
C H A P T E R 6

Texture

Texture is a phenomenon that is widespread, easy to recognise, and hard to define.
Typically, whether an effect is referred to as texture or not depends on the scale
at which it is viewed. A leaf that occupies most of an image is an object, but the
foliage of a tree is a texture. Views of large numbers of small objects are often best
thought of as textures. Examples include grass, foliage, brush, pebbles, and hair.
Many surfaces are marked with orderly patterns that look like large numbers of
small objects. Examples include the spots of animals such as leopards or cheetahs;
the stripes of animals such as tigers or zebras; the patterns on bark, wood, and
skin. Textures tend to show repetition: (roughly!) the same local patch appears
again and again, though it may be distorted by a viewing transformation.

Texture is important, because texture appears to be a very strong cue to
object identity. Most modern object recognition programs are built around texture
representation machinery of one form or another. This may be because texture
is also a strong cue to material properties: what the material that makes up an
object is like. For example, texture cues can be used to tell tree bark (which is
moderately hard and rough) from bare metal (which is hard, smooth, and shiny).
People seem to be able to predict some mechanical properties of materials from their
appearance. For example, often you can distinguish somewhat viscous materials,
like hand cream, from highly viscous materials, like cream cheese, by eye (Adelson
2001). Material properties are correlated to the identity of objects, but they are
not the same thing. For example, although hammers are commonly made of metal,
a plastic hammer, a metal hammer, and a wooden hammer are all still hammers.

There are three main kinds of texture representation. Local texture represen-
tations encode the texture very close to a point in an image. These representations
can’t be comprehensive, because they look at a small piece of the image. However,
they are very useful in image segmentation, where we must break an image into
large, useful components, usually called regions (the details of what makes a re-
gion useful are deferred to Chapter 9). One reasonable requirement is that points
inside a region look similar to one another, and different from points outside the
region, and segmentation algorithms need a description of the appearance close to
the point to impose this requirement. Local texture representations are described
in Section 6.1.

Other problems require a description of the texture within an image domain.
We refer to such representations as pooled texture representations. For example,
texture recognition is the problem of determining what texture is represented
by a patch in an image. Here we have a domain (the patch) and we want a repre-
sentation of the overall texture in the domain. Similarly, in material recognition,
one must decide what material is represented by a patch in the image. Section 6.2
describes methods for building pooled texture representations.

Data-driven texture representations model a texture by a procedure that can
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FIGURE 6.1: Although texture is difficult to define, it has some important and valuable
properties. In this image, there are many repeated elements (some leaves form repeated
“spots”; others, and branches, form “bars” at various scales; and so on). Our perception
of the material is quite intimately related to the texture (what would the surface feel like
if you ran your fingers over it? what is soggy? what is prickly? what is smooth?). Notice
how much information you are getting about the type of plants, their shape, the shape
of free space, and so on, from the textures. Geoff Brightling c© Dorling Kindersley, used
with permission.

generate a textured region from an example. These representations are not appro-
priate for segmentation or recognition applications, but are tremendously valuable
for texture synthesis. In this problem, we must create regions of texture, for exam-
ple, to fill holes in images (Section 6.3).

The texture on a surface can be a strong cue to its shape. If the texture is
“the same” over the surface, then deformation of the texture from point to point
can be a cue to the shape of the surface. For example, if we have a perspective view
of an inclined plane with spots on it, the spots will be smaller closer to the horizon
in the image. This can be used to recover the inclination of the plane. Similarly,
on a curved surface, the foreshortening of texture elements gives some information
about the local inclination of the surface. Recovering surface orientation or surface
shape from an image texture is known as shape from texture; solutions to this



Section 6.1 Local Texture Representations Using Filters 166

Fabric

Stone

FIGURE 6.2: Typically, different materials display different image textures. These are
example images from a collection of 1,000 material images, described in by Sharan et al.
(2009); there are 100 images in each of the ten categories, including the two categories
shown here (fabric and stone). Notice how (a) the textures vary widely, even within a
material category; and (b) different materials seem to display quite different textures.
This figure shows elements of a database collected by C. Liu, L. Sharan, E. Adelson, and
R. Rosenholtz, and published at http: // people. csail. mit. edu/ lavanya/ research_

sharan. html . Figure by kind permission of the collectors.

problem tend to use straightforward representations of texture together with strong
constraints on the overall structure of the texture (Section 6.5).

