
C H A P T E R 11

Tracking

Tracking is the problem of generating an inference about the motion of an object
given a sequence of images. Generally, we will have some measurements that appear
at each tick of a (notional) clock. These measurements could be the position of
some image points, the position and moments of some image regions, or pretty
much anything else. They are not guaranteed to be relevant, in the sense that some
could come from the object of interest and some might come from other objects or
from noise. We will have an encoding of the object’s state and some model of how
this state changes from tick to tick. We would like to infer the state of the world
from the measurements and the model of dynamics.

Tracking problems are of great practical importance. There are very good
reasons to want to, say, track aircraft using radar returns (good summary histories
include Brown (2000); Buderi (1998); and Jones (1998); comprehensive reviews
of technique in this context include Bar-Shalom and Li (2001); Blackman and
Popoli (1999); and Gelb and of the Analytical Sciences Corporation (1974)). Other
important applications include:

• Motion Capture: If we can track the 3D configuration of a moving person
accurately, then we can make an accurate record of their motions. Once we
have this record, we can use it to drive a rendering process; for example,
we might control a cartoon character, thousands of virtual extras in a crowd
scene, or a virtual stunt avatar. Furthermore, we could modify the motion
record to obtain slightly different motions. This means that a single performer
can produce sequences they wouldn’t want to do in person.

• Recognition from Motion: The motion of objects is quite characteristic.
We might be able to determine the identity of the object from its motion. We
should be able to tell what it’s doing.

• Surveillance: Knowing what the objects are doing can be very useful. For
example, different kinds of trucks should move in different, fixed patterns in
an airport; if they do not, then something is going wrong. Similarly, there
are combinations of places and patterns of motions that should never occur
(e.g., no truck should ever stop on an active runway). It could be helpful to
have a computer system that can monitor activities and give a warning when
it detects a problem case.

• Targeting: A significant fraction of the tracking literature is oriented toward
(a) deciding what to shoot, and (b) hitting it. Typically, this literature de-
scribes tracking using radar or infrared signals (rather than vision), but the
basic issues are the same: What do we infer about an object’s future position
from a sequence of measurements? Where should we aim?

326

Section 11.1 Simple Tracking Strategies 327

Generally, we regard a moving object as having a state. This state—which
might not be observed directly—encodes all the properties of the object we care
to deal with, or need to encode its motion. For example, state might contain:
position; position and velocity; position, velocity, and acceleration; position and
appearance; and so on. This state changes at each tick of time, and we then get
new measurements that depend on the new state. These measurements are referred
to as observations. In many problems, the observations are measurements of state,
perhaps incorporating some noise. For example, the state might be the position
of the object, and we observe its position. In other problems, the observations
are functions of state. For example, the state might be position and velocity, but
we observe only position. In some tracking problems, we have a model of how
the state changes with time. The information in this model is referred to as the
object’s dynamics. Tracking involves exploiting both observations and dynamics to
infer state.

The most important property of visual tracking problems is that observations
are usually hidden in a great deal of irrelevant information. For example, if we
wish to track a face in a video frame, in most cases the face occupies fewer than
a third of the pixels in the video frame. In almost every case, the pixels that do
not lie on the face have nothing useful to offer about the state of the face. This
means that we face significant problems identifying which observations are likely
to be helpful. The main methods for doing so involve either building a detector
(Section 11.1.1) or exploiting the tendency for objects to look the same over time,
and to move coherently (Section 11.1.2 and Section 11.2). It is straightforward to
balance dynamical predictions against measurements using probabilistic methods if
the dynamical model is relatively straightforward, because the probability models
are easy to represent (Section 11.3). Furthermore, dynamical predictions can be
used to identify useful measurements (Section 11.4). Non-linear dynamical mod-
els can produce probability models that need to be represented with approximate
methods (Section 11.5).

11.1 SIMPLE TRACKING STRATEGIES

There are two simple ways to track objects. In the first, tracking by detection, we
have a strong model of the object, strong enough to identify it in each frame. We
find it, link up the instances, and we have a track. Some additional machinery can
compensate for weaker models in many cases, too (Section 11.1.1). In the second,
tracking by matching, we have a model of how the object moves. We have a domain
in the nth frame in which the object sits, and then use this model to search for a
domain in the n+1th frame that matches it (Section 11.1.2). Tracking by matching
strategies become more elaborate as the motion model and the matching model
becomes more elaborate; we deal with the more elaborate strategies in Section 11.2.

