
International Journal of Computer Vision 43(1), 45–68, 2001
c© 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

Probabilistic Methods for Finding People

S. IOFFE AND D.A. FORSYTH
Computer Science Division, University of California at Berkeley, Berkeley, CA 94720

ioffe@cs.berkeley.edu

daf@cs.berkeley.edu

Received July 2, 2000; Revised March 12, 2001; Accepted March 12, 2001

Abstract. Finding people in pictures presents a particularly difficult object recognition problem. We show how to
find people by finding candidate body segments, and then constructing assemblies of segments that are consistent
with the constraints on the appearance of a person that result from kinematic properties. Since a reasonable model
of a person requires at least nine segments, it is not possible to inspect every group, due to the huge combinatorial
complexity.

We propose two approaches to this problem. In one, the search can be pruned by using projected versions of a
classifier that accepts groups corresponding to people. We describe an efficient projection algorithm for one popular
classifier, and demonstrate that our approach can be used to determine whether images of real scenes contain people.

The second approach employs a probabilistic framework, so that we can draw samples of assemblies, with
probabilities proportional to their likelihood, which allows to draw human-like assemblies more often than the non-
person ones. The main performance problem is in segmentation of images, but the overall results of both approaches
on real images of people are encouraging.
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1. Introduction

Finding people in images is a difficult task, due to the
high variability in the appearance of people. This vari-
ability may be due to the configuration of a person
(e.g., standing vs. sitting vs. jogging), the pose (e.g.
frontal vs. lateral view), clothing, and variations in
illumination. There are two usual strategies for object
recognition:

• Search over model parameters (kinematic variables,
camera parameters, etc.) using a comparison be-
tween a predicted view of the object and the im-
age. This problem is often stated as optimization of
an objective function, which measures the similarity
between the predicted and the actual views. This is
usually called the top-down approach.

• Assemble image features into increasingly large
groups, using the current group as a rough hypothesis

about the object identity to select the next grouping
activity. This is usually called the bottom-up
approach.

1.1. Why Proceed Bottom-Up?

Current activities in vision emphasize top-down recog-
nition and tracking. There are three standard ap-
proaches to finding people described in the literature.
Firstly, the problem can be attacked by template match-
ing (e.g. (Oren et al., 1997), where upright pedes-
trians with arms hanging at their side are detected
by a template matcher; (Niyogi and Adelson, 1995;
Liu and Picard, 1996; Cutler and Davis, 2000), where
walking is detected by the simple periodic structure
that it generates in a motion sequence; (Haritaoglu
et al., 2000; Wren et al., 1997), which rely on back-
ground subtraction—that is, a template that describes
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“non-people”). Matching templates to people (rather
than to the background) is inappropriate if people are
going to appear in multiple configurations, because the
number of templates required is too high.

This motivates the second approach, which is to find
people by finding faces (e.g. (Poggio and Sung, 1995;
Rowley et al., 1996a, 1996b; Rowley et al., 1998a,
1998b; Sung and Poggio, 1998)). The approach is most
successful when frontal faces are visible.

The third approach is to use the classical technique
of search over correspondence (this is an important
early formulation of object recognition; the techniques
we describe have roots in (Faugeras and Hebert, 1986;
Grimson and Lozano-Pérez, 1987; Thompson and
Mundy, 1987; Huttenlocher and Ullman, 1987)). In
this approach, we search over correspondence between
image configurations and object features. There are a
variety of examples in the literature (for a variety of
types of object; see, for example, (Huang et al., 1997;
Ullman, 1996)). Perona and collaborators find faces by
searching for correspondences between eyes, nose and
mouth and image data, using a search controlled by
probabilistic considerations (Leung et al., 1995; Burl
et al., 1995). Unclad people are found by (Forsyth et al.,
1996; Forsyth and Fleck, 1999), using a correspon-
dence search between image segments and body seg-
ments, tested against human kinematic constraints.

It is difficult to evaluate the correspondences
between image regions and model parts and reliably
choose the best ones. A crucial difficulty in both finding
and tracking people is that extended, straight, coherent
image regions—which could be body segments—can
be relatively common. This means in turn that any
objective function is going to have a local extremum
where a hypothesized body segment lies over that re-
gion. The result is a tendency for trackers to drift or
finding methods to become confused. The problem is
simplified for the trackers since the configuration in a
frame can be used to start the search for the next frame,
but local extrema still present a significant problem and
cause body parts to be lost due to occlusions, to other
objects nearby that look like body parts, or to espe-
cially rapid motions. In addition, most trackers need to
be started by hand, by specifying the configuration in
the initial frame.

It is natural to try and simplify matters with a contin-
uation method: take a series of simplified versions of
the evaluation function, search the simplest, and use the
result as a start point for a search on a less simple ver-
sion, ending at an extremum of the original evaluation

function. The annealed particle filter of (Deutscher
et al., 2000) uses this strategy, but apparently cannot
deal with much clutter because it creates too many dif-
ficult peaks. Furthermore, using this strategy to find
and track people requires a detailed search of a high di-
mensional domain (the number of people being tracked
times the number of parameters in the person model
plus camera parameters). This implies that a method is
needed that is able to explore large search spaces and
thus provide an efficient alternative to blank search.

Bottom-up methods offer the promise of signifi-
cantly reduced search, but have become unpopular
because it appears to be very difficult to realize this
promise. A typical bottom-up method would (1) detect
a variety of features and then (2) group these features
incrementally into assemblies, using a grouping pro-
cedure that takes into account the features in a group
before adding features. An example of this process—
which dates back at least to (Binford, 1971)—would in-
volve finding objects by: (1) finding edges; (2a) pairing
edge fragments that appear to lie locally on a general-
ized cylinder; (2b) collecting pairs that together appear
to lie on a generalized cylinder; (2c) collecting pairs
of straight homogeneous generalized cylinders with
roughly constant cross-section which lie nearby and
(2d) asserting that all such pairs could be arms. There
are many instances of this line of reasoning which does
not require the use of any particular primitive (finding
curved objects in range data (Agin, 1972; Nevatia and
Binford, 1977); finding people in images (Forsyth et al.,
1996); finding lamps and mugs in images (Dickinson
et al., 1992; Ulupinar and Nevatia, 1988; Zerroug and
Nevatia, 1999) amongst others). Note that the group-
ing process is maintaining an increasingly more pre-
cise hypothesis of the object’s identity, which is used
to direct grouping activities. The success of the method
depends on being able to supply a series of grouping
activities that: (1) can cope with bad features; (2) have
little ambiguity at each stage about what should be
done—because this results in search; and (3) can ro-
bustly recognize many different types of object.

Many researchers have modeled a person as a kine-
matic chain, and recognized people as collections of
generalized cylinders, subject to constraints given by
the kinematics of human joints. This approach has been
successful in tracking (e.g., (Gavrila and Davis, 1996;
O’Rourke and Badler, 1980)). Generally, the tracker
is initialized by marking the subject’s configuration in
the first frame, and the configuration is updated from
frame to frame. In (Hogg, 1983) and (Rohr, 1993), the
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frame-to-frame configuration update is accomplished
by a search of the parameter space to minimize a model-
to-image matching cost. Often, the update involves
non-linear optimization (e.g., using gradient descent)
to find the new configuration, where the old one is used
to start the search (Bregler and malik, 1998; Rehg and
Kanade, 1994).

The dichotomy between the top-down and bottom-
up approaches is not precise. For example, in the peo-
ple finding method of (Felzenszwalb and Huttenlocher,
2000), the global extremum of the objective function is
found by first computing a response to the body-part
filter at each orientation, position and scale (using con-
volution with a bank of filters), and then extracting the
optimal group of body parts using dynamic program-
ming. To be able to find the global extremum, however,
they restrict the class of object models: the appearance
model for the body parts is constrained to have a par-
ticular size and color, so that convolution could be used
for body-part detection; the kinematic model must have
the form of a tree so that the optimal configuration
can be found efficiently. Furthermore, their framework
lacks a discriminative component, and the system can-
not determine whether a given image contains a person,
but can only guess the person’s configuration if one is
known to be present.

In our work, we avoid such constraints and still are
able to efficiently find people by pruning the search—
that is, ignoring entire regions of the search space which
have been determined not to contain the solution.

1.2. Outline

We assume that an image of a human can be decom-
posed into a set of distinctive segments, so that there
is a segment of each type in each image (so that in
each image a correspondence from model segments to
image segments can be established). While this repre-
sentation is restrictive, since body parts may often be
absent due to either occlusion or their unusual appear-
ance, we show that it can be used to detect and count
people.

A simple segment detector is used to find image re-
gions that could correspond to body parts. However, the
appearance of limbs is not nearly as distinctive as that
of the whole body (especially in the absence of cues
such as the skin color), and thus many spurious body
parts are found along with the actual ones (Fig. 1(a)).
In addition, the correspondence between image regions
and the body parts is hard to establish since many body

Figure 1. (a) All segments extracted for an image. (b) A labeled
segment configuration corresponding to a person, where T = torso,
LUA = left upper arm, etc. The head is not marked because we are
not looking for it with our method.

parts are indistinguishable from one another (e.g., the
two upper arms). However, the human body is subject
to rather strong kinematic constraints. For example, if
two segments have been matched to a left upper arm
and a left lower arm, then the lengths of these seg-
ments and their relative positions are constrained so as
to correspond to a possible elbow configuration.