6.1 LOCAL TEXTURE REPRESENTATIONS USING FILTERS

Image textures generally consist of repeated elements; an element is sometimes
called a texton. For example, some of the fabric textures in Figure 6.2 consist of
triangles of wool formed by the knit pattern. Similarly, some stone textures in that
figure consist of numerous, near-circular, gray blobs. It is natural to represent a
texture with some description of (a) what the textons are and (b) how they repeat.
Notice that it is difficult to be precise about what a texton is, because if a large
pattern repeats frequently, then so do its parts. This presents no major problems,
because we do not need to extract textons accurately. Instead, what we need are
representations that differ in ways that are easy to observe when two textures are
significantly different. We can do this by assuming that all textons are made of
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FIGURE 6.3: Local texture representations can be obtained by filtering an image with a
set of filters at various scales, and then preparing a summary. Summaries ensure that, at
a pixel, we have a representation of what texture appears near that pixel. The filters are
typically spots and bars (see Figure 6.4). Filter outputs can be enhanced by rectifying
them (so that positive and negative responses do not cancel), then computing a local
summary of the rectified filter outputs. Rectifying by taking the absolute value means
that we do not distinguish between light spots on a dark background and dark spots
on a light background; the alternative, half-wave rectification (described in the text),
preserves this distinction at the cost of a fuller representation. One can summarize either
by smoothing (which will tend to suppress noise, as in the schematic example above) or
by taking the maximum over a neighborhood. Compare this figure to Figure 6.7, which
shows a representation for a real image.

generic subelements, such as spots and bars. We find subelements with filters, then
represent each point in the image with a summary of the pattern of subelements
nearby. This will work because the parts of a texton repeat in the same way that
the texton does.

This suggests representing image textures in terms of the response of a collec-
tion of filters. Each filter is a detector for a subelement. The collection of different
filters would represent subelements—spots and bars are usual—at a collection of
scales (to identify bigger or smaller subelements). We can now represent each point
in an image by the vector of filter outputs at that point. This vector gives a sense
of how much the neighborhood around that point looks like each subelement at
each scale (Figure 6.3).

6.1.1 Spots and Bars

But what filters should we use? There is no canonical answer. A variety of answers
have been tried. By analogy with the human visual cortex, one could use some
spot filters, some oriented edge filters, and some oriented bar filters at different
orientations and scales (Figure 6.4). This seems like a natural choice, because these
are in some sense “minimal” subelements. It would be hard to have subelements
of patterns with less structure than a spot, and it would be hard to have oriented
subelements with less structure than an edge.
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FIGURE 6.4: Left shows a set of 48 oriented filters used for expanding images into a series
of responses for texture representation. Each filter is shown on its own scale, with zero
represented by a mid-gray level, lighter values being positive, and darker values being
negative. The left three columns represent edges at three scales and six orientations; the
center three columns represent stripes; and the right two represent two classes of spots
(with and without contrast at the boundary) at different scales. This is the set of filters
used by Leung and Malik (2001). Right shows a set of orientation-independent filters,
used by Schmid (2001), using the same representation (there are only 13 filters in this set,
so there are five empty slots in the image). The orientation-independence property means
that these filters look like complicated spots.

In some applications, we would like texture recognition performance to be
unaffected if the texture sample is rotated. This is difficult to achieve with oriented
filters, because one might need to sample the orientations very finely. An alternative
to using oriented filters is to use filters that are orientation-independent, all of which
must look like complicated spots (Figure 6.4).

6.1.2 From Filter Outputs to Texture Representation

Assume we have an image I. A set of filter output maps (which would have the
form Fi ∗∗I for different filters Fi) is not, in itself, a representation of texture. The
representation tells us what the window around a pixel looks like; but in a texture,
what counts is not only what’s at a pixel, but also what’s nearby. For example, a
field of yellow flowers may consist of many small yellow spots with some vertical
green bars. What’s important is not just the fact that a particular pixel looks a
lot like a spot, but also that near the pixel there are no other spots, but some
bars. This means the texture representation at a point should involve some kind of
summary of nearby filter outputs, rather than just the filter outputs themselves.

