7
points around P;. In the experiments, we used an 11
point neighbourhood. The tangent line at P; is the
line passing through P; and parallel to {;, labelled I;
in the figure.

When the curve has high curvature, the # and v
values of consecutive tangent lines can be quite dif-
ferent because of the sample spacing, with the result
that two consecutive tangents can be marked in cells
some way apart in the hough space. As a result, bi-
tangent lines can be missed, because high-curvature
segments of curves can lead to widely scattered points
in the Hough space, which may not intersect prop-
erly (see the right half of figure 2 for an example).



Figure 2: In the left half of the figure, an eigen-
vector fitting line I; is constructed from seven points
P;_3,P;_2,Pi_1, P;, Piy1, Piy2, and P;;3 and the tan-
gent line at point P; is I;, which passes through F; and
is parallel to [. In the right half, [ is a bitangent line
which is missed because { is not booked in the Hough
transformation table while scanning P; and Pj4;.

The solution to this problem is to interpolate between
points in the Hough space, using either a linear or
quadratic interpolate, depending on the variation in
6§ (for our experiments we used a quadratic interpo-
late if A > 6°, and otherwise a linear interpolate).
This strategy leads to continuous curves in the Hough
space, and is successful in finding bitangents; exam-
ples are shown in figures 3 and 4.

2.2 Determining
gents

corresponding bitan-

Once all bitangents have been found, it is necessary
to determine which pairs of bitangents correspond (i.e.
both come from the same cone of bitangents). This
problem can be solved by exploiting the following re-
markable symmetry property of rotationally symmet-
ric surfaces:

Theorem: There is a non-trivial plane pro-
jectivity which maps the outline of a rota-
tionally symmetric surface to itself. The con-
tour generators corresponding to each half
are, in general, space curves, and are related
by a mirror symmetry in space.

In effect, this theorem is a stronger way of stating
that the outline of a rotationally symmetric surface
can be separated into two sides, which are related by
plane projectivity. To see that the two sides of the
contour in the image are projectively equivalent, for
an arbitrary view, construct the plane containing the
axis of the surface and the focal point. The surface
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then has a mirror symmetry in this plane, as does the
cone of rays through the focal point and tangent to
the surface. This cone yields the outline when it is
intersected with the image plane.

If the image plane is perpendicular to the plane of
symmetry, then the outline has a mirror symmetry;
but the outline in any other image plane is within a
projective map, say T of this outline (by construction,
with the focal point as the centre of projection), and
so we can construct a non-trivial projective mapping
that takes the outline to itself as P = To M o T™!,
where M is a mirror symmetry. Since by construction
T is a projectivity, and M is a projectivity (it can be
given as diag [1,—1,1]), P is a projectivity.

This delivers a uniform method for determining
points lying on the projection of the 3D symmetry
axis. Any projectively covariant construction® in the
particular (symmetric) image plane which generates
points on the image axis, can be used in any image.
Examples of such constructions include:

1. the intersections of lines connecting correspond-
ing pairs of distinguished points on each side of
the outline. For example, given @ corresponding
to a’, b corresponding to ¥, the lines ab’, a’b in-
tersect on the symmetry axis. Appropriate dis-
tinguished points are covariants such as points of
contact of bitangents or of inflections.

2. the projective transformation that maps the con-
tour to itself. The projection of the axis will be a
line of fixed points of this transformation.

In practice, we use approach 1 (above) with dis-
tinguished points derived from a bitangent’s contact
with the curve. Any pair of corresponding bitangents
then generates two points on the axis image: one by
the intersection of the bitangents (i.e.the lines ab and
a'b’), the other by the cross-consiruction above (i.e.
the lines ab’, a’b). This is a simple and successful
construction. Note that the order of the points of tan-
gency on each bitangent can be given with reference
to their intersection point and so is uniquely defined.

Now, select any two bitangent lines in the image.
We give a vote to line ¢, from both their intersection
and cross-construction. The total number of votes for
the correct image of the central axis, n, is the number

4By this, we mean that we would obtain the same result if
we were to perform the construction in one frame, and then
project the result to a new frame, or if we were to perform the
construction in the new frame on a projection of the original
curves; constructions with this property are based around inci-
dence and counting properties. For example, a tangent line is a
covariant construction.



[ angle | cross-ratio | length ratio |

45.0 0.486187 1.40862
40.0 0.490561 1.98153
35.0 0.486796 2.14017
25.0 0.486640 2.38409
15.0 0.486260 2.70539
0.0 0.494849 4.13687

Table 1: Stability of invariants, computed to six digits
from measured points, with inclination of the axis of
a lamp-base to the camera plane. Typical affine and
projective invariants are shown. Note that the value of
the affine invariant changes at extreme angles, whereas
the first two digits of the projective invariant remain
wholly unaffected.

of distinguished bitangent cones constructed by the
shape of the object. The total number of votes for
each incorrect image of the central axis clearly must
be 1 or small if the surface is not degenerate, and so
the line with maximum number of votes is the image
of the real central axis. This voting system is refined
further by noting that, for real views, it is extremely
hard to arrange the camera such that lines joining cor-
responding pairs of distinguished points are more than
a few degrees away from parallel, as a result of the
limited field of view of the camera. Currently, pairs
of bitangents where these lines are more than 4° off
parallel do not contribute to the vote. We return to
this restriction in section 4.

2.3 Results

Table 1 demonstrates the stability of invariants as
the inclination of the object axis to the viewer is in-
creased. In the case of cross-ratio’s, which are a pro-
jective invariant, the values only alter significantly
when the image segmentation fails, and it is no longer
possible to determine tangents. In contrast, a simple
ratio of distances along the axis, which is an affine in-
variant, varies systematically with inclination angle.
This is the expected behaviour since affine approxi-
mation to projection deteriorates as object depth in-
creases relative to distance from the camera. However,
this indicates that affine invariants are not acceptable
as indexing functions for unrestricted object pose.