11.1.1 Tracking by Detection

Assume that we will see only one object in each frame of video, that the state we
wish to track is position in the image, and that we can build a reliable detector for
the object we wish to track. In this case, tracking is straightforward: we report
the location of the detector response in each frame of the video. This observation

Section 11.1 Simple Tracking Strategies 328

n

n+1

n+2

n

n+1

n+2

Track 2

Track 1

(a)
(b)

(c)

FlowAppearance

FIGURE 11.1: In tracking problems, we want to build space time paths followed by
tokens—which might be objects, or regions, or interest points, or image windows—in
an image sequence (left). There are two important sources of information; carefully used,
they can resolve many tracking problems without further complexity. One is the appear-
ance of the token being tracked. If there is only one token in each frame with a distinctive
appearance, then we could detect it in each frame, then link the detector responses (a).
Alternatively, if there is more than one instance per frame, a cost function together with
weighted bipartite matching could be enough to build the track (b). If some instances
drop out, we will need to link detector responses to abstract tracks (c); in the figure, track
1 has measurements for frames n and n+ 2, but does not have a measurement for frame
n+ 1. Another important source of information is the motion of the token; if we have a
manageable model of the flow, we could search for the flow that generates the best match
in the next frame. We choose that match as the next location of the token, then iterate
this procedure (right).

is a good source of simple and effective tracking strategies, because we can build
good detectors for some objects. For example, consider tracking a red ball on a
green background, where the detector might just look for red pixels. In other cases,
we might need to use a more sophisticated detector; for example, we might wish
to track a frontal face looking at a camera (detectors are discussed in detail in
Chapter 17).

In most cases, we can’t assume only one object, or a reliable detector. If
objects can enter or leave the frame (or if the detector occasionally fails to detect
something), then it isn’t enough to just report the location of an object at each
frame. We must account for the fact that some frames have too many (or too
few) objects in them. To do this, we will have an abstraction called a track,
which represents a timeline for a single object. Assume that we have tracked for

Section 11.1 Simple Tracking Strategies 329

a while and wish to deal with a new frame. We copy the tracks from the previous
frame to this frame, and then allocate object detector responses to tracks. How
we allocate depends on the application (we give some examples below). Each track
will get at most one detector response, and each detector response will get at most
one track. However, some tracks may not receive a detector response, and some
detector responses may not be allocated a track. Finally, we deal with tracks
that have no response and with responses that have no track. For every detector
response that is not allocated to a track, we create a new track (because a new
object might have appeared). For every track that has not received a response for
several frames, we prune that track (because the object might have disappeared).
Finally, we may postprocess the set of tracks to insert links where justified by the
application. Algorithm 11.1 breaks out this approach.

The main issue in allocation is the cost model, which will vary from application
to application. We need a charge for allocating detects to tracks. For slow-moving
objects, this charge could be the image distance between the detect in the current
frame and the detect allocated to the track in the previous frame. For objects
with slowly changing appearance, the cost could be an appearance distance (e.g.,
a χ-squared distance between color histograms). How we use the distance again
depends on the application. In cases where the detector is very reliable and the
objects are few, well-spaced, and slow-moving, then a greedy algorithm (allocate the
closest detect to each track) is sufficient. This algorithm might attach one detector
response to two tracks; whether this is a problem or not depends on the application.
The more general algorithm solves a bipartite matching problem. The tracks form
one side of a bipartite graph, and the detector responses are the other side. Each
side is augmented by NULL nodes, so that a track (or response) can go unmatched.
The edges are weighted by matching costs, and we must solve a maximum weighted
bipartite matching problem (Figure 11.1). We could solve this exactly with the
Hungarian algorithm (see, for example, Cormen et al. (2009); Schrijver (2003);
or Jungnickel (1999)); very often, however, the quite good approximation that a
greedy algorithm will supply is sufficient. In some cases, we know where objects can
appear and disappear, so that tracks can be created only for detects that occur in
some region, and tracks can be reaped only if the last detect occurs in a disappear
region.