The goal of this paper is to demonstrate that we
can efficiently group the candidate segments found in
an image (image segments) into assemblies—human-
looking groups of image segments, with each element
marked with a label specifying to which body part that
segment corresponds (see Fig. 1(b)). Alternatively, we
can think of a matching of the model to the image,
whereby each model segment is coupled with an im-
age segment.

The main issue with grouping is that the brute force
approach of testing each combination of segments
doesn’t work because of the huge number of such as-
semblies (e.g., for 100 segments in the image, we have
about 1018 assemblies with 9 segments (torso plus two
segments per limb)). However, we can make the search
much more manageable if we use the fact that, for most
segment groups, it is impossible to add other segments
found in the image in such a way that the resulting as-
sembly looks like a person. For example, if it has been
detected that two segments cannot represent the upper
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and lower left arm, as in Fig. 6(a), then no assembly
containing them will correspond to a person, and would
not need to be considered.

We will show:

• How to represent body parts (Section 2) and
learn models of relationships between them
(Sections 3.3.2 and 4.3.2).

• How to prune the search. In Sections 3.3.3 and 4.3.4,
we will demonstrate how we can, for a partial model-
to-image matching (an assembly with some seg-
ments missing), determine that, no matter what seg-
ments are added to an assembly, it could not look
like a person. In that case the current branch of the
interpretation tree could be ignored.

• How to structure the search to make it efficient.
In Sections 3.3.4 and 4.3.3, we give strategies for in-
crementally adding image segments to an assembly
so that the pruning mechanism could be effectively
exploited.

• That these methods can find and count people in im-
ages (Section 5).

1.3. Representation

As in much of the previous work mentioned above, we
model the person as a collection of cylinders, and an im-
age of a person as a collection of bar-shaped segments.
We ignore a person’s head. Bars can be detected us-
ing image edges, segmentation techniques such as nor-
malized cuts (Shi and Malik, 1997), or motion cues
if the image is a part of a video sequence. We picked
the simplest type of segment detector, which looks for
pairs of parallel edges. Such a detector is described in
Section 2 and will, much of the time, detect all the body
parts of a person, but will also produce many spurious
segments for non-person image regions. This is accept-
able, since kinematic constraints will help discriminate
human segments from spurious ones.

By adopting the simplest segment-detection mech-
anism, we are able to concentrate on the search pro-
cess. Even though our segment detector can deal with
only one type of body part (bars, and not, for example,
the head) and produces many spurious segments, kine-
matic constraints are a powerful cue as to which seg-
ments are the actual body parts, and we show that our
search and pruning strategies use these constraints ef-
fectively. However, many of the failures of our method
are due to missing or inaccurately detected segments,
which suggests that our inference method is effective,
but the overall system would benefit from an improved

segment-finder. We discuss such improvements in
Section 6.

The disadvantage of using our segment detector is
that the range of images we can use is limited: our sub-
jects may not wear baggy clothes. In this paper, we
restrict ourselves to images of models wearing swim-
suits or no clothes. However, the grouping process
is independent of how the body segments are repre-
sented. Therefore, the restrictions imposed by the way
we model the segments can be overcome. Section 6 dis-
cusses detecting more than one type of segments (e.g.,
limbs and the face), and handling clothes.

In this paper, we show two ways of efficiently as-
sembling potential body parts into human assemblies.
These two methods use different models of a person,
which leads to different search and pruning strategies.

Classification: In Section 3 we show how to effi-
ciently learn a top-level classifier that discriminates
human assemblies of segments from non-human
ones, and how to efficiently extract all assemblies in
the image that look like people by adding segments to
assemblies incrementally. The efficiency is achieved
by pruning small assemblies, using projected classi-
fiers. We describe how to derive projected classifiers
from the top-level one. The pruning of subtrees of
the interpretation tree is model-driven, which means
that we backtrack the search if an assembly has been
found such that, no matter what segments are added
to it, the result will not look like a person.

Inference: In Section 4, we demonstrate a proba-
bilistic method that uses a soft classifier, which asso-
ciates a measure of likelihood of a person with each
assembly, rather than a binary “person/non-person”
decision. We describe a method for detecting people
by sampling from the likelihood, and this method
is made efficient by sampling sub-assemblies of in-
creasing size, using importance sampling. The prun-
ing is accomplished by first computing upper bounds
on the likelihoods of sub-assemblies (using dynamic
programming), and using these bounds to define
the intermediate distributions, from which the sub-
assemblies are sampled. Such pruning is data-driven:
an assembly is no longer considered if the computed
bounds indicate that no image segments can be added
to make a human assembly.

2. Finding Segments

It is usual to model the appearance of body parts in the
image as bars (i.e., projections of straight cylinders),
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Figure 2. A symmetry: the two edgels (dashed lines) are symmet-
rical about the symmetry axis (dotted). We represent symmetries by
their sections (solid line), which are line segments that connect the
midpoints of the two edgels.

e.g. (Bregler and Malik, 1998; Gavrila and Davis, 1996;
Hogg, 1983; O’Rourke Badler, 1980; Rohr, 1993). This
seems to be a reasonable and natural representation,
which, as we show in this paper, delivers promising
results. We use pictures of people wearing swimsuits or
no clothes, which allows us to detect bars by grouping
parallel edges. We discuss the problem of body-part
detection for clothed people in Section 6.

To find rectangular approximations to candidate
body segments, we extract edges and identify sets of
edge elements that form, approximately, pairs of paral-
lel line segments (which become the length-wise sides
of the rectangular segments). This grouping process is
hierarchical, whereby we first identify “symmetries”—
pairs of symmetrical edgels—and then group them
(Brady and Asada, 1984; Brooks, 1981).

Two edges constitute a symmetry if, within some
margin of error, they are reflections of each other about
some symmetry axis. The verification is done by con-
sidering the section—the line connecting the midpoints
of the two edgels—and finding the axis perpendicular
to the section and passing through its midpoint. We
then declare the edgel pair a symmetry if the angles the
edgels form with the axis are sufficiently similar and
small (Fig. 2).

Each edgel can be a part of zero, one or more sym-
metries. We will now group symmetries into segments.
A set of symmetries constitutes a segment if the lengths
of their sections are roughly the same (this corresponds
to the segment’s width), the midpoints of their sections
are roughly on the same line (the segment’s axis), to
which the sections are perpendicular. There should also
not be large gaps between symmetries of the same seg-
ment (Fig. 3).

We group symmetries by fixing the number of seg-
ments and searching for the best segment parameters
(their axes and widths) and assignments of symme-
tries to segments (each symmetry being assigned to
one of the segments or to noise). This can be formu-
lated as an optimization problem (segment parameters)

Figure 3. The segment finder groups symmetries into segments.
The EM algorithm finds the optimal positions of the segments’ axes
and the widths, and also estimates the posterior probabilities that a
given symmetry is assigned to a particular segment or to noise.

in the presence of missing data (labels representing
segment assignment for each symmetry). The natural
method for solving such a problem is the Expectation-
Maximization algorithm (Dempster et al., 1977). This
algorithm produces the optimal segment parameters
and posterior probabilities for the assignment labels.

Each segment is represented with a symmetry axis
and a width. Each symmetry has a label showing which
segment (or noise) it belongs to. A symmetry fits a seg-
ment best when the midpoint of the symmetry lies on
the segment’s symmetry axis, the endpoints lie half a
segment width away from the axis, and the symme-
try is perpendicular to the axis. This yields the condi-
tional likelihood for a symmetry given a segment as
a four-dimensional Gaussian (two numbers for each
endpoint), and an EM algorithm can now fit a fixed
number of segments to the symmetries. After that, we
determine where each segment begins and ends by find-
ing the range of symmetries for which this segment has
the largest posterior. If there is a large gap between these
symmetries (that is, symmetries from different image
regions are attributed to the same segment), then the
segment is broken into two or more pieces. The Fig. 4
shows example images produced by the segment finder.

Note that the segments we have found do not have
an orientation (for instance, if we hypothesize that one
of them is the torso, we don’t know which end corre-
sponds to the shoulders and which to the hips). Another
problem is that if a limb is straight in an image, then
only a single segment is obtained rather than the upper
and lower halves. We deal with this by replacing each
segment with its two oriented versions, and also split-
ting each segment in half length-wise and adding both
halves to the segment set (Fig. 5). We also add a con-
straint, when grouping segments, that if one of the seg-
ment halves was labeled as a lower limb, then the other
half of the same segment has to be the corresponding
upper limb.
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Figure 4. An example run of the segment finder. (top) A set of
symmetries obtained for an image. Each symmetry is represented by
its section. We show every 4th symmetry to avoid clutter. (bottom)
The EM algorithm fits a fixed number of rectangular segments to the
symmetries. These are the candidate body segments which become
the input to our assembly-builder (grouper).

Figure 5. Each segment found using EM is replaced with its two
oriented versions, each of which is then split in half. This procedure
allows us to deal with the situation when a single segment is found
for a straight limb. Also, it allows us to specify, for example, which
end of a lower-arm segment is the wrist and which is the elbow. The
arrows within the segments indicate their orientation.

It is not necessary to get the segments exactly right,
as the kinematic information used in grouping them is
powerful enough to handle inaccuracies.

