
Section 20.2 Parsing People in Images 602

and we can apply the recursive definition of the cost-to-go function to get

argmax
X1, . . . , Xn

fchain(X1, . . . , Xn) =
argmax
X1

(

fchain(X1) + f1
cost-to-go(X1)

)

,

which yields an extremely powerful maximization strategy. We start at Xn, and

construct f
(n−1)

cost-to-go(Xn−1). We can represent this function as a table, giving the

value of the cost-to-go function for each possible value of Xn−1. We build a second
table giving the optimum Xn for each possible value of Xn−1. From this, we can

build f
(n−2)

cost-to-go(Xn−2), again as a table, and also the best Xn−1 as a function of

Xn−2, again as a table, and so on. Now we arrive at X1. We obtain the solution for

X1 by choosing the X1 that yields the best value of
(

fchain(X1) + f2
cost-to-go(X2)

)

.

But from this solution, we can obtain the solution for X2 by looking in the table
that gives the best X2 as a function of X1; and so on. It should be clear that this
process yields a solution in polynomial time; in the exercises, you will show that, if
each Xi can take one of k values, then the time is O(nK2).

This strategy will work for a model with the structure of a forest. The proof
is an easy induction. If the forest has no edges (i.e., consists entirely of nodes),
then it is obvious that a simple strategy applies (choose the best value for each Xi

independently). This is clearly polynomial. Now assume that the algorithm yields
a result in polynomial time for a forest with e edges, and show that it works for a
forest with e+1 edges. There are two cases. The new edge could link two existing
trees, in which case we could re-order the trees so the nodes that are linked are
roots, construct a cost-to-go function for each root, and then choose the best pair of
states for these roots from the cost-to-go functions. Otherwise, one tree had a new
edge added, joining the tree to an isolated node. In this case, we reorder the tree so
that this new node is the root and build a cost-to-go function from the leaves to the
root. The fact that the algorithm works is a combinatorial insight, but many kinds
of model have a tree structure. Models of this form are particularly important in
cases of tracking and of parsing.

20.2 PARSING PEOPLE IN IMAGES

A human parser must produce some report of the configuration of the body in an
image window. A human parse offers cues to what the person is doing, by reporting
where the arms, legs, and so on are. Applications could include building a user
interface that can respond to someone’s gestures or building a medical support
system that can tell, by watching video, whether a physically frail person is safe at
home or has sustained an injury and needs care. Tracking people is a particularly
useful technology (we’ll discuss its applications below), and currently the most
reliable technologies for human tracking involve a combination of detection and
parsing.

20.2.1 Parsing with Pictorial Structure Models

Parsing can be attacked by maximizing a tree-structured model. For example,
we could discretize the set of possible segments in an image by quantizing segment
orientation to a fixed set of values, and quantizing the top-left corner of the segment



Section 20.2 Parsing People in Images 603

to the pixel grid. We set up one variable per body segment, where the value of the
variable identifies which image segment corresponds to that body segment (you can
think of these variables as segment pointers). This set of variables can be scored by
evaluating (a) the extent to which the body segment looks like the corresponding
image and (b) the extent to which segments are consistent with each other. The
set of pointers that maximizes this objective function is the parse. We now use a
tree-structured model to ensure the maximization component is tractable.

A pictorial structure model is a tree structured model, where unary terms
compare parts to image observations, and binary terms evaluate relative configu-
ration. Such models are particularly well adapted to parsing people. Assume we
know the appearance of each of a set of limb segments that model a person (Fig-
ure 20.4). This means that we can build a set of unary functions that compare the
image segment that Xi points to with the corresponding model segment. Because
we are maximizing, larger values mean a more compatible appearance. We also ob-
tain a set of pairwise relations for a tree-structured subset of this model. It seems
natural to use the tree indicated in Figure 20.4. These terms evaluate the relative
location of the image segment endpoints, and perhaps the angles between the image
segments (there are numerous useful variants, as we shall see). For example, there
might be a term checking that the outer end of the thigh is close to the upper end
of the shin, and that the angle between the two is acceptable. Again, larger values
mean that the two image segments pointed to by the variables are compatible with
the relevant labels.

