
Quick Transitions Using Multi-way Blends

Leslie Ikemoto∗

University of California Berkeley

Okan Arikan†

University of Texas Austin

David Forsyth‡

UC Berkeley / UI Urbana-Champaign

Figure 1: This figure is a time-lapsed shot of a transition synthesized in

real-time using our method. The character transitions in one second from

walking to skipping in a seamless, natural way. We invite the reader to view

this animation in the accompanying movie.

Many applications require character animation that is both
natural-looking and controllable. These two requirements are of-
ten in opposition. For example, motion graphs (e.g., [Kovar et al.
2002]) are a popular technique that can create realistic-looking tran-
sitions between frames of motion. However, the technique is not
very controllable because: (1) it may take a long time (proportional
to the square of the number of frames for a dense graph using Djik-
stra’s algorithm) to find the shortest transition between the charac-
ter’s current frame of motion and a desired frame; and (2) the short-
est transition may be too long. This sketch describes an alternative
transition mechanism that can generate a transition of user-specified
length between any two frames of motion.

A typical motion dataset may contain many versions of the same
motion, so we first find a set of motion clips that represents the
dataset well. We split the motions in the dataset into overlapping
clips (with length equal to the user-specified transition length), then
cluster them. We use the cluster medoids as the representative set.

Now we wish to find a natural-looking transition from every
member of the representative set to every other member. We pro-
pose transitions to a classifier which decides whether the motion is
realistic-looking or not. A transition involves blending from one
motion to another (two-way blends), or blending from one mo-
tion to another using intermediate motions (multi-way blends). We
search over all combinations of two, three, and four way blends
between the representatives.

We classify motions using a weighted combination of perceptu-
ally important motion features. The features we use measure the
footskate and zero moment point error. Our classifier outperforms
other state-of-the-art classifiers (e.g., [Ren et al. 2005]) on our mo-
tion databases.

We store the blending schedule (i.e., the frames of the source mo-
tions used at each tick) for the blend the classifier liked best. These
blending schedules form a transition matrix which we can use to
transition between any two frames in the time the user specified.

At run-time, the application can demand a transition at any time
from the character’s current frame to a desired frame. We find the
representative that is closest to the clip of motion starting at the
current frame (with user-specified duration), and the representative
closest to the clip ending at the desired frame. We then look up the
blending schedule for these representatives and employ it, using the
current and desired clips in place of the representatives.

∗e-mail: lesliei@cs.berkeley.edu
†e-mail:okan@cs.utexas.edu
‡e-mail:daf@cs.uiuc.edu

The scatter plot in figure 2 compares the performance of a motion
graph to our mechanism (with transition length set to one second).
This figure demonstrates that our mechanism and motion graphs
can nicely complement each other. Our plot is separated into quad-
rants. The bottom left quadrant contains the 558 frame pairs for
which the motion graph can synthesize a motion less than one sec-
ond long. For these demands, it is best to use a motion graph, but
our mechanism still produces good results. The upper left quad-
rant contains the 57 pairs for which our synthesizer cannot generate
a natural looking transition, but a motion graph can easily gener-
ate one. For these demands also, it is best to use a motion graph.
The bottom right quadrant contains the 325 frame pairs for which
the transition synthesized by the motion graph is long, but we can
produce a natural one second long transition. These demands are
best served with our mechanism. The upper right hand quadrant
contains the 60 frame pairs for which the motion graph and our
synthesizer cannot produce a good transition.

We believe that the two mechanisms can nicely complement each
other. The classifier’s score for each transition is a proxy for the
quality of the transition. An application can use this score to decide
whether to use our mechanism or to use a motion graph to generate
a transition. As the accompanying video shows, we have created
a transition mechanism for character animation that is controllable,
yet still produces natural-looking motion for many demands.

Figure 2: This scatter plot compares the performance of a motion graph

to our synthesizer. Each point represents a random source frame/target pair

(there are 1000 total). The x-axis represents the length of a transition be-

tween the frames synthesized using the motion graph, and y represents the

cost of a one-second long transition between the frames using our synthe-

sizer. A score below the horizontal line generally corresponds to a natural

looking motion. Note that some of the motion graph generated transitions

are quite long (some even reaching ten seconds).

References

KOVAR, L., GLEICHER, M., AND PIGHIN, F. 2002. Motion graphs. In

SIGGRAPH 2002.

REN, L., PATRICK, A., EFROS, A. A., HODGINS, J. K., AND REHG,

J. M. 2005. A data-driven approach to quantifying natural human mo-

tion. SIGGRAPH 2005.