The first step in building a reasonable summary is to notice that the summary
must represent a neighborhood around a pixel that is rather bigger than the scale
of the filter. To know whether the neighborhood around a pixel is “spotty,” it is
not enough to know that there is one strong spot in it; there should be many spots,
each quite small compared to the size of the patch. However, it is important not to
look at too large a neighborhood, or else the representation will not change much
as we move across the image (because the neighborhoods overlap). The particular
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FIGURE 6.5: Filter responses for the oriented filters of Figure 6.4, applied to an image of
a wall. At the center, we show the filters for reference (but not to scale, because they
would be too small to resolve). The responses are laid out in the same way that the filters
are (i.e., the response map on the top left corresponds to the filter on the top left, and
so on). For reference, we show the image at the left. The image of the wall is small, so
that the filters respond to structures that are relatively large; compare with Figure 6.6,
which shows responses to a larger image of the wall, where the filters respond to smaller
structures. These are filters of a fixed size, applied to a small version of the image, and
so are equivalent to large-scale filters applied to the original version. Notice the strong
response to the vertical and horizontal lines of mortar between the bricks, which are at
about the scale of the bar filters. All response values are shown on the same intensity
scale: lighter is positive, darker is negative, and mid-gray is zero.

arrangement of these spots within a neighborhood doesn’t matter all that much,
because the patch is small. This suggests that some form of average could give a
fair description of what is going on; an alternative is to take the strongest response.
We must process the responses before we summarize them. For example, a light
spot filter will give a positive response to a light spot on a dark background, and a
negative response to a dark spot on a light background. As a result, if we simply
average filter responses over a patch, then a patch containing dark and light spots
might record the same near-zero average as a patch containing no spots. This would
be misleading.

We could compute the absolute value for each output map, to get |Fi ∗ ∗I |.
This does not distinguish between light spots on a dark background and dark spots
on a light background. An alternative, which does preserve this distinction, is to
report both max(0,Fi∗∗I(x, y)) and max(0,−Fi∗∗I(x, y)) (this is half-wave rectifi-
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FIGURE 6.6: Filter responses for the oriented filters of Figure 6.4, applied to an image
of a wall. At the center, we show the filters for reference (not to scale). The responses
are laid out in the same way that the filters are (i.e., the response map on the top left
corresponds to the filter on the top left, and so on). For reference, we show the image at
the left. Although there is some response to the vertical and horizontal lines of mortar
between the bricks, it is not as strong as the coarse scale (Figure 6.5); there are also quite
strong responses to texture on individual bricks. All response values are shown on the
same intensity scale: lighter is positive, darker is negative, and mid-gray is zero.

cation), which yields two maps per filter. We can now summarize the neighborhood
around a pixel by computing a Gaussian weighted average (equivalently, convolving
with a Gaussian). The scale of this Gaussian depends on the scale of the filter for
the map; typically, it is around twice the scale of the filter.

6.1.3 Local Texture Representations in Practice

Several different sets of filters have been used for texture representation. The Visual
Geometry Group at Oxford publishes code for different sets of filters, written by
Manik Varma and by Jan-Mark Guesebroek, at http://www.robots.ox.ac.uk/

~vgg/research/texclass/filters.html; this is part of an excellent web page on
texture classification (http://www.robots.ox.ac.uk/~vgg/research/texclass/
index.html). One important part of filtering an image with a large number
of filters is doing so quickly; recent code for this purpose, by Jan-Mark Guese-
broek, can be found at http://www.science.uva.nl/research/publications/

2003/GeusebroekTIP2003/. Some sets of oriented filters allow fast, efficient rep-
resentations and have good translation and rotation properties. One such set is
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FIGURE 6.7: Filter-based texture representations look for pattern subelements such as
oriented bars. The brick image on the left is filtered with an oriented bar filter (shown as
a tiny inset on the top left of the image at full scale) to detect bars, yielding stripe responses
(center left; negative is dark, positive is light, mid-gray is zero). These are rectified (here
we use half-wave rectification) to yield response maps (center right; dark is zero, light
is positive). In turn, these are summarized (here we smoothed over a neighborhood twice
the filter width) to yield the texture representation on the right. In this, pixels that have
strong vertical bars nearby are light, and others are dark; there is not much difference
between the dark and light vertical structure for this image, but there is a real difference
between dark and light horizontal structure.

the steerable pyramid of Simoncelli and Freeman (1995a). Code for these filters is
available at http://www.cns.nyu.edu/~eero/steerpyr/.