A recognition system has been built that can iden-
tify one of three possible objects: a doorknob, a lamp
and a stand, using projective invariants alone. Each
image contains only one object, and the task is to
identify which.

Recognition proceeds by computing all possible
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| view ]| “doorknob” | ambiguous | other | miss |
1 3 0 1 0

2 4 0 1 0
3 4 0 1 0
4 4 0 1 0

Table 2: Hash-table returns for four views of a door-
knob. A hash table was preloaded using a fifth view
of the doorknob, and with views of two other surfaces,
with the cross-ratio’s acting as keys, and the name
of the relevant surface inserted into the table. The
hash-table was then accessed using the cross-ratio’s
measured in each image; each return is counted as a
vote for the surface or surfaces retrieved. The columns
show the label returned from the hash-table; the alter-
natives are the correct label alone, a number of labels
including the correct label (“ambiguous”), a collec-
tion that does not include the correct label, and noth-
ing retrieved at all. The single persistently incorrect
return occurs because not every cross-ratio could be
measured from the view used to load the hash-table.
Nonetheless, the surface is clearly identified in each
case by choosing the return with the most votes.

cross-ratio’s of bitangent intersections from an image,
rounding these values to a single digit, and using them
as a key to a hash-table, which was preloaded with the
names of the surfaces, using cross-ratio’s computed
from one image of each surface. In particular, for
the stand and the doorknob, a number of cross-ratio’s
could be computed from each image, and the final
identification was made by voting for the object with
the greatest number of returns. Table 2 gives typical
results. Note that the technique described is show-
ing a degree of robustness, as surfaces are correctly
identified despite the differing number of cross-ratio’s
computed for each image as a result of noise-related
difficulties in obtaining all bitangents. In no views, of
a total of 15, was the final identification incorrect.

3 Indexing straight homogeneous gen-
eralised cylinders

A straight homogeneous generalised cylinder
(SHGC) can be defined as a surface that, in some Eu-
clidean frame, can be parametrised as:

(F1(t)g1(s), f1(t)g2(s), f2(2))

Thus, in the appropriate frame, the sections of this
surface corresponding to planes z = constant are uni-
formly scaled copies of the plane curve (g1(s), g2(s)).



Figure 3: Typical images of real rotationally symmet-
ric objects, used to obtain the recognition results; the
left figure shows the knob, the right figure shows the
stand.

Figure 4: This figure shows all the constructed bitan-
gent lines and the outlines of the images of three sam-
ples: (a) a lamp, (b) a knob and (c) a candle stand.
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As a result, in this frame the z-coordinate axis forms
an “axis” for the surface, which has a similar role to
the axis of a rotationally symmetric surface.

Now consider the family of planes through this axis;
an arbitrary plane from this family is given by az +
by = 0, for some a, b. In coordinates in this plane, the
intersection between the surface and the plane can be

given by:
(Afi(t), f2(1))
where A is a function of s. In particular, only A

changes as we move from plane to plane in the family.
We have:

Lemma: The envelope of the family of
planes tangent to the surface along a curve of
fixed ¢ (a “parallel”), is a cone or a cylinder.

The lemma is proven by noting that every tangent
plane in this family intersects the z-axis in the same
point; this, in turn is proven by showing that the
y-intercept of a line tangent to a curve of the form
(Af1(t), f2(t)) is the same for any A # 0. Note that
the cones or cylinders are also SHGC’s, with the z-axis
as their “axis” and with the same cross-section as the
surface.
From this lemma, we have immediately:

Lemma: Families of planes bitangent to
SHGC’s form cones, with their vertices on
the axis of the surface.

Thus, we can construct indexing functions for SHGC’s
in exactly the same way as we constructed indexing
functions for rotationally symmetric surfaces.

4 Invariants and Quasi-Invariants

There is an apparent inconsistency between the
method employed in section 2.2 to match correspond-
ing points on each side of the outline, and the results in
section 2.3. In the former it is assumed that an affine
property, parallelism, is approximately preserved dur-
ing projection, yet in the latter it is demonstrated that
affine invariants degrade systematically as the inclina-
tion of the 3D symmetry axis increases.

Figure 5 illustrates that the significant angle in
terms of the affine approximation to projection is not
the inclination of the axis, but the angle between the
plane containing the axis and focal point, and the im-
age plane normal, @. It can be shown that A/D is
proportional to tan . For a finite image plane, « is
bounded by the finite field of view. Consequently, this
limits the “extent” of non-parallelism of lines join-
ing corresponding points on the outline. This ap-
proximate parallelism for finite image planes may be
thought of as a quasi-invariant [3].



(a) (b)

f

Figure 5: Schematic plan view of a surface of revo-
lution and tangents from the optical centre. « is the
angle between the plane containing the axis of the sur-
face and the focal point, and the image plane normal.
In (a) lines joining corresponding points on the con-
tour generator are parallel to the image plane. Con-
sequently, their image projections are parallel. This
holds even when the axis of the surface is not parallel
to the image plane. In (b) the object has the same
depth but is translated parallel to the image plane.
In this case lines joining corresponding points do not
project to parallel lines.

5 Discussion

We have demonstrated that rotationally symmetric
surfaces can be successfully indexed using bitangents
computed automatically from image edges by a bitan-
gent finding algorithm which we have described. We
have shown that this approach can be extended to
recognise straight homogeneous generalised cylinders.

We are currently investigating the second approach
to bitangent finding, namely determining the projec-
tive transformation between “sides” of the outline.
This is providing an efficient filter for restricting cor-
respondences.
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