Background subtraction is often a good enough detector in applications where
the background is known and all trackable objects look different from the back-
ground. In such cases, it can be enough to apply background subtraction and
regard the big blobs as detector responses. This strategy is simple, but can be very
effective. One useful case occurs for people seen on a fixed background, such as a
corridor or a parking lot. If the application doesn’t require a detailed report of the
body configuration, and if we expect people to be reasonably large in view, we can
reason that large blobs produced by background subtraction are individual people.
Although this method has weaknesses—for example, if people are still for a long
time, they might disappear; it would require more work to split up the large blob of
foreground pixels that occurs when two people are close together; and so on—many
applications require only approximate reports of the traffic density, or alarms when
a person appears in a particular view. The method is well suited to such cases.

This basic recipe for tracking by detection is worth remembering. In many

Section 11.1 Simple Tracking Strategies 330

Notation:
Write xk(i) for the k’th response of the detector in the ith frame
Write t(k, i) for the k’th track in the ith frame
Write ∗t(k, i) for the detector response attached to the k’th track in the ith frame
(Think C pointer notation)

Assumptions: We have a detector which is reasonably reliable.
We know some distance d such that d(∗t(k, i− 1), ∗t(k, i)) is always small.

First frame: Create a track for each detector response.

N’th frame:
Link tracks and detector responses by solving a bipartite matching problem.
Spawn a new track for each detector response not allocated to a track.
Reap any track that has not received a detector response for some number of
frames.

Cleanup: We now have trajectories in space time. Link anywhere this is
justified (perhaps by a more sophisticated dynamical or appearance model, derived
from the candidates for linking).

Algorithm 11.1: Tracking by Detection.

situations, nothing more complex is required. The trick of creating tracks promis-
cuously and then pruning any track that has not received a measurement for some
time is quite general and extremely effective.

11.1.2 Tracking Translations by Matching

Assume we have a television view of a soccer field with players running around.
Each player might occupy a box about 10–30 pixels high, so it would be hard to
determine where arms and legs are (Figure 11.2). The frame rate is 30Hz, and body
parts don’t move all that much (compared to the resolution) from frame to frame.
In a case like this, we can assume that the domain translates. We can model a
player’s motion with two components. The first is the absolute motion of a box
fixed around the player and the second is the player’s movement relative to that
box. To do so, we need to track the box, a process known as image stabilization.
As another example of how useful image stabilization is, one might stabilize a
box around an aerial view of a moving vehicle; now the box contains all visual
information about the vehicle’s identity.

In each example, the box translates. If we have a rectangle in frame n, we
can search for the rectangle of the same size in frame n + 1 that is most like the
original. We are looking for a box that looks a lot like the current box, so we can
use the sum-of-squared differences (or SSD) of pixel values as a test for similarity.

If we write R(n) for the rectangle in the nth frame, R(n)
ij for the i, jth pixel in the

Section 11.1 Simple Tracking Strategies 331

FIGURE 11.2: A useful application of tracking is to stabilize an image box around a more
interesting structure, in this case a football player in a television-resolution video. A frame
from the video is shown on the left. Inset is a box around a player, zoomed to a higher
resolution. Notice that the limbs of the player span a few pixels, are blurry, and are
hard to resolve. A natural feature for inferring what the player is doing can be obtained
by stabilizing the box around the player, then measuring the motion of the limbs with
respect to the box. Players move relatively short distances between frames, and their body
configuration changes a relatively small amount. This means the new box can be found
by searching all nearby boxes of the same size to get the box whose pixels best match
those of the original. On the right, a set of stabilized boxes; the strategy is enough to
center the player in a box. This figure was originally published as Figure 7 of “Recognizing
Action at a Distance,” A. Efros, A.C. Berg, G. Mori, and J. Malik, Proc. IEEE ICCV,
2003, c© IEEE, 2003.

rectangle in the nth image, then we choose R(n+1) to minimize

∑

i,j

(R(n)
ij −R

(n+1)
ij)2.

In many applications the distance the rectangle can move in an inter-frame interval
is bounded because there are velocity constraints. If this distance is small enough,
we could simply evaluate the sum of squared differences to every rectangle of the
appropriate shape within that bound, or we might consider a search across scale
for the matching rectangle (see Section 4.7 for more information).

Now write Pt for the indices of the patch in the tth frame and I(x, t) for the
tth frame. Assume that the patch is at xt in the tth frame and it translates to
xt + h in the t+ 1th frame. Then we can determine h by minimizing

E(h) =
∑

u∈Pt

[I(u, t)− I(u+ h, t+ 1)]
2

as a function of h. The minimum of the error occurs when

∇hE(h) = 0.