Models of this form can be used to find people in images in a fairly straight-
forward manner, and are the core technology of parsing. Felzenszwalb and Hut-
tenlocher (2000) assume that segments have known color patterns—typically, a
mixture of skin color and blue—and then compare the actual image color with
these patterns for the unary terms; the binary terms ensure endpoints are close and
angles are appropriate. This leads to a fairly satisfactory matcher (Figure 20.4),
with the proviso that the person’s clothing should be known in advance. It should
look natural to extend the appearance model to score similarities in texture as well
as in color, but this has not proven successful to date, most likely because folds in
clothing generate strong texture noise effects.

A persistent nuisance with tree-structured models as we have described them
is that the best parse typically will place the left leg (resp. arm) on top of the right
leg (resp. arm). This is because configuration cues are usually not strong enough to
force the legs (resp. arms) apart in the image, and one of the two image legs (resp.
arms) will look more like the model than the other does. It is difficult to change
the model to avoid this problem; inserting a term that forces the arms apart will
create inference difficulties. Instead, there is a simple trick that helps. We regard
the energy as the log of a probability distribution, and draw a large pool of samples
from this probability distribution. Each sample is a parse, and samples with high
energy will appear more commonly. We then search this pool of samples for a parse
where the legs and arms do not overlap, a relatively easy test.

The process of drawing a sample is straightforward. Our tree-structured
model yields a probability model P (X1, . . . , Xn). We can use the reasoning of
Section 20.1.3 to compute marginals (look at the α and β terms). Now compute
the marginal P (X1), and draw a sample from that distribution to get, say, X1 = r.



Section 20.2 Parsing People in Images 604

FIGURE 20.4: On the left, a tree-structured model of a person. Each segment is col-
ored with the image color expected within this segment. The model attempts to find a
configuration of these 11 body segments (nine limb segments, face, and hair) that (a)
matches these colors and (b) is configured like a person. This can be done with dynamic
programming, as described in the text. The other three frames show matches obtained
using the method. This figure was originally published as Figure 4 of “Efficient Matching
of Pictorial Structures,” by P. Felzenszwalb and D.P. Huttenlocher, Proc. IEEE CVPR
2000, c© 2000, IEEE.

We then draw a sample from P (X2|X1 = r) = P (X1 = r,X2)/
∑

X2
P (X1 = r,X2),

and so on.

20.2.2 Estimating the Appearance of Clothing

One crucial difficulty with the pictorial structure model, as we have described it,
is that we need to know the appearance of the body segments. We could avoid
this difficulty by changing the segment appearance models. Body segments are
extended, and we expect some contrast at either side, so the segment appearance
model could just require that there be strong edges on either side of the segment.
It turns out that this model works poorly, because there tend to be numerous such
segments in the image.

However, as Ramanan (2006) points out, this model can be used to start a



Section 20.2 Parsing People in Images 605

FIGURE 20.5: The human parser of Ramanan (2006) is a search of all spatial layouts
in the image to find one that is consistent with the constraints we know on appearance.
Ferrari et al. (2008) show that reducing the search space improves the results. First, one
finds upper bodies, and builds a box around those detections using constraints on the
body size (A). Outside this box is background, and some pixels inside this box are, too.
In B, body constraints mean that pixels labeled Fc and F are very likely foreground,
U are unknown, and B are very likely background. One then builds color models for
foreground and background using this information, then uses an interactive segmenter to
segment, requiring that Fc pixels be foreground, to get C. The result is a much reduced
search domain for the human parser, which starts using an edge map D, to get an initial
parse E, and, after iterating, produces F. This figure was originally published as Figure
2 of “Progressive search space reduction for human pose estimation,” by V. Ferrari, M.
Maŕın-Jiménez, and A. Zisserman, Proc. IEEE CVPR 2008, c© IEEE 2003.

process that first estimates appearance, then parses, then re-estimates appearance,
and so on. We start by assuming that segments have edges on their boundaries. We
use this model to generate multiple estimates of configuration, using the procedure
for sampling in Section 20.2.1. In turn, we can use these estimates to build a map of
the posterior probability a pixel is, for example, a head pixel, by rendering the head
segment for each of the sampled estimates of configuration and then summing the
images. In turn, this means we have a set of weighted head/non-head pixels, which
can be used to build a discriminative appearance model for the head. From this and
other such discriminative appearance models, we can re-estimate the configuration
(and then re-estimate appearance, and so on). The technical details are beyond
the scope of this chapter, but the procedure can produce simultaneous estimates of
parses and appearance models for complex images.