3. Finding People Using Classification

After the segment detector has identified the image re-
gions that could, possibly, correspond to human body
parts, we need to assemble these image segments into
groups that look like people. The brute-force approach
of classifying every segment group doesn’t work be-
cause of the huge number of such assemblies. Instead,
we build such assemblies incrementally, by sequen-
tially considering groups of increasing size, and grow-
ing a group by trying to add another image segment to it.

The advantage of incremental search is that it could
be made quite efficient if we can detect early that a
group of segments could not be a part of a person, no
matter what other segments are added. For example, if
two segments can under no circumstances represent the
upper and lower left arm, as in Fig. 6(a), then no as-
sembly containing them will correspond to a person.

Figure 6. (a) Two segments that cannot correspond to the left up-
per and lower arm. Any configuration where they do can be re-
jected using a projected classifier regardless of the other segments
that might appear in the configuration. (b) Projecting a classifier
C{(l1, s1), (l2, s2}. We are considering two features, one of them,
x(s1), depending only on the segment labeled as l1, and the other,
y(s1, s2), depending on both segments. (top) The shaded area is the
volume classified as positive, for the feature set {x(s1), y(s1, s2)}.
(bottom) Finding the projection Cl1 amounts to projecting off the
features that cannot be computed from s1 only, i.e., y(s1, s2).
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This means that we can prune all model-to-image
correspondences containing this one. This observation
dates back to (Grimson and Lozano-Pérez, 1987), who
use it to prune an interpretation tree of correspon-
dences. We show how to derive this pruning mechanism
in a principled way from a single, learned classifier.

We learn the top-level classifier as the classifier that
takes an assembly of 9 segments labeled as the 9 differ-
ent body parts, and determines whether the assembly
corresponds to a person. From that classifier we con-
struct a family of tests that determine, for a group of 8
or fewer segment-label pairs, whether it may be possi-
ble for this group to be augmented to a full 9-segment
assembly that is classified as a person by the top-level
classifier. If it has been determined that no such aug-
mentation is possible for an assembly, then it, and all
the assemblies containing it, can be rejected. Each test
used for the early rejection is obtained from the top-
level classifier by projection. By projecting a classifier,
we mean obtaining a new classifier that uses a subset
of features used by the original one, so that the volume
classified as “positive” by the projected classifier is the
projection of the positive volume of the original classi-
fier onto a subspace of the feature space. An example
of a projected classifier is given in Fig. 6(b).

Projected classifiers allow us to search for human as-
semblies efficiently, by incrementally considering as-
semblies of increasing size. At each stage, an assembly
is discarded if it is classified as “non-human” by the cor-
responding project classifier—that is, if no segments
can be added to the assembly to obtain a 9-segment
human assembly. We grow the assemblies that are not
discarded by trying to pair them with each remaining
image segment. The search becomes efficient if many
assemblies are discarded at an early stage, so that, for
a subset of labels, only a small fraction of the set of all
the assemblies corresponding to that subset need to be
considered.

By introducing projected classifiers we do not make
our system more prone to overfitting, since each pro-
jected classifier is not learned independently, but rather
is deterministically derived from the top-level classi-
fier. It follows from the definition of the projected clas-
sifier that using them to discard smaller segment groups
does not affect the final result: the set of human assem-
blies found in the image does not change. The gain from
the use of projected classifiers is only in efficiency:
they allow us to find every human assembly in the
image without considering all the possible 9-segment
groups.

In this section, we describe how to learn a classifier
that identifies human assemblies, how to organize the
search so that assemblies are built incrementally, and
how to project the classifier so that the projected clas-
sifiers could be used to determine that a segment group
could not be a part of a human assembly and thus prune
the search.

3.1. Building Segment Configurations

Suppose that the set of candidate segments has been
found for an image. We will define an assembly as a set

A = {(l1, s1), (l2, s2), . . . , (lk, sk)}

of pairs where each segment si is labeled with the label
li . The segments {si } are a subset of candidate image
segments, and each label li specifies what body part is
matched to the the segment si and can thus take on one
of the 9 distinct values (li ∈ {T,LUA,RLL, . . .}), cor-
responding to the torso, left upper arm, right lower leg,
etc. All the segments within an assembly are distinct,
as are the labels.

An assembly is complete if it contains exactly m
distinct segments, one for each label. A complete as-
sembly thus represents a full 9-segment configuration
(Fig. 1(a) and (b)); we could test whether or not it looks
like a person.

Assume we have a classifier C that for any com-
plete assembly A outputs C(A) > 0 if A corresponds
to a person-like configuration, and C(A) < 0 otherwise.
Finding all the possible body configurations in an im-
age is equivalent to finding all the complete assemblies
A for which C(A) > 0. This cannot be done with brute-
force search through the entire set because of its size.
However, the search can be pruned. It is often possible
to determine, for an (incomplete) assembly A, that no
bigger assembly A′ containing A is classified as a per-
son. For instance, if two segments cannot represent the
upper and lower left arm, as in Fig. 6(a), then we do
not consider any complete assemblies where they are
labeled as such. We prune the search by introducing
projected classifiers.

3.2. Projected Classifiers

Projected classifiers make the search for body con-
figurations efficient by pruning branches of the inter-
pretation tree (a search tree whose nodes correspond
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to matching a particular model segment with an
image segment) using the properties of smaller sub-
assemblies. Given a classifier C which is a function
of a set of features whose values depend on segments
with labels 1 . . . 9, the projected classifier Cl1...lk is a
function of all those features that depend only on the
segments with labels l1 . . . lk and is used to separate
sub-assemblies that could possibly be extended to a hu-
man configuration from those that could not. In partic-
ular, if a complete assembly A can be formed by adding
some label-segment pairs to A′ so that C(A) > 0, then
Cl1...lk (A′) > 0 (see Fig. 6(b)). The converse need not
be true: the feature values required to bring a projected
point inside the positive volume of C may not be real-
ized with any assembly of the current set of segments
1, . . . ,N .

Notice that, even though many projected classifiers
are used (each corresponding to a different subset of
labels), this does not increase the possibility of over-
fitting. The reason is that the projected classifiers do
not affect the final classification, but merely make the
inference more efficient.

For a projected classifier Cl1...lk to be useful, the fol-
lowing two conditions must hold:

• The decision Cl1...lk (A) must be easy to compute
• Cl1...lk must be effective in rejecting assemblies at an

early stage.

These are strong requirements which are not satisfied
by most good classifiers. For example, separating hy-
perplanes (Vapnik, 1996) often provide good discrim-
ination, but the projected classifier is generally useless
as it classifies everything as positive. The exception is
a hyperplane that is parallel to the direction of pro-
jection, in which case it projects to another separating
hyperplane. We take advantage of this fact, by using
a committee of axis-aligned hyperplanes, described in
Section 3.3.2, as our classifier.

3.3. Implementation

Using projected classifiers, we are able to efficiently
find all the human-like (i.e. those classified as positive
by the top-level classifier) assemblies of image seg-
ments. Because the projected classifier rejects a sub-
assembly only if it can be determined that no segments
can be added to it to make up a human-like assembly,
using projected classifiers to prune the interpretation
tree never changes the outcome of the search; it does,

however, make the search much more efficient, since
most medium-size (e.g., >3 segments) sub-assemblies
can be rejected early.

In Section 3.3.2 we describe a classifier that both
yields good separation of people and non-people and
projects well, using the methods of Section 3.3.3. Then,
in Section 3.3.4, we show how to use such a clas-
sifier (or any other one that satisfies the above two
properties).

3.3.1. Features. To classify assemblies, we need to
represent each assembly as a point in a feature space,
each feature corresponding to a measurement obtained
from the assembly. Because the large degree of in-
dependence among the kinematics of different human
joints, we make each feature depend on 1 segment (i.e.
aspect ratios), 2 (angles, length ratios and relative posi-
tions) or 3 segments (e.g. the ratio of a distance between
the upper legs to the length of the torso). Because we
want to be able to detect the person regardless of ori-
entation, position within the image or size, the features
are invariant to translation, uniform scaling or rotation
of the segment set.

3.3.2. Classifiers that Project. In our problem, each
segment from the set {1 . . . N } is a bar in some po-
sition and orientation. Given a complete assembly
A = {(l1, s1), . . . , (l9, s9)}, we want to have C(A) > 0
iff the segment arrangement produced by A looks like
a person.

We expect the features that correspond to human
configurations to lie within small fractions of their pos-
sible value ranges. This suggests using an axis-aligned
bounding box, with bounds learned from a collection
of positive assemblies, for a good first separation, and
then bootstrapping it with a weighted committee of
weak classifiers each of which splits the feature space
on a single feature value. The committee is learned by
boosting, which is an algorithm to convert a weak clas-
sifier to a strong one by sequentially training a number
of weak classifiers and determining the contributions
each of them makes to the weighted vote. Our classi-
fier projects particularly well, using a simple algorithm
described in Section 3.3.3.