6.2 POOLED TEXTURE REPRESENTATIONS BY DISCOVERING TEXTONS

A texture is a set of textons that repeat in some way. We could find these textons
by looking for image patches that are common. An alternative is to find sets of
texton subelements—that is, vectors of filter outputs—that are common (if textons
are repeated, then so are their subelements). There are two important difficulties
in finding image patches or vectors of filter outputs that commonly occur together.
First, these representations of the image are continuous. We cannot simply count
how many times a particular pattern occurs, because each vector is slightly different.
Second, the representation is high dimensional in either case. A patch around a
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Obtain a set of n filters representing subelements, at multiple scales
Apply each filter Fi to the image
For each filter response map Fi ∗ ∗I, compute

max(0,Fi ∗ ∗I(x, y)) and max(0,−Fi ∗ ∗I(x, y))
For each of the 2n rectified maps, compute local summaries

either by convolving with a Gaussian of scale approximately twice the
scale of the base filter, or by taking the maximum value over that radius.

Algorithm 6.1: Local Texture Representation Using Filters.

pixel might need hundreds of pixels to represent it well; similarly, hundreds of
different filters might be needed to represent the image at a pixel. This means we
cannot build a histogram directly, either, because it will have an unmanageable
number of cells.

6.2.1 Vector Quantization and Textons

Vector quantization is a strategy to deal with these difficulties. Vector quantization
is a way of representing vectors in a continuous space with numbers from a set
of fixed size. We first build a set of clusters out of a training set of vectors; this
set of clusters is often thought of as a dictionary. We now replace any new vector
with the cluster center closest to that vector. This strategy applies to vectors quite
generally, though we will use it for texture representation. Many different clusterers
can be used for vector quantization, but it is most common to use k-means or one
of its variants. For concreteness, we describe this algorithm in Section 6.2.2, but
the other clusterers of Chapter 9 would apply.

We can now represent a collection of vectors as a histogram of cluster centers.
This general recipe can be applied to texture representation by describing each
pixel in the domain with some vector, then vector quantizing and describing the
domain with the histogram of cluster centers. Natural vectors to use are: the local
summary representation described in Section 6.1; a vector of unprocessed filter
outputs, using filters appropriate for a local texture representation (Figure 6.9); or
even just a vector obtained by reshaping the pixels from a fixed-size patch around
the image pixel (Figure 6.10). In each case, we are building a representation in
terms of commonly repeated pattern elements.

6.2.2 K-means Clustering for Vector Quantization

We could use any clustering method to vector quantize (Chapter 9 describes a
number of different clustering methods in the context of segmentation). However,
by far the most common method used is k-means clustering. Assume we have a set
of data items that we wish to cluster. We now assume that we know how many
clusters there are in the data, which we write k. This is equivalent to fixing the
number of values we wish to quantize to. Each cluster is assumed to have a center;
we write the center of the ith cluster as ci. The jth data item to be clustered
is described by a feature vector xj . In our case, these items are vectors of filter



Section 6.2 Pooled Texture Representations by Discovering Textons 173

Dictionary

Cluster

1

2

3

2

31

3

Replace

with 

closest

cluster

center Histogram

L
ea

rn
in

g
 a

 d
ic

ti
o
n
ar

y
R

ep
re

se
n
ti

n
g
 a

 r
eg

io
n

FIGURE 6.8: There are two steps to building a pooled texture representation for a texture
in an image domain. First, one builds a dictionary representing the range of possible pat-
tern elements, using a large number of texture patches. This is usually done in advance, us-
ing a training data set of some form. Second, one takes the patches inside the domain, vec-
tor quantizes them by identifying the number of the closest cluster center, then computes
a histogram of the different cluster center numbers that occur within a region. This his-
togram might appear to contain no spatial information, but this is a misperception. Some
frequent elements in the histogram are likely to be textons, but others describe common
ways in which textons lie close to one another; this is a rough spatial cue. This figure shows
elements of a database collected by C. Liu, L. Sharan, E. Adelson, and R. Rosenholtz, and
published at http: // people. csail. mit. edu/ lavanya/ research_ sharan. html . Fig-
ure by kind permission of the collectors.

