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Abstract

We show that curved planar objects have shape descriptors
that are unaffected by the position, orientation and intrinsic
parameters of the camera.

These shape descriptors can be used to index quickly and
efficiently into a large model base of curved planar objects,
because their value is independent of pose and unaffected by
perspective. Thus, recognition can proceed independent of
calculating pose. Object curves are represented using con-
ics, attached with a fitting technique that commutes with
projection. This means that the pose of an object can be
determined by backprojecting known conics. We show exam-
ples of recognition and pose determination using real image
data.

1 Introduction

The fundamental problem of computer vision is that shape
measured in images depends not only on object shape, but
also on the position, orientation and intrinsic parameters of
the camera. If it is possible to define shape descriptors that
are unaffected by perspective transformations, then image
measurements of these descriptors can be matched to object
properties regardless of camera viewpoint. Shape descriptors
with these properties are known as invariants.

‘We believe that invariance is the essential prop-
erty of a shape description.

Many properties are invariant to projection: for exam-
ple, straight lines project to straight lines and intersections
are preserved. The exploitation of these invariants has been
responsible for the success of polyhedral model based vision.
However, for smooth curves and surfaces, invariants such
as zeroes of curvature, the cross ratio and Gaussian curva-
ture do not provide a sufficiently strong set of constraints
for successful model based vision. There has been a corre-
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spondingly limited success in representing and recognising
curved objects. This paper shows one way of constructing
and exploiting a rich invariant theory for plane curves.

In section 2, we discuss the mathematics and ideas un-
derlying our use of invariant theory, and show a broad range
of examples of invariants.

In section 3, we show the usefulness of this theory in
model based vision. We demonstrate a projectively invari-
ant representation for plane curves using conic curves. We
build a simple and effective model based vision system which
uses the projective invariance of this representation to recog-
nise planar objects. Because the descriptor does not change
whatever the pose of the object, this system effectively de-
couples the problem of identifying objects from that of de-
termining their pose.

In section 4, we show that it is possible to recover pose
from our invariant representation by solving the simple prob-
lem of backprojecting known conics.

Finally, we discuss the prospects for a wider use of in-
variant theory in vision.

2 Invariant theory

We adopt the notation that corresponding entities in two
different coordinate frames are distinguished by large and
small letters. Vectors are written in bold font, e.g. x and
X. Matrices are written in typewriter font, e.g. ¢ and C.
Given a group G and a space M, an action of G on the
space associates with each group element g € G a map ¢ :

M= M:

id(z)
(91 % g2)(=)

z 1)
(91(92(=)) @)
where g1,9; € G, id is the identity element of the group,

and x is the group composition function. An invariant of a
group action is defined as follows:

1l

Definition An invariant, /(p), of a function f(x,p)
subject to a group, G, of transformations acting on
the coordinates x, is transformed according to I(P) =
I(p)h(g). Here g € G and h(g) is a function only of the
parameters of the transformation and does not depend
on the coordinates, x, or on the parameters, p. I (p)
is a function only of the parameters, p.




In what follows, we concentrate on scalar invariants and
;he term invariant should be understood to mean scalar in-
variant, except where the context clearly indicates otherwise.

Seeing invariants in terms of the action of continuous
zroups (otherwise known as Lie groups) makes it possible
;o write down a system of linear first order partial differ-
>ntial equations in the invariant, which can then be solved
asing a symbolic mathematics package [14, 7, 6]. Invariants
for a wide range of situations can be constructed using this
machinery, which can also be used to predict the minimum
aumber of invariants available. Table 1 shows the minimum
aumber of independent invariants available for different sys-
tems of curves under a range of group actions. The math-
smatical literature contains other computational tricks for
onstructing invariants, of which the symbolic method ap-
pears to have the most potential value (8].

An invariant is defined in the context of a particular
transformation. We have concentrated on the case of the
plane projective group. This models the situation where a
plane curve is subject to rigid motion in space, and pro-
jected using perspective. In fact, rigid motion and perspec-
tive projection produces a subset of the actions of the plane
projective group, and the subtle but important distinctions
between the two situations are the subject of active research.

A number of invariants are exploited in vision at present,
with varied success. [10] demonstrated the value of using
invariants of camera rotation and invariant decompositions
in computing such information as optical flow. [18] has also
raised the issue of invariant representations.

2.1 Examples of invariants

Example 1 - Plane rotation: The plane rotation group
acts on the plane, by the mapping x = RX, where R is a 2D
rotation matrix. Any function of the distance from the origin
to a point is invariant under the action of this group. Under
the action of this group combined with the multiplicative
group, (z,y) :— A(z,y), the function z* + y* is an invariant
of weight 2. In the second case there is no scalar invariant,
however.