We start by computing the bounding box, in the fea-
ture space, of the set of human assemblies, and compute
projected classifiers (which are also bounding boxes,
in feature subspaces). Then, a collection of images
without people is searched for human configurations
using the method of Section 3.3.4, and the resulting
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Figure 7. (top) A combination of a bounding box (the thick rectan-
gle) and a boosted classifier, for two features f1 and f2. Each plane
in the boosted classifier is a thick line with the positive half-space
indicated by an arrow; the associated weight β is shown next to the
arrow. The shaded area is the positive volume of the classifier, which
are the points F where

∑
k wk( fk) > 1/2, k = 1, 2. The weights

w1(·) and w2(·) are shown (in italics) along the f1- and f2-axes,
respectively, and the total weight w1( f1) + w2( f2) is shown for
each region of the bounding box. (bottom). The projected classifier,
given by w1( f1) > 1/2 − δ = 0.1 where δ = max f2 w2( f2) =
max{0.25, 0.4, 0.15} = 0.4.

assemblies are now used as negative data. A boosting
algorithm (AdaBoost (Freund and Schapire, 1996)) is
now applied to these negative assemblies and the origi-
nal positive ones to learn a weighted committee of weak
classifiers. The final classifier accepts an assembly if
both the bounding box and the learned committee do so
too. An example of a classifier is shown in Fig. 7(top).

Let F = ( f1 . . . fK ) be the values of all features
computed for some complete assembly. The boosted
classifier is learned as a weighted committee of weak
classifiers, each of which splits the feature space on a
single feature. The t th classifier (t = 1 . . . T ) compares
the value of the kt th feature with some threshold pt and
classifies an assembly as a person if

dt
(

fkt − pt
)

> 0,

where dt ∈ {1, −1} determines which half-space is
classified as positive.

The output of AdaBoost is a set of such weak classi-
fiers (at each iteration of the algorithm, the feature fkt

to split on, the threshold pt and the orientation dt of the
separating plane are chosen so as to minimize the clas-
sification error, which is computed as the sum of the
weights of the misclassified data points, and the weights
are updated at each iteration, assigning more weight to
the points which have previously been misclassified).
Additionally, AdaBoost will associate a weight βt with
each weak classifier; the resulting weighted committee
will classify an assembly as positive iff

∑

dt ( fkt −pt ) > 0

βt >
∑

dt ( fkt −pt ) < 0

βt ,

that is, if the total weight of the weak classifiers that
classify the configuration as a person is greater than
the weight of those classifying it as a non-person. By
normalizing the weights so that

∑
t βt = 1, we can

rewrite the decision rule as
∑

dt ( fkt −pt ) > 0

βt > 1/2.

The set {kt } may have repeating indices (that is, a
feature may be split by several planes, which may have
different p, d and β values), and does not need to span
the entire set 1 . . . K. By grouping together the weights
corresponding to planes splitting on the same feature,
we rewrite the classifier as

K∑

k=1

wk( fk) > 1/2,

where

wk( fk) =
∑

kt =k, dt ( fk−pt ) > 0

βt

is the weight associated with the particular value of fea-
ture fk . This weight is a piece-wise constant function of
fk ; its points of discontinuity are given by {pt | kt = k}.

3.3.3. Projecting a Boosted Classifier. Given a
classifier constructed as above, we need to construct
classifiers that depend on some identified subset of the
features. The projected classifier Cl1...lk is a function
of all those features that depend only on the seg-
ments with labels l1 . . . lk and is used to separate sub-
assemblies that could possibly be extended to a human
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configuration from those that could not. In particular,
if a complete assembly A can be formed by adding
some label-segment pairs to A′ so that C(A) > 0,
then Cl1...lk (A′) > 0. The geometry of our classifiers—
whose positive regions consist of unions of axis-aligned
bounding boxes—makes projection easy.

To obtain a projected classifier, one or more
features—those that involve the segments left out by
projection—must be projected away. For example,
the projected classifier for assemblies consisting of
a torso segment alone is obtained by keeping only
the features that can be computed from the torso
segment.

For convenience of notation, we show how to project
away the feature fK ; to project away several features,
this process can be applied in a sequence to all of them.
The idea that makes projection easy is that, since each
weak classifier splits on a feature, projection will re-
move those of them that split on fK , and will change the
weights of the remaining classifiers in the committee.

The projection of the classifier should classify a point
F in the (K − 1)-dimensional feature subspace as pos-
itive iff

max
F ′

K∑

k=1

wk( f ′
k) > 1/2

where F ′ is a point in the K -dimensional feature space
that projects to F but can have any value for fK . We
can rewrite this expression as

K−1∑

k=1

wk( fk) + max
f ′

K

wK ( f ′
K ) > 1/2.

The value of

δ = max
f ′

K

wK ( f ′
K )

is readily available and independent of fK . We can see
that, with the feature projected away, we obtain

K−1∑

k=1

wk( fk) > 1/2 − δ,

which has the same form as the original classifier, ex-
cept that the threshold is no longer 1/2. Any number
of features can be projected away in a sequence in this
fashion. An example of the projected classifier is shown
in Fig. 7(bottom).

3.3.4. Building Assemblies Incrementally. Assume
we have a classifier C that accepts assemblies corre-
sponding to people and that we can construct projected
classifiers as we need them. We will now show how to
use them to construct assemblies, using a pyramid of
classifiers.

A pyramid of classifiers (Fig. 8), determined by the
classifier C and a permutation of labels (l1 . . . l9) con-
sists of nodes Nli ...l j corresponding to each of the pro-
jected classifiers Cli ...l j , i ≤ j . Each of the bottom-level
nodes Nli receives the set of all segments in the image
as the input. The top node Nl1...l9 outputs the set of all
complete assemblies A = {(li , si ) . . . (l9, s9)} such that
C(A) > 0, i.e. the set of all assemblies in the image
classified as people. Further, each node Nli ...l j outputs
the set of all sub-assemblies A = {(li , si ) . . . (lj , sj )}
such that Cli ...l j (A) > 0.

The nodes Nli at the bottom level work by selecting
all segments si in the image for which Cli {li , si )} > 0
(the only single-segment feature we use is the ratio of
segment’s width to its length, so we simply select the
segments with appropriate aspect ratios). Each of the
remaining nodes has two parts:

Figure 8. A pyramid of classifiers. Each node outputs sub-
assemblies accepted by the corresponding projected classifier. Each
node except those in the bottom row works by forming assemblies
from the outputs of its two children, and filtering the result using the
corresponding projected classifier. The top node outputs the set of
all complete assemblies that correspond to body configurations.
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• The merging stage of node Nli ...l j merges the outputs
of its children by computing the set of all assemblies
{(li , si ) . . . (lj , sj )} such that

Cli ...l j−1{(li , si ) . . . (lj−1, sj−1} > 0

and

Cli−1...l j {(li+1, si+1) . . . (lj , sj )} > 0.

• The filtering stage then selects, from the resulting set
of assemblies, those for which

Cli ...l j (·) > 0,

and the resulting set is the output of Nli ...l j .

Because C{(l1, s1) . . . (l9, s9)} > 0 implies Cli ...lj

{(li , si ) . . . (lj , sj )} > 0 for any i and j , it is clear that
the output of the pyramid is, in fact, the set of all com-
plete A for which C(A) > 0 (note that Cl1...l9 = C , as
a assembly is defined only by the set of segments and
their labels but not their order).

The only constraint on the order in which the out-
puts of nodes are computed is that children nodes have
to be applied before parents. In our implementation,
we use nodes Nli ...l j where j changes from 1 to m,
and, for each j , i changes from j down to 1. This is
equivalent to computing sets of assemblies of the form
{(l1, s1) . . . (lj , sj )} in order, where getting ( j + 1)-
segment assemblies from j-segment ones is itself an
incremental process, whereby we check labels against
l j+1 in the order lj , l j−1, . . . , l1. In practice, we choose
the latter order on the fly for each increment step using a
greedy algorithm, to minimize the size of assembly sets
that are constructed (note that in this case the classifiers
may no longer form a pyramid). The order (l1 . . . l9)

in which labels are added to an assembly needs to be
fixed. We determine this order off-line with a greedy
algorithm by running a large segment set through the
assembly builder and choosing the next label to add so
as to minimize the number of assemblies that result.

3.3.5. Efficient Classification. The type of classifier
C we are using allows for an efficient building of assem-
blies, in that the features do not need to be recomputed
when we add a label-segment pair and move from Cl1...li

to Cl1...li+1 .

We achieve this efficiency by carrying, along with
an assembly A = {(l1, s1) . . . (li , si )}, the sum

σ(A) =
∑

k∈K(l1...li )

wk( fk)

where K(l1 . . . li ) is the set of all features computable
from the segments labeled as l1, . . . , li , and { fk}—the
values of these features.

When we add another segment to get A′ = {(l1, s1)

. . . (li+1, si+1}, we can compute

σ(A′) = σ(A) +
∑

k∈K(l1...li+1)\K(l1...li )

wk( f ′
k).

In other words, when we add a label li+1, we need to
compute only those features that require the segment
si+1 for their computation.

4. Finding People by Sampling

The approach of Section 3 has the disadvantage of em-
ploying a binary classifier, which tries to discriminate
people from non-people. The problems with such a
classifier include:

• Discrimination is made difficult by humans that ap-
pear in unusual configurations or poses, have oc-
cluded or low-contrast body parts, as well as by spu-
rious limb-like segments that do not correspond to
people but may, by chance, occur in groups that re-
semble people.

• The classifier we described cannot determine how
likely an assembly is to be a person, and thus makes
it difficult to revise the classification if new infor-
mation is added. For example, if two human-like as-
semblies overlap each other, only one of them could
represent the true configuration of a person, but the
classifier will not be able to choose which assem-
bly it is, since both of them are classified as people.
This makes it difficult to count people, since a person
often produces several human-like assemblies, and a
subset of all assemblies must be chosen to determine
how many people there are.