If the person covers a relatively small percentage of the image pixels, then
this strategy will work poorly because there is a strong chance the initial estimate
of configuration might be completely wrong, and then re-estimation is unlikely to
help. Ferrari et al. (2008) show improved parses obtained by pruning the search
domain using appearance information. They first detect the figure’s upper body,
and then use that information to derive a set of bounds. Everything outside a large



Section 20.3 Tracking People 606

box computed from the torso cannot be on the body (because the arms have fixed
length, and so on). Similarly, a smaller box can be guaranteed to line on the body,
because we have found the upper body. We can now use an interactive segmentation
method (Section 20.2.1) to segment an estimate of the person from the background.
The background color model can be estimated from pixels outside the box, and
some inside the box; the foreground color model can be estimated from some of
the pixels inside the box; and we can constrain some pixels to be foreground in the
final segmentation. Because the segmentation might not be precise, we can dilate
it (Algorithm 16.3) to get a somewhat larger domain. We now have a relatively
small search domain and a very rough initial estimate of configuration to start the
iterative re-estimation process. Further constraints are available if we are working
with a motion sequence; these are explored in Section 20.3.

20.3 TRACKING PEOPLE

Tracking people in video is an important practical problem. If we could tell how
people behave inside and outside buildings, it might be possible to design more
effective buildings. If we could reliably report the location of arms, legs, torso,
and head in video sequences, we could build much-improved game interfaces and
surveillance systems.

20.3.1 Why Human Tracking Is Hard

Any tracking system, for any target, must balance two kinds of evidence to produce
tracks. The first kind is direct measurements of state. In the extreme case, if we
can detect perfectly, building tracking systems isn’t that demanding. The second
kind is predictable dynamics, which allows a system to pool evidence over multiple
frames and produce good state estimates even when measurements are poor.

Tracking people is difficult, because detecting people is difficult and because
human motion can be quite unpredictable. Detection is hard because many ef-
fects cause people to look different from window to window. There is a range of
body shapes and sizes. Changes in body configuration and in viewpoint can pro-
duce dramatic changes in appearance. The appearance of clothing also can vary
widely. At time of writing, no published method can find clothed people wearing
unknown clothing in arbitrary configurations in complex scenes reliably (but see
Section 17.1.2). The main cues to help overcome these difficulties are the fairly
strong constraints on the layout of the body, and the relatively restricted appear-
ance of a range of human body parts and configurations.

Motion cues present more subtle difficulties. If the people we are observing are
engaged in known activities, their motions might be quite predictable. But the body
can accelerate very quickly—think of the degree of motion blur in sports videos
as an example—and the body parts that can engage in the most unpredictable
motions tend also to be the ones that are hardest to detect. Forearms turn out to
be difficult to track (small and fast moving), hands are even harder, and we are not
aware of finger trackers that behave reliably for the full range of (potentially very
fast-changing) finger motions.

Even so, motion is almost certainly a useful cue for detecting people or seg-
ments. Motion also can contribute by predicting plausible locations for detections



Section 20.3 Tracking People 607

in the next frame, through some form of filtering procedure. Although body con-
figurations change quickly from frame to frame, appearance changes very slowly,
particularly if one is careful about illumination. This is because people tend not
to change clothes from frame to frame. Generally, building a good person tracker
seems to involve paying close attention to image appearance and data association,
rather than to dynamical models or probabilistic inference. As a result, recent meth-
ods strongly emphasize various tracking by detection ideas, and the main kinds of
distinction between methods are the same as those for detection.

There is a rich range of options for representing the body when we track, and
a range of levels of detail are useful. Representing a person as a single point is
sometimes useful; for example, such representations are enough to tell where and
when people gather in a public space, or during a fire drill. Alternatives include:
representing the head and torso; representing the head, torso, and arms; represent-
ing head, torso, arms, and legs; and so on, down to the fingers. Tracking becomes
increasingly difficult as the number of degrees of freedom goes up, and we are not
aware of any successful attempts to track the body from torso to fingers (they
are a lot smaller than torsos, which introduces other problems). Most procedures
for tracking single point representations use the methods of Chapter 11 directly,
typically combining background subtraction with some form of blob appearance
tracker.