Example 2 - Plane translation: Any element € of the
one dimensional translation group acts on the plane, by the
mapping {z,¥'} = {z+¢,y}. The y coordinate of any point
is invariant under the action of the group.

Example 3 - Homogenous polynomials: Consider
the space of homogenous polynomials in n variables,
Zgy .oy Tn-1. Write x for {zo,...,Zn-1}. The general linear
group (all matrices T of non-zero determinant) acts on this
space, by taking a polynomial p(x) to P(x) = p(Tx). Here
the coefficient of a monomial in P(x) is determined by com-
puting the coefficient of that monomial in the expansion
of p(Tx). Clearly, this action takes a polynomial of order
k to another of order k, so we can see it as an action on
the homogenous polynomials of order k. Furthermore, if we
write p for the coefficients of p, we have for an invariant I,
I(P) = I(p)|T|* where T is the transformation matrix and
T| indicates the determinant of T. Invariants of this action
formed a major research topic of 19th century mathematics:
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an introduction can be found in, for example, [8]. A modern
treatment of some of this work is given by [{17] or by [3].

Example 4 - Differential invariants: Differential in-
variants are invariant functions of the position and deriva-
tives of a curve at a point. Differential invariants are clearly
important in vision. Curvature, torsion and Gaussian curva-
ture, all differential invariants under Euclidean actions, have
been widely applied. For example, a projective differential
invariant for plane curves has been known for a long time
[18, 11]. However, this invariant is an extremely large and
complex polynomial in the derivatives of the curve, and it is
not known how useful in practice it will be. Table 2 shows
the number of derivatives required for a differential invariant
of a plane curve under a range of group actions.

Example 5 - Projective invariants for pairs of plane
conics: A plane conic can be written as x'c;x = 0, for
x = (z,y,2) and a symmetric matrix c;, which determines
the conic. A pair of coplanar conics has two scalar invariants,
which we will describe here. Given conics with matrices of
coefficients ¢; and c;, we define:

I, Trace(c, cp)

Iese, Trace(cflcl)

Under the action x = TX, ¢; and ¢; go to C; = Tf¢;T and
C; = Tic,T. In particular, using the cyclic properties of the
trace, we find:

Iee, = Trace(T e, (T 'Te,T)

Trace(c; ™ cz)

= IClcz

A similar derivation holds for I,c,. Note that ¢;7'c; trans-
forms to T~ !¢, !e,T, which is a similarity transformation,
and so its eigenvalues are preserved. This provides an alter-
native demonstration of invariance.

Example 6 - Projective invariants for systems of
lines: A system of four coplanar lines that intersect in a
single point!, is dual to a system of four collinear points.
This system has the familiar cross ratio as its invariant.

For five general coplanar lines. There are two projective
invariants:

I, = (14311521)/(14211531)

and

In = (LinTs32)/(LszzIsa1)

The lines are written in homogenous coordinates as a;z +
biy + ciz = 0, and ;) is the determinant of the matrix
{I;,1;,1x} where l; is {a;, b;,¢:}T (see [6]). Furthermore, be-
cause points and lines are dual in the projective plane, we
have immediately that that functions are also invariants for
a system of five coplanar points, which are not collinear.

LA useful example in vision is a set of parallel lines (which intersect
in a single point at infinity).




Table 1: The minimum number of functionally independent
scalar invariants for plane algebraic curves under a variety of
groups important in vision. By “orthographic projection”,
we mean that the plane on which the curve lies is subject
to rigid motions in three space, and then projected onto the
image plane using orthography. This case has only 5 degrees
of freedom because the image curve is completely unaffected
by changes in the distance to the object plane. The details
of the argument used to derive these numbers appear in [6].

Example 7 - Projectively invariant measurements:
If there is a distinguished conic curve in the plane (say, <),

then for two points x;, X, that do not lie on the conic, the
function:

(%17 ex,)?

(x1Tex1)(x2Texz)

®3)

is independent of the frame in which the points and the
conic are measured. In turn, this can be used to define a
projectively invariant metric (see [17]).

3 Recognising curved planar ob-
Jjects using algebraic invariants

3.1 Exact curves

Invariants provide a powerful approach to recognising ob-
jects because they provide descriptors of shape that are un-
affected by object pose. The invariant for four parallel lines,
discussed briefly in section 2, example 6, can be used to
recognise pallets in images, because pallets possess systems
of coplanar, parallel lines. Figures 1 and 2 demonstrate this
approach.