We address these problems by associating a likeli-
hood with each assembly, which is proportional to the
probability of seeing an assembly in a random view
of a person and is high for the more human-like as-
semblies and low for the non-human ones. Then, if we
know that there is exactly one person in the image, we



56 Ioffe and Forsyth

may choose the maximum of the likelihood. To count
people, we would count sufficiently separated peaks
(modes). If the image is a frame in a video sequence,
we may choose an assembly different from the likeli-
hood mode if it agrees with the assemblies in the nearby
frames—this could be used for robust tracking.

We represent the likelihood with a set of samples of
assemblies, with probabilities of drawing an assembly
proportional to its likelihood. As a result, the more an
assembly looks like a person the more often it will be
chosen, but assemblies that look less like people are not
completely discarded, which will allow for incorpora-
tion of future evidence (for example, in the counting
procedure of Section 5.3).

To draw samples from the likelihood, we cannot use
the brute-force method of computing the likelihood for
each assembly, because of the huge number of possible
assemblies. Instead, we propose to sample the likeli-
hood by drawing samples from a sequence of approxi-
mations, using resampling at each stage (cf. (Blake and
Isard, 1998; Deutscher et al., 2000; Kanazawa et al.,
1995; Neal, 1998)). In particular, we incrementally
build segment groups of increasing size, by sampling
them from appropriate intermediate distributions.

The intermediate distributions are derived from the
likelihood so that, for a partial (<9-segment) assembly,
the value of the corresponding intermediate distribution
is high if it is likely that the assembly can be augmented
to produce a human assembly, and low otherwise. This
allows us to devote more attention to assemblies with a
“higher potential.” The intermediate distributions make
sampling from the likelihood possible, much like the
projected classifiers of Section 3 help find assemblies
accepted by the top-level classifiers, and the process
of deriving them from the likelihood is quite similar to
projection (see Fig. 9).

The samples from an intermediate distribution are
augmented by adding a segment with a new label and
resampling so as to get samples from the new interme-
diate distribution. Using importance sampling, we are
able to make sure that the incremental process of iter-
ated resampling yields 9-segment assemblies that are,
approximately, samples from the likelihood.

In this section, we explain why the likelihood makes
sense, and show how to learn it from data. We show
how to use importance sampling to incrementally sam-
ple assemblies of increasing size from the appropriate
intermediate distributions, so that at the end samples
from the likelihood are obtained. The intermediate dis-
tributions are not learned independently but are directly

Figure 9. The process of deriving intermediate distributions from
the likelihood is quite similar to projection (cf. Fig. 6(b)). (top) The
original likelihood depends on two features of an assembly: f1 and
f2. (bottom). An intermediate distribution for assemblies for which
f2 cannot be computed (because these smaller assemblies do not
contain all of the segments on which f2 depends).

derived from the likelihood, thus avoiding overfitting.
We show how to count people in images, using the
samples we obtain.

4.1. Sampling from Likelihood

We propose the probability of drawing an assembly
as a sample to be proportional to its likelihood. The
likelihood is defined as the probability density, in an
appropriate feature space, of the set of features cor-
responding to a 9-segment assembly, given that this
assembly represents a person.

This density can be learned from data. Thus, the
likelihood will favor assemblies that are, in some sense,
similar to those in the training set. The model we use to
learn the density is discussed in Section 4.3.2, but any
other reasonable model could be used instead without
changes to the general framework (a reasonable model
is one that assigns a higher distribution value to an
assembly that is more like a person).

The likelihood is an attractive distribution to sample
from, since it is higher for the assemblies that are more
people-like (according to the training set). It has to
be noted that, although we refer to the likelihood as a
distribution, it is not really because the likelihoods of
all assemblies in the image may not sum up to 1. The
actual distribution we sample from is only proportional
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to the likelihood; the constant of proportionality is hard
to compute, but, fortunately, the sampling methods we
use (importance sampling) do not need the distributions
to be normalized.

Another justification for the use of likelihood is as
follows. Suppose that we know that the segment set
of an image contains exactly one 9-segment human as-
sembly, and we need the posterior on which assembly it
is. Assuming a uniform prior, we see that the posterior is

Pr[A = person | segments, 1 person] ∝ L(A)

× P(segments | A = person, 1 person)

(∝ means proportional to). The first term of the right-
hand side is the likelihood—how likely a random per-
son is to look as the assembly A. The second term is
the probability density of seeing the image segments,
given that exactly one person, given by assembly A,
is present. Assuming that segments are independent of
one another, this is just the probability of seeing the
segments not in A. This probability doesn’t depend on
the configuration of A. We assume that the distribution
on non-person segments is uniform; let α be the value
of the corresponding probability density. Then,

P(segments | A = person, 1 person)

∝ P(segments not in A)

= α# segments not in A,

and the last term is the same for any 9-segment assem-
bly A. Thus,

Pr[A = person | segments, 1 person] ∝ L(A),

and sampling from likelihood is the right thing to do.

4.2. Resampling

There are too many nine-segment assemblies to com-
pute the likelihood for each. However, as in Section 3,
we can build assemblies incrementally, and exclude
smaller segment groups from further consideration if it
can be determined that they cannot be a part of a person.
For example, having generated a set of samples of the
form {(T, sT)} of single-segment assemblies each con-
sisting of a torso segment, and samples of the form
{(LUA, sLUA)} of assemblies each of which contains only
aleft upper arm, we can form all combinations of
the form {(T, sT), (LUA, sLUA)} and then resample those,
so that the resulting samples of two-segment assem-
blies {(T, sT), (LUA, sLUA)} come from the appropriate

marginal likelihood or other appropriate intermediate
distribution. (Presumably, among the resulting sam-
ples, the groups similar to those found in people will
occur more frequently.) We can proceed by similarly
sampling 3-, 4-, . . . , 9-segment sub-assemblies, in such
a way that the resulting set of 9-segment assemblies is
sampled from L(·).

At each stage, we use importance sampling, which
is a method for drawing samples from (possibly in-
tractable) distributions (as used in (Blake and Isard,
1998)). In particular, to draw a sample from g(x),
we first draw a large number of independent samples
{s1, . . . , sn} from a proposal distribution f (x), and then
set s = si with probability proportional to wi = g(x)

f (x)
.

As n → ∞, the distribution for the sample s will
approach g(x). In our case, the proposal distribution
f (·) corresponds to the intermediate distribution Lk on
k-segment assemblies, while the target distribution g(·)
corresponds to the intermediate distribution Lk+1 on
(k + 1)-segment assemblies. The intermediate distri-
butions should be chosen in such a way that we are
more likely to propose, for example, a two-segment
assembly {(RUA, sRUA), (RLA, sRLA)} if the two segments
individually are more likely to beupper right arm
and lower right arm of a person; we discuss this
choice in Section 4.3.4.

4.3. Implementation

Our system starts by finding segments as described in
Section 2. From the segments, we use a learned likeli-
hood model to form assemblies by sampling. To gener-
ate assemblies, we use incremental sampling, whereby
segment groups of increasing size are drawn from
appropriate intermediate distributions, each of which
roughly corresponds to a marginal likelihood but takes
all image segments into account and is computed using
dynamic programming. Finally, the set of assemblies
is replaced with a smaller set of representatives, which
are used to count people in the image.

By incrementally sampling segment groups of in-
creasing size, we guide the sampler to larger assem-
blies that are more human-like. Asymptotically (as the
number of samples increases), the resulting samples of
9-segment assemblies will be drawn from the likeli-
hood L(A). Therefore, as in the method of Section 3,
the intermediate distributions do not affect the final
result; they do, however, help us obtain the samples
from L(A) more efficiently.
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Figure 10. The parameterization of a joint. With one of the two
segments, a frame of reference is associated, so that the coordinate
axes are parallel to the sides of that rectangle, the origin is at its
center, and all lengths are relative to the length of the segment (we
scale the frame of reference so that the abscissae of the ends of
the reference segment are 1 and −1). The 4 features that parameterize
the joint are the coordinates (x, y) of the midpoint of the adjacent side
of the second segment, the length l of the second segment (relative
to that of the first), and the angle α between the segments.

4.3.1. Features. An assembly of 9 rectangular
segments, modulo rotation, translation and uniform
scaling, has 41 degrees of freedom. A natural way to
parameterize such an assembly is by a set of 9 aspect
ratios, and 4 features at each of the 8 joints that encode
the relative lengths, angles and displacements between
adjacent segments (Fig. 10). Thus, each feature in our
model depends on either one or two segments, and the
two-segment features can be computed either from the
two halves of the same limb (such as right upper
arm and right lower arm), or from an upper limb
and the torso.

4.3.2. Learning Likelihoods for People. We assume
that the configurations at the joints are independent of
one another. For example, the arms and legs can move
almost independently of each other, and there is little
correlation among the the configurations of the elbows
and knees. We make the assumption for 3D configu-
rations of people and extend it to their 2D projections
onto the image plane. Another way of putting it in 2D is
to say that, if we have several human assemblies, nor-
malized so that, for example, the lengths and positions
of their torsos are fixed, then by pasting together left
arm of one of these assemblies, right leg of another,
torso of the third, and so on, we will get another human
assembly.