Build a dictionary:
Collect many training example textures
Construct the vectors x for relevant pixels; these could be
a reshaping of a patch around the pixel, a vector of filter outputs
computed at the pixel, or the representation of Section 6.1.

Obtain k cluster centers c for these examples

Represent an image domain:
For each relevant pixel i in the image

Compute the vector representation xi of that pixel
Obtain j, the index of the cluster center cj closest to that pixel
Insert j into a histogram for that domain

Algorithm 6.2: Texture Representation Using Vector Quantization.
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FIGURE 6.9: Pattern elements can be identified by vector quantizing vectors of filter
outputs, using k-means. Here we show the top 50 pattern elements (or textons), obtained
from all 1,000 images of the collection of material images described in Figure 6.2. These
were filtered with the complete set of oriented filters from Figure 6.4. Each subimage
here illustrates a cluster center. For each cluster center, we show the linear combination
of filter kernels that would result in the set of filter responses represented by the cluster
center. For some cluster centers, we show the 25 image patches in the training set whose
filter representation is closest to the cluster center. This figure shows elements of a
database collected by C. Liu, L. Sharan, E. Adelson, and R. Rosenholtz, and published
at http: // people. csail. mit. edu/ lavanya/ research_ sharan. html . Figure by kind
permission of the collectors.

responses observed at image locations.
Because pattern elements repeat, and so are common, we can assume that

most data items are close to the center of their cluster. This suggests that we
cluster the data by minimizing the the objective function

Φ(clusters, data) =
∑

i∈clusters







∑

j∈ith cluster

(xj − ci)
T (xj − ci)






.

Notice that if we know the center for each cluster, it is easy to determine which
cluster is the best choice for each point. Similarly, if the allocation of points to
clusters is known, it is easy to compute the best center for each cluster. However,
there are far too many possible allocations of points to clusters to search this space
for a minimum. Instead, we define an algorithm that iterates through two activities:
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FIGURE 6.10: Pattern elements can also be identified by vector quantizing vectors obtained
by reshaping an image window centered on each pixel. Here we show the top 50 pattern
elements (or textons), obtained using this strategy from all 1,000 images of the collection
of material images described in Figure 6.2. Each subimage here illustrates a cluster center.
For some cluster centers, we show the closest 25 image patches. To measure distance, we
first subtracted the average image intensity, and we weighted by a Gaussian to ensure that
pixels close to the center of the patch were weighted higher than those far from the center.
This figure shows elements of a database collected by C. Liu, L. Sharan, E. Adelson, and
R. Rosenholtz, and published at http: // people. csail. mit. edu/ lavanya/ research_

sharan. html . Figure by kind permission of the collectors.

• Assume the cluster centers are known and, allocate each point to the closest
cluster center.

• Assume the allocation is known, and choose a new set of cluster centers. Each
center is the mean of the points allocated to that cluster.

We then choose a start point by randomly choosing cluster centers, and then iterate
these stages alternately. This process eventually converges to a local minimum of
the objective function (the value either goes down or is fixed at each step, and
it is bounded below). It is not guaranteed to converge to the global minimum of
the objective function, however. It is also not guaranteed to produce k clusters,
unless we modify the allocation phase to ensure that each cluster has some nonzero
number of points. This algorithm is usually referred to as k-means (summarized in
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Algorithm 6.3). It is possible to search for an appropriate number of clusters by
applying k-means for different values of k and comparing the results; we defer a
discussion of this issue until Section 10.7.

Choose k data points to act as cluster centers
Until the cluster centers change very little

Allocate each data point to cluster whose center is nearest.
Now ensure that every cluster has at least
one data point; one way to do this is by
supplying empty clusters with a point chosen at random from
points far from their cluster center.