Algebraic invariants can also be used to recognise ob-
jects that possess planar curves. Given a pair of coplanar
conics, their joint projective invariants (section 2, example
5) are a representation that is invariant to Euclidean mo-
tion and perspective, i.e., the joint invariants calculated for
image curves will have the same values as those calculated
from object curves, whatever the object pose and the cam-
era parameters. Since a conic can be represented both by
A and the kA, to evaluate and interpret these invariants we
need to make some assumption to set the relative scale of
the conic matrices. As a result of the projectively invari-
ant fitting techniques we demonstrate below, all the conics

curve plane ortl'llogr.aphic Aﬂi.ue projegtive plane orthographic | Affine projective
(no. of Euclidean | projection | projection | mappings Euclidean | projection projection | mappings
d.of) group (5dof) (6 dof) | (8d.of) group (5 d.of) (6 dof) |(8dod)
(3dof) (3 d.of)

conic (5) 2 0 0 0
cubic () 16 1 3 1 2 4 5 7

uartic (14) | 11 9 8 6
g coplan(u) Table 2: The number of derivatives required for a scalar
conics (10) | 7 5 4 2 differential invariant under a variety of groups important in
five vision. This assumes invariance both to “geometric” actions
lines (10) 7 5 4 2 and reparametrisation. The details of the argument used to
a conic d H t l 3
o erive these results appear in [6].
lines (9) 6 4 3 1

we use will be normalised by the frame-invariant criterion
|A| = 1. In practice, these descriptors are stable and have
gufficient dynamic range to be useful (see table 3, and fig-
ure 3). This invariant description enables building a model
based vision system that recognises such objects quickly and
efficiently, regardless of their pose with respect to the cam-
era. A simple model based vision system that uses these
invariants to recognise labels consisting of a pair of coplanar
conics is demonstrated in figure 4.

3.2 Representing general curves by con-
ics
For both of the above systems, the object data lies (up to
noise) on an algebraic curve of the right type.
If it is possible represent an arbitrary curve by a conic,
the invariants resulting from this representation can be ex-

ploited. To achieve this, the representation must have this
crucial frame independence property:

Given an observation of a data set in a trans-
formed frame, the representation computed for
this set is exactly the original representation trans-
formed according to the change of frame.

This means that the process of choosing a representation
commutes with projection. In fact, it is possible to construct
arepresentation with this property, as the following theorem,
proved in [4], shows:

Theorem 1 Let I(p) be an invariant of the polynomial
form Q(x,p) under a group of linear transformations
G. Assume I is homogenous of degree n, with weight
w. Let < p > be the parameter vector determined
by minimizing ¥; Q*(x;,p) over a set of points, x;,
subject to the constraint, N(p) = I(p) = constant. If
the point set is transformed under G, i.e., x = T;X,
let 7, be the corresponding transformation matrix for
the coefficients p. The coefficients of the polynomial
fitted to the point set in the new frame are given by
< P >. Assume that n is odd or that w is even (or
both). Under these conditions, we have:

<p>=k,. T, <P>
where k, is a scalar depending on g € G.

The curve chosen by this approximation process is effectively
decoupled from the frame in which it is observed, and has
the desired frame independence property. This is true of the




Conics First joint | Second joint
invariant | invariant

Conics @ and b

from figure 3a | 3.419 3.546
Conics a and b

from figure 3b | 3.418 3.543
Conics @ and b

from figure 3¢ | 3.414 3.538
Conics @ and b

from figure 3d | 3.407 3.528
Conics b and ¢

from figure 3a | 3.022 3.021
Conics b and ¢

from figure 3b | 3.023 3.021

Table 3: The joint scalar invariants computed for the indi-
cated pairs of conics for the four different images of a com-
puter tape from different positions and angles, shown in fig-
ure 3. Note that the joint scalar invariants for the coplanar
comics a, b for the four images are effectively constant. Fur-
thermore, the values of the invariants for different pairs of
conics are different.

curve, {x | Q(x,p) = 0}, and not of the polynomial Q(x,p).
The theorem applies to algebraic curves of higher degree as
well as to conics.

It is not difficult to convince oneself that this theorem
must be true for the case where the normalization is a scalar
invariant. It is possible to show that a solution to this fitting
problem exists. We do not yet know if it is unique or not.
The fitting problem presents interesting numerical difficul-
ties: currently, it is solved using the techniques of [4], but
we are investigating using the polynomial continuation (see,
for example [12]).