We focus on trackers that try to represent the body with fairly detailed kine-
matic models, because such trackers use procedures specialized for tracking people.
The state of the body could be represented in 3D or in 2D. If there are many
cameras, a 3D state representation is natural, and multicamera tracking of people
against constrained backgrounds now works rather well (see the notes). The flavor
of this subject is more like reconstruction than like detection or recognition, and
it doesn’t fit very well into general pattern of single camera tracking. In many
important cases—for example, an interface to a computer game—there will be only
one camera. If we require a representation of the body in three dimensions, then
we could use a 3D representation of state, perhaps joint locations in 3D, or a set of
body segments in 3D modeled as surfaces. Alternatively, we could track the body
using a 2D state representation, and then “lift” it to produce a 3D track. Relations
between the 2D figure and the 3D track are complicated and might be ambiguous.
The heart of the question is the number of possible 3D configurations that could
explain a single image, and this depends quite a lot on what we observe in the
image.

Generally, we favor tracking using a 2D representation then lifting the track
to 3D, and we will discuss only this strategy in any detail. This is mainly a question
of clarity. Methods for tracking using 3D state representations must deal with data
association and with lifting ambiguity simultaneously, and this leads to complexity.
In contrast, tracking in 2D is a data association problem alone, and lifting the
track is a problem of ambiguity alone. Another advantage to working in 2D first,
then lifting, is that the lifting process can use image evidence on longer timescales
without having any significant effect on the complexity of the tracking algorithm.
We will return to this argument in Section 20.4.



Section 20.3 Tracking People 608

FIGURE 20.6: Human body segments do not change appearance much over time, so using
multiple frames can yield a better appearance model and so a better parse. A shows a
frame, and A’ shows its parse, derived by the method of Ferrari et al. (2008), described
in Section 20.2.2 and Figure 20.5. In this case, the parse has relatively low entropy, and
we have a fairly accurate model of where everything is. The frame in B is more difficult,
and a single frame method produces the parse of B’, which has relatively high entropy.
By requiring that appearance be coherent over time, and that segments not move much
from frame to frame, we can obtain the tighter parse of B”. This figure was originally
published as Figure 6 of “Progressive search space reduction for human pose estimation,”
by V. Ferrari, M. Maŕın-Jiménez, and A. Zisserman, Proc. IEEE CVPR 2008, c© IEEE
2003.

20.3.2 Kinematic Tracking by Appearance

In Section 20.3.2, we described methods to identify an appearance model for a
person from a single image. Generally, the strategy was to find a small but plausible
spatial domain in the image, then iterate configuration estimation and appearance
estimation in that domain. In a motion sequence, we can build a much better
appearance model by exploiting the fact that body segment appearance doesn’t
change over time. Furthermore, the sampling time of the video is relatively fast
compared to body movement, which means we know roughly which search domain
in the n+1th frame corresponds to which in the nth frame. This means that we can
strengthen the appearance model by using multiple frames to estimate appearance.
We can improve configuration estimates both by using the improved appearance
model, and by exploiting the fact that segments move relatively slowly. Ferarri
et al. show significant improvements in practice for upper body models estimated
using these two constraints (Figure 20.6).

There is an alternative method to obtain an appearance model. It turns out
that people adopt a lateral walking configuration rather often, meaning that if
we have a long enough sequence (minutes are usually enough), we will detect this
configuration somewhere. Once we have detected it, we can read off an appearance
model because we know where the arms, legs, torso, and head are. The pictorial



Section 20.3 Tracking People 609

structure model can detect lateral walking configurations without knowing the color
or texture of body segments. We set up φ to score whether there are image edges
close to the edges of the segment rectangles, and use strong angular constraints in
ψ to detect only the lateral walking configuration. The resulting detector can be
tuned to have a very low false positive rate, though it will then have a low detect
rate, too. Now we run this lateral walking detector over every frame in the sequence.
Because the detector has a low false positive rate, we know when it responds that
we have found a real person; and because we have localized the torso, arms, legs,
and head, we know what these segments look like.

We can now build a discriminative appearance model for arms, legs, etc., and
use this in a new pictorial structure model to detect each instance of the person. We
take example pixels from each detected segment and from its background, and use,
say, logistic regression to build a classifier that gives a one at segment pixels and
a zero otherwise. Applying these to the images yields a set of segment maps, and
the φ for each segment scores how many ones appear inside the image rectangle on
the relevant segment map. We can now pass over the video again, using a pictorial
structure with weak constraints to detect instances of this person.