Replace the cluster centers with the mean of the elements
in their clusters.

end

Algorithm 6.3: Clustering by K-Means.

6.3 SYNTHESIZING TEXTURES AND FILLING HOLES IN IMAGES

Many different kinds of user want to remove things from images or from video. Art
directors might like to remove unattractive telephone wires; restorers might want to
remove scratches or marks; there’s a long history of government officials removing
people with embarrassing politics from publicity pictures (see the fascinating pic-
tures in King (1997)); and home users might wish to remove a relative they dislike
from a family picture. All these users must then find something to put in place of
the pixels that were removed. Ideally, a program would create regions of texture
that fit in and look convincing, using either other parts of the original image, or
other images.

There are other important applications for such a program. One is to produce
large quantities of texture for digital artists to apply to object models. We know
that good textures make models look more realistic (it’s worth thinking about why
this should be true). Tiling small texture images tends to work poorly, because it
can be hard to obtain images that tile well. The borders have to line up properly,
and even when they do, the resulting periodic structure can be annoying.

6.3.1 Synthesis by Sampling Local Models

As Efros and Leung (1999) point out, an example texture can serve as a probability
model for texture synthesis (Figure 6.11). Assume for the moment that we know
every pixel in the synthesized image, except one. To obtain a probability model for
the value of that pixel, we could match a neighborhood of the pixel to the example
image. Every matching neighborhood in the example image has a possible value for
the pixel of interest. This collection of values is a conditional histogram for the pixel
of interest. By drawing a sample uniformly and at random from this collection, we
obtain the value that is consistent with the example image.

We must now take some form of neighborhood around the pixel of interest,
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compare it to neighborhoods in the example image, and select some of these to form
a set of example values. The size and shape of this neighborhood is significant,
because it codes the range over which pixels can affect one another’s values directly
(see Figure 6.12). Efros et al. use a square neighborhood, centered at the pixel of
interest.

Choose a small square of pixels at random from the example image
Insert this square of values into the image to be synthesized
Until each location in the image to be synthesized has a value
For each unsynthesized location on
the boundary of the block of synthesized values
Match the neighborhood of this location to the
example image, ignoring unsynthesized
locations in computing the matching score

Choose a value for this location uniformly and at random
from the set of values of the corresponding locations in the
matching neighborhoods

end
end

Algorithm 6.4: Non-parametric Texture Synthesis.

The neighborhoods we select will be similar to the image example in some
sense. A good measure of similarity between two image neighborhoods can be
measured by forming the sum of squared differences (or ssd) of corresponding pixel
values. We assume that the missing pixel is at the center of the patch to be
synthesized, which we write S. We assume the patch is square, and adjust the
indexes of the patch to run from −n to n in each direction. The sum of squared
differences between this patch and an image patch P of the same size is given by

∑

(i,j)∈patch,(i,j) 6=(0,0)

(Aij − Bij)2.

The notation implies that because we don’t know the value of the pixel to be
synthesized (which is at (0, 0)), we don’t count it in the sum of squared differences.
This similarity value is small when the neighborhoods are similar, and large when
they are different (it is essentially the length of the difference vector). However,
this measure places the same weight on pixels close to the unknown value as it does
on distant pixels. Better results are usually obtained by weighting up nearby pixels
and weighting down distant pixels. We can do so using Gaussian weights, yielding

∑

(i,j)∈patch,(i,j) 6=(0,0)

(Aij − Bij)2 exp
(−(i2 + j2)

2σ2

)

.

Now we know how to obtain the value of a single missing pixel: choose uniformly
and at random amongst the values of pixels in the example image whose neigh-
borhoods match the neighborhood of our pixel. We cannot choose those matching
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FIGURE 6.11: Efros and Leung (1999) synthesize textures by matching neighborhoods of
the image being synthesized to the example image, and then choosing at random amongst
the possible values reported by matching neighborhoods (Algorithm 6.4). This means
that the algorithm can reproduce complex spatial structures, as these examples indicate.
The small block on the left is the example texture; the algorithm synthesizes the block
on the right. Note that the synthesized text looks like text: it appears to be constructed
of words of varying lengths that are spaced like text, and each word looks as though it
is composed of letters (though this illusion fails as one looks closely). This figure was
originally published as Figure 3 of “Texture Synthesis by Non-parametric Sampling,” A.
Efros and T.K. Leung, Proc. IEEE ICCV, 1999 c© IEEE, 1999.

neighborhoods by just setting a threshold on the similarity function, because we
might not have any matches. A better strategy to find matching neighborhoods
is to select all whose similarity value is less than (1 + ǫ)smin, where smin is the
similarity function of the closest neighborhood and ǫ is a parameter.