3.3 Recognising planar objects

The fitting theorem means that the joint scalar invariants
of section 2 can be used to represent curved planar objects,
even if the model does not contain plane conics. Given an
object that has a pair of coplanar curves that will both be
visible at the same time, one may compute the joint scalar
invariants for the conics fitted to these curves. These invari-
ants form a projectively invariant description of this set of
plane curves. It is possible to find instances of a model in
an image by fitting conics to every available curve, comput-
ing the joint scalar invariants for each pair of conics, and
then extracting those pairs of curves that have the appropri-
ate values of joint scalar invariants. A model based vision
system built in this way is intrinsically fast, because the in-
variants can be used to index into a large model base directly
- there is no need to search the model base. Several exam-
ples appear in figure 5. It is sensitive to occlusion, however
([16] discusses noise issues that appear in fitting conics to
small numbers of data points).

This system is different from earlier model based vision
systems in a number of important ways:

o Curves are not segmented into polygonal approxima-
tions.

o It is unnecessary to search the model base. The invari-
ant descriptors index a model directly.

At this stage, no pose information is involved in recog-
nition. It is therefore possible to identify an object
without knowing where it is. Section 4 shows that,
given that the model has been identified, pose recov-
ery is simple.

e It is straightforward to acquire models for this system,
because these models are projectively invariant. As
a result, the invariants measured in any view of the
model have the same value, so that model invariants
can be calculated directly from conics fitted to curves
extracted from an image of the object. The model can
be imaged from any viewpoint, and no correction for
aspect ratio or camera parameters is required. The
model database then consists of the pair of invariants
and error thresholds for each object.

4 Pose Determination

Once an object has been positively identified, the extra con-
straints offered by its known identity can be exploited to
determine the transformation parameters between the ob-
ject plane and the image. Invariant fitting allows a pair of
coplanar curves to be modeled by a pair of coplanar conics.
By construction, the modelling conics undergo the same pro-
jective distortion that the original curves do. Consequently,
the problem of pose determination is equivalent to:

Given a known pair of conics on the world plane,
and their corresponding conics in the image, de-
termine the transformation between the two planes.

4.1 Back projection of a conic pair

A perspective projection between the image plane and the
object plane is determined by six parameters, which give the
pose of the object relative to the camera. Each conic has five
independent parameters, so the solution is overdetermined
(10 constraints on 6 unknowns). Currently, this system is
solved using the following approach:

The transformation variables are partially eliminated be-
tween the equations for the image conic coefficients to leave
four equations in the {p,q} pose variables which specify the
orientation of the object plane. These equations consist of
two conics, a quartic and an 8-ic (see [6] for details). The
conics intersect in at most four real points - giving a possi-
ble four-fold ambiguity. However, the remaining equations
must vanish at a solution for {p, ¢}. In general, this occurs
only for one of these roots. Pose can therefore be uniquely
recovered once a pair of conics has been matched. Once the
orientation of the plane is determined, the other pose pa-
rameters simply scale, rotate and translate the conic pair
in the plane, and are easily recovered. The details appear
in [19].




4.2 Implications for model acquisition

Determining pose requires that the coefficients of the model
conic in the object plane be known. If the object curves are
known conics (this occurs in the case of the labels), then
there is no difficulty. One needs to choose a coordinate sys-
tem on the object plane within which to express these conics,
and a sensible choice is the natural frame of one of the con-
ics, e.g. for an ellipse the centre as origin and coordinate
axes aligned with the principal axes.

However, if the object curves are not conics it is necessary
to fit conics to them, using the invariant fitting method [4].
If the object curves are known in the world plane coordinate
system then the fitting process produces the model directly.
If the curves are not known in the world frame then they can
be obtained by fitting curves in an image (using the invari-
ant fitting method) and projecting these fitted curves back
to the world plane. Backprojection requires that the trans-
formation between the object plane and the image plane be
known. This can easily be recovered by imaging the object
together with a known calibration pair of conics (or a single
circle) that is coplanar with the object curves. The calibra-
tion conics then determine the transformation between the
image plane and the world plane.
4.3 Pose results

As exact pose between image and object plane is difficult to
measure, we include an example where the relative motion
between a views is calculated for a real object. The object
curves are not conics. The object is rotated in its own plane
by so motion between views is accurately known. An exam-
ple is shown in figure 6. The results are given in table 3.
There is good agreement between the actual and computed
rotation, and the measured coordinates of the object plane
remain reasonably stable.