20.3.3 Kinematic Human Tracking Using Templates

Some human motions—walking, jumping, dancing—are highly repetitive, and the
relatively free structure of a fully deformable model is not necessary to track them.
If we are confident that we will be dealing with such motions, then we could benefit
by using more restrictive models of spatial layout. For example, if we are tracking
only walking people in lateral views, then there are relatively few configurations
that we will see, and so our estimate of layout should be better. There is another
advantage to doing this: we can identify body configurations that are wholly out
of line with what we expect, and report unusual behavior.

Toyama and Blake (2002) encode image likelihoods using a mixture built out
of templates, which they call exemplars (see also Toyama and Blake (2001)). As-
sume we have a single template, which could be a curve, or an edge map, or some
such. These templates may be subject to the action of some (perhaps local) group,
for example, translations, rotations, scale, or deformations. We model the likeli-
hood of an image patch given a template and its deformation with an exponential
distribution on distance between the image patch and the deformed template (one
could regard this as a simplified maximum entropy model; we are not aware of
successful attempts to add complexity at this point). The normalizing constant
is estimated with Laplace’s method. Multiple templates can be used to encode
the important possible appearances of the foreground object. State is now (a) the
template and (b) the deformation parameters, and the likelihood can be evaluated
conditioned on state as above.

We can think of this method as a collection of template matchers linked over
time with a dynamical model (Figure 20.8). The templates, and the dynamical
model, are learned from training sequences. Because we are modeling the fore-
ground, the training sequences can be chosen so that their background is simple,
so that responses from (say) edge, curve, and related detectors all originate on the
moving person. Choosing templates now becomes a matter of clustering. Once



Section 20.3 Tracking People 610

FIGURE 20.7: Ramanan (2005) shows that tracking people is easier with an instance-
specific model as opposed to a generic model. The top two rows show detections of
a pictorial structure where parts are modeled with edge templates. The figure shows
both the MAP pose—as boxes—and a visualization of the entire posterior obtained by
overlaying translucent, lightly colored samples (so major peaks in the posterior give strong
coloring). Note that the generic edge model is confused by the texture in the background,
as evident by the bumpy posterior map. The bottom two rows show results using a
model specialized to the subject of the sequence, using methods described above (part
appearances are learned from a stylized detection). This model does a much better job
of data association; it eliminates most of the background pixels. The table quantifies this
phenomenon by recording the percentage of frames where limbs are accurately localized.
Clearly, the specialized model does a much better job. Figure reprinted from D. Ramanan’s
UC Berkeley PhD thesis, “Tracking People and Recognizing their Activities,” 2005, c©
2005 D. Ramanan.

templates have been chosen, a dynamical model is estimated by counting.
What makes the resulting method attractive is that it relies on foreground

enhancement—the template groups together image components that, taken to-
gether, imply a person is present. The main difficulty with the method is that
many templates might be needed to cover all views of a moving person. Further-
more, inferring state might be quite difficult.



Section 20.4 3D from 2D: Lifting 611

FIGURE 20.8: Toyama and Blake (2001) show that human motion can be tracked by
matching templates then linking the templates over time. The templates encode possible
body configuration, and are allowed to deform to account for camera variations. This
representation has the advantage that a template can pool otherwise possibly unreliable
edge evidence; tracking uses a particle filter (Section 11.5). The figure shows frames
from two motion sequences, with the best matching template superimposed (ignore the
horizontal line structure in the frames; this is just interlacing effects in the video). On
the left of the bar, frames from a test sequence showing a person who also appears in
the training sequences (i.e., it’s the same actor, but not the same frames). Templates
generalize across individuals well; the right shows frames from a test sequence featuring
an actor who does not appear in the training sequences. This figure was originally published
as Figures 1 and 4 of “Probabilistic Tracking in a Metric Space,” by K. Toyama and A.
Blake, Proc. IEEE ICCV 2001, c© IEEE, 2001.

20.4 3D FROM 2D: LIFTING

Surprisingly, the 2D configuration of a person in an image allows reconstructing
that person’s 3D configuration, from some straightforward geometric reasoning.
There are two kinds of reconstruction. An absolute reconstruction reconstructs the
configuration of the body with respect to a global world coordinate system. A
relative reconstruction yields the configuration of body segments with respect to
some root coordinate system. The root coordinate system is carried with the body,
with its origin typically in the torso.