Now if h is small, we can write I(u + h, t+ 1) ≈ I(u, t) + hT∇I, where ∇I is the

Section 11.1 Simple Tracking Strategies 332

FIGURE 11.3: It is natural to track local neighborhoods, like those built in Section 5.3.2;
however, for these neighborhoods to yield good tracks, they should pass a test of appear-
ance complexity, shown in the text. This test checks that estimates of the translation
of the neighborhood are stable. Top left: the first frame of an image sequence, with
possible neighborhoods that pass this test shown on the bottom left. On the right,
the sum-of-squared differences between the translated patch in frame n and the original
in frame 1. Notice how this drifts up, meaning that the accumulated motion over many
frames is not a translation; we need a better test to identify good tracks. This figure was
originally published as Figures 10, 11, 12 of “Good features to track,” by J. Shi and C.
Tomasi, Proc. IEEE CVPR 1994, c© IEEE, 1994.

image gradient. Substituting, and rearranging, we get

[
∑

u∈Pt

(∇I)(∇I)T
]

h =
∑

u∈Pt

[I(u, t)− I(u, t+ 1)]∇I,

which is a linear system we could solve directly for h. The solution of this system
will be unreliable if the smaller eigenvalue of the symmetric positive semidefinite
matrix

[∑

u∈Pt
(∇I)(∇I)T

]
is too small. This occurs when the image gradients

in P are all small—so the patch is featureless—or all point in one direction—so
that we cannot localize the patch along that flow direction. If the estimate of h
is unreliable, we must end the track. As Shi and Tomasi (1994) point out, this
means that we can test the smallest eigenvalue of this matrix to tell whether a local
window is worth tracking.

11.1.3 Using Affine Transformations to Confirm a Match

Some patches are like the soccer player example in Figure 11.2: the patch just
translates. For other patches, the movement from frame n to n + 1 is quite like a
translation, but when one compares frame 1 to frame n+1, a more complex model
of deformation is required. This could occur because, for example, the surface

Section 11.1 Simple Tracking Strategies 333

FIGURE 11.4: On the top left, the first frame of the sequence shown in Figure 11.3, with
some neighborhoods overlaid. On the bottom left, the neighborhoods associated with
these features (vertical) for different frames (horizontal). Notice how the pattern in the
neighborhood deforms, perhaps because the object is rotating in 3D. This means that a
translation model is good for the movement from frame n to frame n + 1, but does not
explain the movement from frame 1 to frame n + 1. For this, we need to use an affine
model. On the right, the value of the sum-of-squared differences between neighborhoods
on a track in frame n and in frame 1, plotted against n. In this case, the neighborhood
has been rectified by an affine transform, as in Section 11.1.3, before computing the SSD.
Notice how some tracks are obviously good and others can be seen to have drifted. We
could use this property to prune tracks. This figure was originally published as Figures
13, 14, 15 of “Good features to track,” by J. Shi and C. Tomasi, Proc. IEEE CVPR 1994,
c© IEEE, 1994.

on which the patch lies is rotating in 3D. In cases such as this, we should use a
translation model to build a track, and then prune tracks by checking the patch in
frame n+ 1 against frame 1. Because the image patch is small, an affine model is
appropriate. The affine model means that the point x in frame 1 will become the
pointMx+ c in frame t. To estimateM and c, we will minimize

E(M, c) =
∑

u∈P1

[I(u, 1)− I(Mu+ c, t)]
2
.

Notice that, because we are comparing the original patch in frame 1 with that in
the current frame, the sum is over u ∈ P1. Once we haveM and c, we can evaluate
the SSD between the current patch and its original, and if this is below a threshold,
the match is acceptable.

These two steps lead to a quite flexible mechanism. We can start tracks using
an interest point operator, perhaps a corner detector. To build a tracker that can

Section 11.2 Tracking Using Matching 334

30 75 140 150

FIGURE 11.5: Four frames from a sequence depicting football players, with superimposed
domains. The object to be tracked is the blob on top of player 78 (at the center right in
frame 30). We have masked off these blobs (below) to emphasize just how strongly the
pixels move around in the domain. Notice the motion blur in the final frame. These blobs
can be matched to one another, and this is done by comparing histograms (in this case,
color histograms), which are less affected by deformation than individual pixel values.
This figure was originally published as Figure 1 of “Kernel-Based Object Tracking” by
D. Comaniciu, V. Ramesh, and P. Meer, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2003, c© IEEE 2003.

create and reap tracks as necessary, we find all interest points in frame 1. We then
find the location of each of these in the next frame, and check whether the patch
matches the original one. If so, it belongs to a track. If not, the track has ended.
We now look for interest points or corners that don’t belong to tracks and create
new tracks there. Again, we advance tracks to the next frame, check each against
their original patch, reap tracks whose patch doesn’t match well enough, and create
tracks at new interest points. In Section 11.4.1, we show how to link this procedure
with a dynamical model built from a Kalman filter (Kalman filters are described
in Section 11.3).