5 Discussion

‘We have demonstrated a simple, efficient model based vision
system that uses the principle of invariance to recognise ob-
jects, without regard to pose. We have shown that, once an
object has been identified, its pose can easily be recovered.
Extensive generalisation of this work is possible:

o The invariant fitting theorem works for algebraic curves
of any degree. Higher degree curves have richer in-
variant theories in general, but the complexity of the
numerical problem in fitting the curves is massively in-
creased. It may be possible to solve these problems to
create richer invariant descriptors for plane curves.

The invariant fitting theorem applies only to point sets
that are within projection. To obtain an invariant
representation for curves requires integrating algebraic
distance with respect to a projectively invariant pa-
rameter. However, simply summing algebraic distance
at all the points leads to useful invariants in practice.

o The projectively invariant function associated with a
single conic (equation 2.1) can be extended to a met-
ric. It should be possible to use this function to avoid

view | slant o/° [ tilt 7/° | r/mm | 0/°
A 44.12 97.27 | 339.98 | 0.00
B 48.00 93.21 | 316.62 | 92.36

Table 4: Pose results for the two views of the mouse shown
in figure 6. The mouse was rotated by ~ 90° between the
views. The plane is the same in both cases.

having to backproject models to verify the hypothesis
that an instance has been found, by checking that pairs
taken from a range of nearby features have the right
function values. This has the advantage that the pre-
cise camera calibration needed to compute pose and
backproject in conventional hypothesis verification, is
unnecessary.

o The representation used is tightly concentrated - 2
numbers represent any planar shape. As a result, we
expect that distinct shapes will have the same repre-
sentation. The projectively invariant functions (equa-
tion 2.1) associated with the representing conics can
be used to distinguish between two models that have
the same representation in terms of joint scalar invari-
ants, again by checking the function values for pairs
taken from a range of nearby features.

o The system as defined is sensitive to occlusion. It may
be possible to overcome this difficulty by using the
projective differential invariants described in section
2, example 4, or by exploiting the projectively invari-
ant function associated with one of the conics (equa-
tion 2.1).

o The differences between plane projectivities and rigid
motion with perspective projection (perspectivities) are
profound and subtle. Planar projectivities have eight
degrees of freedom, and form a group. Perspectivities
have only six degrees of freedom, but do not form a
group. However, the decreased generality of the trans-
formations involved in perspectivities means that fur-
ther tests for a model instance should be available. In
section 4 we saw that pose was overdetermined - if, for
example, there was no solution for {p,q} that solved
all four equations, this would be strong evidence that
the wrong model has been matched. We believe that
a better understanding of perspectivities is important
to progress in vision.

o Recognising three dimensional curved objects from their
outlines is an important problem. Ponce and Krieg-
man [15] generate outlines using elimination theory,
and search over pose parameters for the best match
between model and object outlines. It is possible to
describe techniques based in invariant theory for direct
recognition of curved objects, but these techniques re-
quire either eliminating an impractical number of vari-
ables from a system of polynomials, or solving huge
dense polynomial systems [6]. It is uncertain whether
these techniques can be refined to be practical.
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List of Figures

1. The model used for a pallet consists of the four parallel
lines shown in the figure above. These lines yield a
single invariant, equivalent to the cross ratio.

2. Two pallets found in a real image, by finding sets of
four near parallel lines and marking those sets that are
close to the correct value of the invariant.

3. Four images of a computer tape, with fitted conics in
overlay. In these images, the conics have been drawn
three pixels thick to make them visible. These conics
were used to obtain the joint scalar invariants shown
in tables 1 and 2.

4. Four views of projectively invariant labels found in
cluttered scenes. The label numbers are correct in
each case. These labels are conceptually similar to
Nielsen’s [13] labels, but use different invariants). The
labels come from a model base of 15 labels.

5. Six examples of the model based vision system work-
ing on real objects. (a) shows a gasket viewed approx-
imately frontally. Models of the gaskets were made
using images like this. (b) shows the gasket shown in
(a), seen in a different view. The gasket was recog-
nised and labelled correctly despite the large change
in viewing angle. (c) shows a cluttered scene contain-
ing four gaskets, and (d) shows the gaskets correctly




recognised and labelled. (e) shows another cluttered
scene, also containing four gaskets, and (f) shows the
gaskets labelled in that scene. Note that the microm-
eter recognised as gasket 3 can easily be dealt with by
verifying the model using backprojection.

Images of a mouse with representing conics superim-
posed. The motion between views is a 90° rotation and
small translation of the mouse with the camera static.
The plane of the mouse buttons is approximately the
same in each image. Results of the pose recovery pro-
gram are shown in table 4.
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