Absolute reconstruction is difficult, even with motion information, because
each separate frame is missing a translation in depth, and motion information is
not usually enough to recover this. Absolute reconstruction with a moving camera
is particularly tricky, because one would need good camera egomotion estimates
to produce such a reconstruction (we are not aware of any such reconstructions in
the literature at the time of writing). Relative reconstruction is enough for most
purposes. For example, absolute reconstruction doesn’t seem to be necessary to
label activities.

Reconstructions appear to be ambiguous, but might not be. There are meth-
ods for avoiding ambiguity that exploit appearance details (Section 20.4.2). Fur-
thermore, there may be disambiguating information in motion (Section 20.4.3).

20.4.1 Reconstruction in an Orthographic View

People in pictures typically are far from the camera compared to the range of
depths they span (the body is quite flat), and so a scaled orthographic camera
model is usually appropriate. One case where it fails is a person pointing toward



Section 20.4 3D from 2D: Lifting 612

FIGURE 20.9: An orthographic view of a segment of known length L will have length
sL cosφ, where φ is the angle of inclination of the segment to the camera and s is the
camera scale linking meters to pixels (which is one in the figure above). In turn, this
means that if we know the length of the body segment and can guess the camera scale,
we can estimate cos φ and so know the angle of inclination to the frame up to a twofold
ambiguity. This method is effective; below we show two 3D reconstructions obtained by
Taylor (2000), for single orthographic views of human figures. The image appears left,
with joint vertices on the body identified by hand (the user also identifies which vertex
on each segment is closer to the camera). Center shows a rendered reconstruction in
the viewing camera, and right shows a rendering from a different view direction. This
figure was originally published as Figures 1 and 4 of “Reconstruction of articulated objects
from point correspondences in a single uncalibrated image,” by C.J. Taylor, Proc. IEEE
CVPR, 2000 c© 2000 IEEE.

the camera; if the hand is quite close, compared with the length of the arm there
may be distinct perspective effects over the hand and arm and in extreme cases the
hand can occlude much of the body.

Regard each body segment as a cylinder and assume we know its length. If we
know the camera scale, and can mark each end of the body segment, then we know
the cosine of the angle between the image plane and the axis of the segment, which
means we have the segment in 3D up to a twofold ambiguity and translation in depth
(Figure 20.9 gives examples). We can reconstruct each separate segment and obtain
an ambiguity of translation in depth (which is important and often forgotten) and a
two fold ambiguity at each segment. We can now reconstruct the body by obtaining
a reconstruction for each segment, and joining them up. Each segment has a single
missing degree of freedom (depth), but the segments must join up, meaning that



Section 20.4 3D from 2D: Lifting 613

we have a discrete set of ambiguities. Depending on circumstances, one might
work with from 9 to 11 body segments (the head is often omitted; the torso can
reasonably be modeled with several segments), yielding from 512 to 2,048 possible
reconstructions. These ambiguities persist for perspective images; examples appear
in Figure 20.10.

FIGURE 20.10: Ambiguous reconstructions of a 3D figure, all consistent with a single
view, from Sminchisescu and Triggs (2003). The ambiguities are most easily visualized
by an argument about scaled orthographic cameras, given in the text, but persist for per-
spective views as these authors show. Note that the cocked wrist in the leftmost figure
violates kinematic constraints; no person with an undamaged wrist can take this configu-
ration. This figure was originally published as Figure 2 of “Kinematic jump processes for
monocular 3D human tracking,” by C. Sminchisescu and W. Triggs, Proc. IEEE CVPR,
2003 c© 2003 IEEE.

In this very simple model of the body, 3D reconstruction from a single image is
ambiguous. However, the model oversimplifies in some important ways, and the true
extent of ambiguity in this case is quite uncertain. One important oversimplification
is that we assume that all 3D configurations are available. In practice, there are
many constraints on the available joint rotations (for example, your elbow will
move through about 70◦), so some of the ambiguous configurations might not be
consistent with the kinematics of the body. Unfortunately, there is clear evidence
that there are multiple kinematically acceptable reconstructions consistent with a
single image (Figure 20.10). It is not known whether there are multiple acceptable
reconstructions associated with most images, or with only a few images.