Generally, we need to synthesize more than just one pixel. Usually, the values
of some pixels in the neighborhood of the pixel to be synthesized are not known;
these pixels need to be synthesized too. One way to obtain a collection of examples
for the pixel of interest is to count only the known values in computing the sum
of squared differences, and scale the similarity to take into account the number of
known pixels. Write K for the set of pixels around a point whose values are known,
and ♯K for the size of this set. We now have, for the similarity function,

1

♯K
∑

(i,j)∈K
(Aij − Bij)2 exp

(−(i2 + j2)

2σ2

)

.

The synthesis process can be started by choosing a block of pixels at random from
the example image, yielding Algorithm 6.4.

Filling in Patches



Section 6.3 Synthesizing Textures and Filling Holes in Images 179

FIGURE 6.12: The size of the image neighborhood to be matched makes a significant
difference in Algorithm 6.4. In the figure, the textures at the right are synthesized from
the small blocks on the left, using neighborhoods that are increasingly large as one moves
to the right. If very small neighborhoods are matched, then the algorithm cannot capture
large-scale effects easily. For example, in the case of the spotty texture, if the neighborhood
is too small to capture the spot structure (and so sees only pieces of curve), the algorithm
synthesizes a texture consisting of curve segments. As the neighborhood gets larger, the
algorithm can capture the spot structure, but not the even spacing. With very large
neighborhoods, the spacing is captured as well. This figure was originally published as
Figure 2 of “Texture Synthesis by Non-parametric Sampling,” A. Efros and T.K. Leung,
Proc. IEEE ICCV, 1999 c© IEEE, 1999.

Synthesizing a large texture in terms of individual pixels will be unnecessarily
slow. Because textures repeat, we expect that whole blocks of pixels also should
repeat. This suggests synthesizing a texture in terms of image patches, rather than
just pixels. Most of the mechanics of the procedure follow those for pixels: to
synthesize a texture patch at a location, we find patches likely to fit (because they
have pixels that match the boundary at that location), then choose uniformly and
at random from among them. However, when we place down the new patch, we
must deal with the fact that some (ideally, many) of its pixels overlap with pixels
that have already been synthesized. This problem is typically solved by image
segmentation methods, and we defer that discussion to Chapter 9.

6.3.2 Filling in Holes in Images

There are four approaches we can use to fill a hole in an image. Matching meth-
ods find another image patch that looks a lot like the boundary of the hole, place
that patch over the hole, and blend the patch and the image together. The patch
might well be found in the image (for example, Figure 6.13). If we have a very large
set of images, we could find a patch by looking for another image that matches the
image with a hole in it. Hays and Efros (2007) show this strategy can be extremely
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FIGURE 6.13: If an image contains repeated structure, we have a good chance of finding
examples to fill a hole by searching for patches that are compatible with its boundaries.
Top left: An image with a hole in it (black pixels in a rough pedestrian shape). The
pixels on the region outside the hole, but inside the boundary marked on the image,
match pixels near the other curve, which represents a potentially good source of hole-
filling pixels. Top right: The hole filled by placing the patch over the hole, then using
a segmentation method (Chapter 9) to choose the right boundary between patch and
image. This procedure can work for apparently unpromising images, such as the one on
the bottom left, an image of the facade of a house, seen at a significant slant. This
slant means that distant parts of the facade are severely foreshortened. However, if we
rectify the facade using methods from Section 1.3, then there are matching patches. On
the bottom right, the hole has been filled in using a patch from the rectified image,
that is then slanted again. This figure was originally published as Figures 3 and 6 of
“Hole Filling through Photomontage,” by M. Wilczkowiak, G. Brostow, B. Tordoff, and
R. Cipolla, Proc. BMVC, 2005 and is reproduced by kind permission of the authors.

successful. Blending is typically achieved using methods also used for image seg-
mentation (Section 9.4.3 describes one method that can be used for blending).