11.2 TRACKING USING MATCHING

Imagine tracking a face in a webcam. The face is not necessarily frontal, because
computer users occasionally look away from their monitors, and so a detector will
not work. But a face tends to be blobby, tends to have coherent appearance, and
tends only to translate and rotate. As with the strategy of Section 11.1.2, we have
a domain of interest in the nth image, Dn, and we must search for a matching
domain Dn+1 in the n+ 1st image, but our motion model is more complex.

There are two types of match we can work with. In summary matching, we
match summary representations of the whole domain. We will represent a domain
with a set of parameters; for example, we could work with circular domains of fixed
radius, and represent the domain by the location of the center. We then compute a
summary of the appearance within the circle Dn and find the best-matching circle
Dn+1 (Section 11.2.1). In flow-based matching, we search for a transformation of
the pixels in the old domain that produces set of pixels that match well, and so a
good new domain. This allows us to exploit strong motion models (Section 10.6.2).

Section 11.2 Tracking Using Matching 335

Assume we have a sequence of N images; a domain D1,
in the first image represented by parameters
y1 (for a circular domain of fixed size, these would be the
location of the center; for a square, the center and edge length; and so on);
a kernel function k; a scale h; and a feature representation f of each pixel.

For n ∈ [1, . . . , N − 1]

Obtain an initial estimate y
(0)
n+1 of the next domain

either from a Kalman filter, or using yn

Iterate until convergence

y
(j+1)
n+1 =

∑

i
wixig(||xi−y(j)

h ||
2

)

∑

i
wig(||xi−y(j)

h ||
2

)

where pu, k, g are as given in the text

The track is the sequence of converged estimates y1, . . . ,yN .

Algorithm 11.2: Tracking with the Mean Shift Algorithm.

11.2.1 Matching Summary Representations

Look at the football player’s uniform in Figure 9.3.4. From frame to frame, we see
the player’s back at different viewing angles. Individual pixels in one domain might
have no corresponding pixels in the next. For example, the cloth may have folded
slightly; as another example, there is motion blur in some frames. Nonetheless, the
domain is largely white, with some yellow patches. This suggests that a summary
representation of the domain might not change from frame to frame, even though
the fine details do.

There is a quite general idea here. Write the domain of interest in frame n as
Dn. If we are tracking a deforming object, pixels in Dn might have no correspond-
ing pixels in Dn+1, or the motion of the pixels might be extremely complex, and
so we should represent Dn with a well-behaved summary. If the patches deform,
small-scale structures should be preserved, but the spatial layout of these struc-
tures might not be. Example small-scale structures include the colors of pixels, or
the responses of oriented filters. A histogram representation of these structures is
attractive because two histograms will be similar only when the two patches have
similar numbers of similar structures in them, but the similarity is not disrupted
by deformation.

We assume that we have a parametric domain, with parameters y, so that yn

represents Dn. For our treatment, we assume the domain is a circle of fixed radius
whose center is at the pixel location y, but the method can be reworked to apply
to other kinds of domain. The mean shift procedure yields one way to find the
Dn+1 whose histogram is most like that of Dn.

We assume that the features we are working with can be quantized so that the

Section 11.2 Tracking Using Matching 336

histogram can be represented as a vector of bin counts, and we write this vector
as p(y); its uth component representing the count in the u’th bin is pu(y). We
wish to find the y whose histogram is closest to that at yn. We are comparing two
probability distributions, which we can do with the Bhattacharyya coefficient:

ρ(p(y),p(yn)) =
∑

u

√

pu(y)pu(yn).

This will be one if the two distributions are the same and near zero if they are very
different. To obtain a distance function, we can work with

d(p(y),p(yn)) =
√

1− ρ(p(y),p(yn)).