The main errors will be due to interactions between
kinematic constraints on the hips and shoulders, and
viewing pose. For instance, if we consider both frontal
and lateral views of people, then the configuration of the
torso and arms imposes constraints on the orientation of
the person (frontal to lateral), which in turn constrains
the configuration of the torso and legs.

While it is convenient to parameterize the body by
independent joint configurations, we have found that
such a model is not sufficient. Often, it results in assem-
blies being found in the image such that several model
segments are matched with the same image segment
(e.g., a segment may be labeled as both the lower arm
and upper leg). This causes the assemblies found for
people to incorrectly represent their configuration, and
also results in spurious non-human assemblies being
classified as people (since, with coinciding segments,
fewer than 9 segments are needed to build an assem-
bly). We solve the problem by adding a constraint that
all the segments in an assembly be distinct, and define
the indicator function Idist(A) to be 1 if this constraint
is satisfied for assembly A, and 0 otherwise. Then, we
can write the likelihood from which we sample as

L(A) ∝ Idist(A) ×
41∏

k=1

�k( fk), (1)

where fk is the value of the kth feature, and �k( fk)

is the corresponding one-dimensional marginal like-
lihood. This representation avoids the problems with
learning high-dimensional distributions: each �k(·) can
be learned independently, from a relatively small data
set. In our experiments, we chose for �k(·) to be a his-
togram for the values fk (Fig. 11).

Notice that while, without the Idist(A) term, our
model could be described as a tree and dealt with
using efficient inference methods available for tree-
structured graphical models (such as dynamic pro-
gramming (Felzenszwalb and Huttenlocher, 2000), it is
no longer a tree. For example, the choices of segments
corresponding to the left arm and the right arm are
no longer conditionally independent given the torso.
We will show, however, that dynamic programming
could still be used to drive the search—namely, to
compute the intermediate distributions from which sub-
assemblies are drawn.

4.3.3. Building Assemblies Incrementally by Resam-
pling. We fix a permutation (l1, . . . , l9) of labels
{T,LUA, . . .}, and generate a sequence

(S1, . . . , S9)

of multisets (sets with possibly repeating elements) of
samples, where each Sk contains N (not necessarily
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Figure 11. Examples of histograms that are used to model one-dimensional distributions �i of features. Note the sharp spikes on some of the
histograms. They are due to the training data in which, for many limbs, a single segment was found, and thus the upper and lower halves had to
be obtained by splitting this segment. This has biased our system towards such limb configurations.

distinct) assemblies of the form

{(
l1, sl1

)
, . . . ,

(
lk, slk

)}

of k segments labeled as l1, . . . , lk (Fig. 12). For exam-
ple, in our implementation, (l1 . . . l9) = (T,LUA,LLA,

. . .), and so S1 will contain the samples {(T, sT)} of
torso segments, while S3 will contain samples

{(T, sT), (LUA, sLUA), (LLA, sLLA)}

of triples corresponding to the torso, the left up-
per arm and the left lower arm. The samples in
Sk are drawn from appropriately chosen intermediate
distributions Lk(·), discussed in Section 4.3.4.

We generate the set of samples Sk+1 from Sk using
importance sampling. First, we form the set of sub-
assemblies

{(
l1, sl1

)
, . . . ,

(
lk, slk

)
,
(
lk+1, slk+1

)}

for all groups

{(
l1, sl1

)
, . . . ,

(
lk, slk

)} ∈ Sk

Figure 12. We sample assemblies incrementally, by generating sets
of samples of 1-, 2-,. . . , 9-segment assemblies, so that the latter are
drawn from the likelihood L(·). The set Sk of k-segment assemblies
is drawn from the intermediate distributions Lk , with L9 = L . To
generate the set Sk+1 from Sk , we use importance resampling, with
resampling weights equal to Lk+1(·)/Lk(·). Compare this to building
assemblies incrementally in the classification approach (cf. Fig. 8).

(which are assumed to be samples from Lk) and all
choices of slk+1 . This way, we obtain samples of (k+1)-
segment assemblies but which are drawn from Lk rather
than Lk+1. We now resample this set of samples, by
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Figure 13. A tree-structured graphical model that could be used for human configurations if we lifted the constraint that all segments in an
assembly be distinct. However, even for non-tree-shaped models, graphical models like this one can be used to drive the search, by allowing us
to efficiently compute intermediate distributions for sub-assemblies that take into account all the image segments.

independently drawing N samples, with the probability
of drawing {(l1, sl1), . . . , (lk+1, slk+1)} proportional to

w
{(

l1, sl1

)
, . . . ,

(
lk+1, slk+1

)} = Lk+1(·)
Lk(·) .

4.3.4. Intermediate Distributions. In the first
approximation, we could sample Sk by taking the
corresponding intermediate distribution Lk to be the
marginal likelihood

Ll1...lk (A) ∝ Idist(A) ×
∏

i

�i ( fi ),

where the product is over all the features computable
from segments labeled as l1, . . . , lk , and Idist(A) = 1
iff all of those segments are distinct, and = 0 oth-
erwise. We write sl for the segment of the sub-
assembly whose label is l. For our feature set and the
choice of (l1 . . . l9), each of the marginal likelihoods
Ll1...lk (sl1 , . . . , slk ) models the probability that the sub-
assembly (sl1 , . . . , slk ) is seen in a random view of a
human.

A disadvantage of using marginal likelihoods as in-
termediate distributions is that the marginal likelihood
of a sub-assembly does not depend on segments around
it. For example, the value of such an intermediate distri-
bution on a segment pair that looks like an arm will not
depend on whether the segments around the pair look
like the rest of a person or not. It would be desirable to
be able to efficiently compute distributions that would
take the sub-assembly’s context into account and pro-
vide a better guide as to whether the sub-assembly is a
part of a person.

If we can do this and find intermediate distributions
that approximate

max{L(A) | A contains the given subassembly},

then incremental sampling will sample complete
assemblies from a distribution that better approximates
L(A). We believe this to be so because, when impor-
tance sampling is used to sample from an unnormalized
distribution g(·) via the intermediate distribution f (·),
the target distribution is best approximated when the
two distribution are proportional to each other.

When incrementally building assemblies, we add
segments in the following order: the torso; the 4 up-
per limbs; the 4 lower limbs. We will define, as our
intermediate distributions Lk(·) on k-segment assem-
blies, the maximum

max
A′⊃A

L(A′)

over all the complete assemblies that contain the sub-
assembly. When computing the maximum, we lift the
constraint that the same segment not be assigned sev-
eral labels (so that now a segment can be, for example,
left and right lower arm at the same time). By doing
this, we ensure that all features computed for an assem-
bly are computed from either single segments or pairs
of adjacent segments, and thus the body model is tree-
structured (Fig. 13). Indeed, all the numeric features
described in Section 4.3.2 have this property; to com-
pute intermediate distributions, we remove the binary
feature for which this property does not hold: the fea-
ture that is uniform if all the segments in an assembly
are distinct, and is 0 otherwise.

The removal of the distinct-segments constraint is
essential to making maximization efficient, since it re-
duces the graphical model representing a person to a
tree (with the torso as the root) for which efficient in-
ference methods, such as dynamic programming, are
available. On the other hand, this implies that the as-
sembly A′ thus found may have Idist(A′) = 0, and so
we still need resampling steps to make sure that we
sample from L(A) rather than its relaxation.
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The highest likelihood assembly, containing a given
sub-assembly, is found by a simple Dynamic Program-
ming algorithm, whereby we find the best lower half of
a limb for each upper half, and then find the best limb
of each type for each torso.

As an example, suppose that all of the segments in
an assembly, except the lower left arm, are fixed, and
we are to choose the lower left arm that maximizes
the likelihood of the resulting assembly. It is easy to
see that, in our model, the lower left arm can be found
by considering all the pairs of a lower left arm (which
can be any segment) and the upper left arm (which is
fixed), and choosing the one with the highest marginal
likelihood LLUA,LLA. This is true because of the fact that
all features that involve the left lower arm may involve
either no other segments or the left upper arm only.

Now, let us suppose that we have fixed a torso and,
possibly, some limbs, and we want to add the left arm
that would maximize the likelihood of the result. First,
for each choice sLUA of the left upper arm, we will find
the best left lower arm bestLLA(sLUA) by maximizing

bestLLA(sLUA) =
arg max

sLLA
LLUA,LLA{(LUA, sLUA), (LLA, sLLA)}.

Since no feature involves the left arm and any other
limb, we can choose the best left arm for a giventorso
by considering all possible choices of the left upper
arm, each of which defines the whole arm as shown
above. For a torso segment sT , we find the best left
upper arm bestLUA(sT) as follows:

bestLUA(sT) = arg max
sLUA

LT,LUA,LLA

{
(T, sT),

(LUA, sLUA), (LLA,bestLLA(sLUA))
}
.

Thus, for a torso segment sT, the best left arm will be

{(LUA,bestLUA(sT)), (LLA,bestLLA(bestLUA(sT)))}.

Now we have an algorithm to compute

max
A′⊃A

L(A′)

for any assembly A which contains a torso segment sT,
some whole limbs and some upper limbs—which, due
to the order in which we add segments, is the only type
of assemblies we deal with. For each of the 4 limbs, we
do the following.

• If the whole limb is missing, add the best upper seg-
ment

supper = bestupper(sT)

and the corresponding lower segment

slower = bestlower(supper)

= bestlower(bestupper(sT)).