20.4.2 Exploiting Appearance for Unambiguous Reconstructions

Mori and Malik (2005) deal with discrete ambiguities by matching (see also Mori
et al. (2002)). They have a set of example images with joint positions marked. The
outline of the body in each example is sampled, and each sample point is encoded
with a shape context (an encoding that represents local image structure at high
resolution and longer scale image structure at a lower resolution). Keypoints are
marked in the examples by hand, and this marking includes a representation of
which end of the body segment is closer to the camera. The outline of the body is
identified in a test image (Mori and Malik use an edge detector; a cluttered back-



Section 20.4 3D from 2D: Lifting 614

FIGURE 20.11: Mori et al. (2002) deal with discrete ambiguities by matching test image
outlines to examplars, which have keypoints marked. The keypoint markup includes
which end of the segment is closer to the view. The images on the left show example test
images, with keypoints established by the matching strategy superimposed. The resulting
reconstruction appears on the right. See also Mori and Malik (2005). This figure was
originally published as Figures 6 and 7 of “Estimating Human Body Configurations using
Shape Context Matching,” by G. Mori and J. Malik, IEEE Workshop on Models versus
Exemplars in Computer Vision 2001 c© IEEE, 2001.

ground might present issues here), and sample points on the outline are matched to
sample points in examples. A global matching procedure then identifies appropriate
examplars for each body segment and an appropriate 2D configuration. The body
is represented as a set of segments, allowing (a) kinematic deformations in 2D and
(b) different body segments in the test image to be matched to segments in different
training images. The best matching example keypoint can be extracted from the
matching procedure, and an estimate of the position of that keypoint in the test
image is obtained from a least-squares fit transformation that aligns a number of
sample points around that keypoint. The result is a markup of the test image with
labeled joint positions and with which end of the segment is closest to the camera.
A 3D reconstruction follows, as above (Figure 20.11 gives some examples).

An alternative is to regress the joint angles against an image of the body.
The simplest regression method is to match the input to its nearest neighbor in
a large training set then output the value associated with that nearest neighbor.
Shakhnarovich et al. (2003) built a data set of 3D configurations and rendered
frames, obtained using POSER (a program that renders human figures, from Cre-
ative Labs). They show error rates on held out data for a variety of regression meth-
ods applied to the pool of neighbors obtained using parameter-sensitive hashing.
Generally, performance improves with more neighbors, with using a linear locally
weighted regression (where one builds a linear regression model out of a pool of
nearest neighbors), and when the method is robust. The best is a robust, linear,
locally weighted regression. Their method produces estimates of joint angles with
root mean square errors of approximately 20◦ for a 13 degree of freedom upper body
model; a version of this approach can produce full 3D shape estimates (Grauman
et al. 2004).



Section 20.4 3D from 2D: Lifting 615

FIGURE 20.12: The 3D configuration of the body can be reconstructed using a form of
nonparametric regression. Shakhnarovich et al. (2003) match the input frame (top row)
to a large selection of labeled frames. The nearest neighbors are shown in the center row;
these give a fair reconstruction in most cases, but can be improved by finding multiple
nearest neighbors and building a robust linear regression (bottom row). This figure
was originally published as Figure 5 of “Fast Pose Estimation with Parameter-Sensitive
Hashing,” by G. Shakhnarovich, P. Viola, and T. Darrell, Proc. CVPR 2003, 2003. c©
IEEE, 2003.

20.4.3 Exploiting Motion for Unambiguous Reconstructions

In many applications there is a video sequence of a moving person. In such cases,
it does not make sense to infer the 3D structure for each frame. It is a reliable
rule of thumb from the animation community that most body motions are quite
slow compared to reasonable video frame rates. Evidence includes, for example, the
relative ease with which motion capture sequences can be compressed with minimal
loss (Arikan 2006). This means that reconstructed body configurations for each
frame will not be independent, so that future (or past) frames may disambiguate
the current reconstruction.

Howe (2004) incorporates dynamical information into the distance cost, by
matching entire 3D motion paths to 2D image tracks. For each frame of a motion
sequence, we render every motion capture frame in our collection using a discretized
grid containing every possible camera and every possible root coordinate system.
Now we must construct a sequence of 3D motion reconstructions that (a) joins up
well and (b) looks like the tracked frames. This is an optimization problem. We
build a transition cost for going from each triple of (motion capture frame, cam-
era, root coordinate system) to every other such triple. This cost should penalize
excessively large body segment and camera velocities. We compute a match cost
comparing the rendered frame with the tracked frame. Write Fi for the ith frame
in tracked sequence, S for a reconstruction of that sequence, and (Li, Ci, Ri) for
the reconstruction frame and camera corresponding to Fi. The cost function for a