As you would expect, matching methods work very well when a good match
is available, and poorly otherwise. If the hole is in a region of relatively regular
texture, then a good match should be easy to find. If the texture is less strongly
structured, it might be hard to find a good match. In cases like this, it makes
sense to try and synthesize the texture over the region of the hole, using the rest
of the image as an example. Making such texture synthesis methods work well
requires considerable care, because the order in which pixels are synthesized has
a strong effect on the results. Texture synthesis tends to work better for patches
when most of their neighbors are known, because the match is more constrained.
As a result, one wants to synthesize patches at the boundary of the hole. It is
also important to extend edges at the boundary of the hole into the interior (for
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Image Hole

Onionskin order

Boundary edges

FIGURE 6.14: Texture synthesis methods can fill in holes accurately, but the order in
which pixels are synthesized is important. In this figure, we wish to remove the sign,
while preserving the signpost. Generally, we want to fill in pixels where most of the
neighbors are known first. This yields better matching patches. One way to do so is to fill
in from the boundary. However, if we simply work our way inwards (onionskin filling), long
scale image structures tend to disappear. It is better to fill in patches close to edges first.
This figure was originally published as Figure 11 of “Region Filling and Object Removal
by Exemplar-Based Image Inpainting,” by A. Criminisi, P. Perez, and K. Toyama, IEEE
Transactions on Image Processing, 2004 c© IEEE, 2004.

example, see Figure 6.14); in practice, this means that it is important to synthesize
patches at edges on the boundary before one fills in other patches. It is possible
to capture both requirements in a priority function ((Criminisi et al. 2004)), which
specifies where to synthesize next.

If we choose an image patch at (i, j) as an example to fill in location (u, v)
in the hole, then image patches near (i, j) are likely to be good for filling in points
near (u, v). This observation is the core of coherence methods, which apply this
constraint to texture synthesis. Finally, some holes in images are not really texture
holes; for example, we might have a hole in a smoothly shaded region. Texture
synthesis and matching methods tend to work poorly on such holes, because the
intensity structure on the boundary is not that distinctive. As a result, we may
find many matching patches, some of which have jarring interiors. Variational
methods apply in these cases. Typically, we try to extend the level curves of the
image into the hole in a smooth way. Modern hole-filling methods use a combi-
nation of these approaches, and can perform very well on quite demanding tasks
(Figure 6.15).
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Initial Image

Initial Image Object masked out

Object masked out

Object composited back

Initial Image Hole Extended by hole filling

FIGURE 6.15: Modern hole-filling methods get very good results using a combination of
texture synthesis, coherence, and smoothing. Notice the complex, long-scale structure
in the background texture for the example on the top row. The center row shows an
example where a subject was removed from the image and replaced in a different place.
Finally, the bottom row shows the use of hole-filling to resize an image. The white block
in the center mask image is the “hole” (i.e., unknown pixels whose values are required to
resize the image). This block is filled with a plausible texture. This figure was originally
published as Figures 9 and 15 of “A Comprehensive Framework for Image Inpainting,”
by A. Bugeau, M. Bertalmı́o, V. Caselles, and G. Sapiro, Proc. IEEE Transactions on
Image Processing, 2010 c© IEEE, 2010.

6.4 IMAGE DENOISING

This section addresses the problem of reconstructing an image given the noisy ob-
servations gathered by a digital camera sensor. Today, with advances in sensor
design, the signal is relatively clean for digital SLRs at low sensitivities, but it
remains noisy for consumer-grade and mobile-phone cameras at high sensitivities
(low-light and/or high-speed conditions). Adding to the demands of consumer and
professional photography those of astronomy, biology, and medical imaging, it is
thus clear that image restoration is still of acute and in fact growing importance.
Working with noisy images recorded by digital cameras is difficult because different
devices produce different kinds of noise, and introduce different types of artifacts
and spatial correlations in the noise as a result of internal post-processing (demo-
saicking, white balance, etc.).