• If just the lower half is missing, add the segment

slower = bestlower(supper)

that corresponds to the upper half supper.

This algorithm is efficient: because only pairs of
segments are considered, it runs in O(n2) time for n
segments (and faster in practice, if we try to pair up
only those segments that are close to each other). Al-
though the upper bounds provided by this algorithm
are very effective for directing the sampler to relevant
image regions, they may not be tight. For example, in
the resulting assemblies the legs may coincide. There-
fore, the above algorithm does not replace sampling,
but merely provides a good proposal mechanism.

Notice that a similar proposal mechanism could be
used for any likelihood function L(A). To make use
of efficient tree inference algorithms, we would sim-
ply have to specify an approximation Ltree(A) ≈ L(A)

such that the model Ltree could be represented as a tree-
shaped graphical model, computed efficiently with dy-
namic programming, and used to compute intermediate
distributions.

5. Experiments

In this section, we describe the tests we used to ver-
ify our methods. In Section 5.1, we describe the per-
formance of the system described in Section 3, which
learns a top-level classifier, and identifies all the im-
age assemblies that are classified as people. To make
the search efficient, assemblies are built incrementally,
and non-human assemblies are rejected early by using
projected classifiers, derived from the top-level one.

The results are encouraging but not quite satisfac-
tory, in part because the system of Section 3 cannot
count people. This suggests that it would be benefi-
cial to have a measure of human-likeness associated
with each assembly, and to retain some uncertainty
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by recognizing not only the “best” assembly but the
sufficiently “good” ones as well. We do so using the
system of Section 4, which samples assemblies from
the likelihood. The sampling is made possible by em-
ploying a series of approximations to the likelihood,
from which assemblies of increasing size are sampled.
In Section 5.2, we show that such a system is able to
find and count people.

5.1. Finding People Using a Classifier

We report results for a system that automatically iden-
tifies potential body segments, and then applies the as-
sembly process described above. (Since, at the time of
the experiments in this section, the EM-based segment
detector was not available, we used more ad hoc tech-
niques (Forsyth and Fleck, 1997) to group symmetries
into segments.) Images for which assemblies that are
kinematically consistent with a person are reported as
having people in them. The segment finder may find
either 1 or 2 segments for each limb, depending on
whether it is bent or straight; because the pruning is so
effective, we can allow segments to be broken into two
equal halves lengthwise (like the left leg in Fig. 1(b)),
both of which are tested.

5.1.1. Training. The training set included 79 nega-
tive images without people, selected randomly from the
Corel database, and 274 positive images each with a
single person on uniform background. The grey-scale
positive images have been scanned from books of hu-
man models (Shuppan, 1993–1996), and all segments
in the those images were reported. The negative im-
ages were originally in color, but were converted to
grey-scale after removing regions that did not corre-
sponded to human skin in colour and texture (censored
regions in Fig. 17 are shown in white). Without such
censoring, too many spurious segments were produced,
which generated spurious person-like assemblies. Neg-
ative images, both for the training and for the test set,
were chosen so that all had at least 30% of their pix-
els similar to human skin in colour and texture. This
gives a more realistic test of the system performance
by excluding regions that are obviously not human, and
reduces the number of segments in the negative images
to the same order of magnitude as those in the positive
images.

The models are all wearing either swim suits or no
clothes, otherwise segment finding fails; it is an open
problem to segment people wearing loose clothing

(see Section 6). There is a wide variation in the poses
of the training examples, although all body segments
are visible. The sets of segments corresponding to peo-
ple were then hand-labeled. Of the 274 images with
people, segments for each body part were found in 193
images. The remaining 81 resulted in incomplete con-
figurations, which could still be used for computing the
bounding box used to obtain a first separation. Since
we assume that if a configuration looks like a person
then its mirror image would too, we double the number
of body configurations by flipping each one about a
vertical axis. The bounding box is then computed from
the resulting 548 points in the feature space, without
looking at the images without people.

The boosted classifier was trained to separate two
classes: the 193×2 = 386 points corresponding to body
configurations, and 60727 points that did not corre-
spond to people but lay in the bounding box, obtained
by using the bounding box classifier to incrementally
build assemblies for the images with no people. We
added 1178 synthetic positive configurations obtained
by randomly selecting each limb and the torso from one
of the 386 real images of body configurations (which
were rotated and scaled so the torso positions were
the same in all of them) to give an effect of joining
limbs and torsos from different images rather like chil-
dren’s flip-books. Remarkably, the boosted classifier
classified each of the real data points correctly but mis-
classified 976 out of the 1178 synthetic configurations
as negative; the synthetic examples were unexpectedly
more similar to the negative examples than the real
positive examples were.

5.1.2. Results. The test dataset was separate from the
training set and included 120 images with a person on a
uniform background, and varying numbers of negative
images, reported in Table 1. We report results for two

Table 1. Number of images of people (positive) and without peo-
ple (negative) processed by the classifiers with 367 and 567 features,
followed by the false negative (images with a person where no body
configuration was found) and false positive (images with no people
where a person was detected) rates. The majority of the false neg-
ative cases were due to the segment finder failing to extract all the
relevant segments, while the assembly builder cannot handle missing
segments.

Feats Pos Neg False − False +

367 120 28 37% 4%
567 120 86 49% 10%
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classifiers, one using 567 features and the other using
a subset of 367 of those features. Figure 1 also shows
the false positive and false negative rates achieved for
each of the two classifiers. By marking 51% of positive
images and only 10% of negative images, the classi-
fier using 567 features compares extremely favorably
with that of (Forsyth et al., 1996), which marked 54%
of positive images and 38% of negative images using
hand-tuned tests to form groups of four segments. In
55 of the 59 images where there was a false negative,
a segment corresponding to a body part was missed
by the segment finder, meaning that the overall system
performance significantly understates the classifier per-
formance (these experiments were done with an earlier
version of the segment finder, which was more prone
to missing segments; the EM-based version, described
in Section 2, is the one used in our second approach
of Section 4). There are few signs of overfitting, prob-
ably because the features are highly redundant. Using
the larger set of features makes assembly faster (by a
factor of about five), because more configurations are
rejected earlier.

5.2. Finding People by Sampling

To learn the likelihood model L(·), we used a set, of
193 training images, scanned from (Shuppan, 1993,
1996). Each contained a photograph of a single person,
standing against a uniform background. All the views
were frontal and all limbs were visible, although the
configurations varied. The models wore swimsuits or
no clothes, since clothes make it hard to propose body
segments. The symmetries produced for each image
were used to determine sets of segments, although the
segment finder was not the EM-based one used on the
test data. We hand-labeled the segments by marking
those corresponding to the 9 body segments. In fact,
the training images were the part of a larger collection
that resulted in complete assemblies (no segment finder
misses). Since the likelihood should not favor an assem-
bly over its mirror image, we expanded the training set
by adding the mirror image of each assembly, thus re-
sulting in 386 configurations. The likelihood L(·) was
defined as in Eq. (1), where �i (·) were the histograms
(with 20 bins) for each of the 41 geometric features for
the training set.

5.2.1. Test Data. The test data included 145 nega-
tive images with no people, and 228, 72, and 65 im-
ages with 1, 2, and 3 people, respectively. The negative

images came from the Corel database, while those
with people were obtained by combining single-person
images from the same collection as, but distinct from,
the training data.

The sets of symmetries were produced for each test
image. The parts of the negative images differing sig-
nificantly in color from people’s skin (no more than
1/2 of each image) were blanked out before finding
symmetries; no such preprocessing was done for im-
ages with people. The EM-based segment finder was
applied to each set of symmetries by fitting 50 mix-
ture components to each negative image, 20 and 40 (on
separate runs) to the 1-person images, and 40 and 60
to both 2- and 3-person images. The actual number of
segments produced varied, due to splitting of segments
with gaps. The resulting collections of segments were
then used for testing.

To be able to find both straight (1 segment) and bent
(2 segments) limbs, we added both halves (lengthwise)
of each segment to the segment sets. The halves of a
segment, however, could appear only either together in
the same limb, or as the torso.

5.2.2. Directing the Sampler. Our sampler is working
in a discrete space of labels and image segments. It
can be difficult to focus the activity of such samplers
on components with large probability. For example,
if there are two people in the image, and one results
in a large group of segments and the other in a small
group (due to mischief in the segment finder), the sam-
pler may repeatedly draw samples from the large group
corresponding to the one person, and never get to the
other. A natural strategy is to break the domain into a
set of equivalence classes, sample the classes, and then
sample within the classes drawn by that sampler.

We define equivalent assemblies to be those that
label the same segment as a torso. This is a good
choice, because different people in an image will tend
to have their torsos in different places. We represent
the class by the assembly that has the highest likeli-
hood. This means that we have a tight upper bound
for the likelihoods within the equivalence class, which
means that classes that are omitted when we sample
classes tend to be those which contain elements of rel-
atively low likelihood. For an exact algorithm we would
need elements within classes to have similar likeli-
hoods; our results suggest that this is not particularly
important.

In practice, we find the representative assembly for
each torso segment by drawing samples of assemblies
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Figure 14. Percentage of correct decisions for Person vs No person classification (a) and Counting (b), as a function of the parameter c. Each
figure shows the percentages separately for images with 0, 1, 2, and 3 people. We believe that the decrease in the count accuracy as the number
of people goes up is due to the segment finder, which fails to extract all the relevant segments.

with that torso, and then choosing the one with the
highest likelihood. We can reduce the number of repre-
sentatives that need to be computed if we know a lower
bound on the likelihood of a person-like assembly. In
that case, we do not need to sample for torso segments
for which the upper bound maxA′⊃A L(A′), computed
in Section 4.3.4, is too low.

5.2.3. People vs No People. We used sampling
and representative selection to count people, as in
Section 5.3.2. For each image, we found the MAP
subset {Ai | i ∈ G} of representatives classified as peo-
ple, and classify the image as containing a person if
|G| ≥ 1, and no people if G = ∅. Figure 14(a) shows
how the success of this classification depends on the
value of c, from Eq. (2).

5.3. Counting People

Our sampling algorithm makes it possible to count
people in images. For efficiency, we reduce the set of
samples drawn from the likelihood by selecting a small

set of representative assemblies in the image, so that
for each sample assembly there is a representative such
that the torsos of the assembly and the representative
overlap (Section 5.3.1). The representatives are then
used for counting (Section 5.3.2).

5.3.1. Finding Representative Assemblies. We as-
sume that distinct people have distinct torsos, accepting
that occlusion of one torso by another will lead to a mis-
count. We break the set of all assemblies in the image
into (not necessarily disjoint) blocks—sets of assem-
blies such that any two assemblies from the same block
have overlapping torsos. Then, the representative is
chosen from each block as the assembly with the high-
est likelihood, over all assemblies available from the
block. Because we have assumed that any people in the
image are spaced apart, we can use representatives to
count people—by replacing the set of assemblies with
that of representatives, we do not diminish the count. In-
deed, any assembly that is not a representative must be
overlapped by a higher-likelihood representative, and
so if there was a human assembly in some region of the
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Figure 15. Examples of representative assemblies found for images
of people. Each representative assembly is the highest-likelihood
sample from a set of samples with overlapping torsos. We use repre-
sentatives to count people and argue that using representatives does
not change the count. Often (top) representatives can also be used to
infer configurations of people, although (bottom) that is not always
the case.

image, there will be a representative there as well. In
fact, the configuration of a person can often be inferred
from that of representatives (Fig. 15).

We can efficiently find representatives, since we
can use the upper bounds on the likelihoods, com-
puted in Section 5.2.2. In particular, if the algorithm
of Section 5.2.2 produced a valid assembly (no coin-
ciding segments) for some torso segment, then sam-
pling need not be performed for that torso (since this
assembly has a higher likelihood than any other we
can obtain by sampling). If, however, the assembly ob-
tained for the upper bound is not a valid one, we have
to sample assemblies with the given torso, but re-
tain only the one with the highest likelihood (since all
of the assemblies share the torso). Furthermore, we
need not sample for a given torso segment if there is
already an overlapping assembly, whose likelihood is
greater than the upper bound for the given torso.

5.3.2. Estimating the Number of People. Once the
representative set has been computed for an image, we
want to obtain the estimate on the number of people in
the image. We assume that assemblies corresponding
to people do not overlap and have independent configu-
rations. Let the set of representatives be {A1, . . . , Am},
and let us consider any set G ⊆ {1 . . . m}, such that
no assemblies from {Ai | i ∈ G} overlap. We will look
at the posterior probability pr[each of Ai represents a
person|image data] that the representatives {Ai | i ∈ G}
are people while {Aj | j �∈ G} are not. To count people,
we choose the set G for which the posterior is largest,
and the size |G| will give the MAP estimate of the num-
ber of people in the image. We could also represent this
posterior as a set of samples to give some insight into
the reliability of a particular count.

We assume that each assembly has the a priori prob-
ability β of being a person, independently of the others.
Then, the prior for G is

π(G) = β |G|(1−β)m−|G|,

and the posterior is proportional to

Pr[A1, . . . , Am | G]π(G).

Since the human assemblies do not overlap, the pos-
terior Pr[A1, . . . , Am | G] = 0 if some of {Ai | i ∈ G}
overlap. Otherwise, we have

Pr[A1, . . . , Am |G] =
∏

i∈G

L(Ai )
∏

i �∈G

Lnon(Ai ),

where we still use

L(A) = Pr[person in random configuration
looks like A],

and define

Lnon(A) = Pr[A | random view
not containing a person].

Finally, we assume Lnon(·) to be uniform. We get that,
for non-overlapping {Ai | i ∈ G}, the posterior is pro-
portional to

Lm−|G|
non

∏

i∈G

L(Ai )β
|G|(1 − β)m−|G|

∝ c|G| ∏

i∈G

L(Ai ), (2)
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Figure 16. Examples showing representatives for images with two
people; these representatives give quite a good guide to the person’s
configuration (top row); the bottom row shows some cases where
the configurations are not represented correctly. Images have been
airbrushed so they can be shown salve pudore.

where the constant c = β

(1−β)Lnon
is to be estimated so

as to yield best classification.

5.3.3. Counting Results. We used the size |G| of the
MAP set G as the estimate of the number of people.
Figure 14(b) shows, for images with k = 0 . . . 3 people,
the fraction of segment sets that yielded the correct
estimate |G| = k.

The 3-person images did not yield as good results
as those with fewer people. We believe this to be due
to the fact that with more people in the image the EM-
based segment finder is more likely to miss a body
segment. Indeed, when looking for the MAP estimate
of the number of people in the image, we select the
largest non-overlapping set of assemblies with likeli-
hoods greater than 1/c, where c is the constant used in
Eq. (2).

If all relevant segments were found regardless of the
number of people in the image, then, if a person was
found in each of 3 pictures, 3 people would be found in a
collage of those 3 images. This, however, is not the case:
as shown in Figure 14(b), the accuracy of the estimated
count for images with 3 people is much worse than that
for images with 1 or 2 people. Upon inspection, we
have found that in 3-person images, more often than in

the images with fewer people, some of the body parts
were not found by the segment finder (perhaps due to
the EM algorithm used for detection, which searches
for a fixed number of segments and is prone to getting
stuck in local extrema). This leads us to suspect that a
large proportion of false negatives are due to missing
segments. A better segment finder that doesn’t search
for a fixed number of segments may be the solution
(see Section 6).

For many cases, the representatives give quite a good
indication of the configuration of the people present
(Fig. 16), but there is no guarantee that the highest-
likelihood assembly used as a representative does in
fact correspond to the true configuration of the person.
We have shown, however, that representatives yield
good counting results, because a high-likelihood rep-
resentative is usually found for a person, even if its
configuration is incorrect.

6. Discussion

Finding people in images is a very difficult problem,
and we do not know of any system capable of finding
clothed people in arbitrary configurations in static im-
ages (except (Felzenszwalb and Huttenlocher, 2000),
discussed in Section 1, who assume a very constrained
appearance model for body parts and do not perform
discrimination). Most tracking work relies on motion to
identify the foreground, and requires the user to hand-
label the configuration of a person in the first frame.

This paper is an attempt to address the problem of
finding people in a bottom-up fashion, whereby we first
extract possible body parts, then use kinematic con-
straints to group them into human assemblies. We have
shown that, even for unreliable body-part detectors,
the kinematic constraints on relationships between the
parts significantly increase our ability to discriminate
people from non-people. A better segment finder would
improve the performance even further by both increas-
ing the detection rate and eliminating some false de-
tections such as that shown in Fig. 17.

The main contribution of this work is the framework
that allows candidate body parts to be grouped effi-
ciently. We do so by pruning the search: assemblies
of increasing size are built incrementally, and segment
groups that are unlikely to be a part of a human config-
uration are rejected at an early stage.

As we demonstrated in Section 5, the performance of
the system is promising. As we argued in Sections 5.1.2
and 5.3.3, many of the false negatives are due to the
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Figure 17. A negative image for which a human assembly was
found. The assembly indeed looks like a configuration of a person.
A better segment finder would not produce these segments and thus
a person would not be detected. The white regions in the image are
the pixels that have been masked out because they could not belong
to a person due to their color.

segment finder which failed to identify some of the
body parts of the people present in the image. This sug-
gests that, while kinematic constraints on relationships
among body parts are effective in discriminating peo-
ple from non-people and can be exploited efficiently
using pruning, the overall performance would benefit
from a better body segment model. In particular, we
need to be able to:

• Instead of finding people as assemblies of body parts,
look for groups of features, which may or may not
correspond to body parts, but must be stable and
discriminative.

• Deal with a large number of features of different
types (e.g., bars found in Section 2, cylinders found
using shading patterns (Haddon and Forsyth, 1997),
textured regions corresponding to clothed limbs (Shi
and Malik, 1997), edges, regions found by template
matching such as faces (Rowley et al., 1998a; Sung
and Poggio, 1998), etc.).

• Build assemblies of these features, not requiring all
of the features to be present in an assembly, but rather
determining automatically when an assembly can be
classified as a person or a non-person without adding
any more segments.

• Structure the search for assemblies in an opportunis-
tic manner, automatically determining which fea-
tures would be best to add (in contrast to the current
system which adds body parts to an assembly in a
fixed order).

Addressing these concerns is a topic of current re-
search. We propose to do so by learning a mixture
of trees (Meila and Jordan, 2000), whose components
correspond to different subsets of features. By mak-

ing the mixture components share structure, and be-
cause of the conditional independences captured in
the tree structure, we can efficiently select the optimal
assembly, or sample assemblies from the likelihood.
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