We will obtain yn+1 by minimizing this distance. We will start this search at

y
(0)
n+1. We assume that yn+1 is close to y

(0)
n+1, and as a result, p(yn+1) is similar to

p(y
(0)
n+1). In this case, a Taylor expansion of ρ(p(y),p(yn)) about p(y

(0)
n+1) gives

ρ(p(y),p(yn)) ≈
∑

u

√

pu(y
(0)
n+1)pu(yn) +

∑

u

(pu(y)− pu(y(0)
n+1))

(

1

2

√

pu(yn)

pu(y
(0)
n+1)

)

=
1

2

∑

u

√

pu(y
(0)
n+1)pu(yn) +

1

2

∑

u

pu(y)

√

pu(yn)

pu(y
(0)
n+1)

.

This means that, to minimize the distance, we must maximize

1

2

∑

u

pu(y)

√

pu(yn)

pu(y
(0)
n+1)

. (11.1)

Now we need a method to construct a histogram vector for the circle with
center y. We expect we are tracking a deforming object, so that pixels far away
from the center of two matching circles may be quite different. To deal with this,
we should allow pixels far away from the center to have a much smaller effect
on the histogram than those close to the center. We can do this with a kernel
smoother. Write the feature vector (for example, the color) for the pixel at location

xi in the circle as f
(n)
i . This feature vector is d-dimensional. Write the histogram

bin corresponding to f
(n)
i as b(f

(n)
i). Each pixel votes into its bin in the histogram

with a weight that decreases with ||xi − y || according to a kernel profile k (compare
Section 9.3.4). Using this approach, the fraction of total votes in bin u produced
by all features is

pu(y) = Ch

∑

i∈Dn

k(|| xi − y

h
||
2

)δ [b(f i − u)] . (11.2)

where h is a scale, chosen by experiment, and Ch is a normalizing constant to
ensure that the sum of histogram components is one. Substituting Equation 11.2

Section 11.2 Tracking Using Matching 337

FIGURE 11.6: An important pragmatic difficulty with flow-based tracking is that appear-
ance is not always fixed. The folds in loose clothing depend on body configuration, as
these images of trousers indicate. The trousers were tracked using a flow-based tracker,
but enforcing equality between pixel values will be difficult, as the patches indicated by
the arrows suggest. The folds are geometrically small, but, because they produce cast
shadows, have a disproportionate effect on image brightness. This figure was originally
published as Figure 4 of “Cardboard People: A Parameterized Model of Articulated Image
Motion,” by S. Ju, M. Black, and Y. Yacoob, IEEE Int. Conf. Face and Gesture, 1996
c© IEEE, 1996.

into Equation 11.1, we must maximize

f(y) =
Ch

2

∑

i

wik(||
xi − y

h
||
2

), (11.3)

where

wi =
∑

u

δ [b(f i − u)]
√

pu(yn)

pu(y
(0)
n+1)

.

We can use the mean shift procedure of Section 9.3.4 to maximize equation
11.3. Following the derivation there, the mean shift procedure involves producing
a series of estimates y(j) where

y(j+1) =

∑

iwixig(|| xi−y(j)

h ||
2

)
∑

iwig(|| xi−y(j)

h ||
2
)
.

The procedure gets its name from the fact that we are shifting to a point that has
the form of a weighted mean. The complete algorithm appears in Algorithm 11.2.

11.2.2 Tracking Using Flow

We can generalize the methods of Section 11.1.2 in a straightforward way. There
we found the best matching translated version of an image domain. Instead, we
could have a family of flow models, as in Section 10.6.1, and find the best matching
domain resulting from a flow model. We write the image as a function of space and
time as I(x, y, t), and scale and translate time so that each frame appears at an
integer value of t.

We have a domain in the nth image, Dn. We must find the domain in the
n+ 1th image that matches best under the flow model. We write ρ(u, v) for a cost

Section 11.2 Tracking Using Matching 338

function that compares two pixel values u and v; this should be small when they
match and large when they do not. We write w(x) for a weighting of the cost
function that depends on the location of the pixel. To find the new domain, we will
find the best flow, and then allow our domain to follow that flow model. Finding
the best flow involves minimizing

∑

x∈Dn

w(x)ρ(I(x, n), I(x+ v(x; θ), n+ 1))

as a function of the flow parameters θ.
The cost function should not necessarily be the squared difference in pixel

values. We might wish to compute a more complex description of each location (for
example, a smoothed vector of filter outputs to encode local texture). Some pixels
in the domain might be more reliable than others; for example, we might expect
pixels near the boundary of the window to have more variation, and so we would
weight them down compared to pixels near the center of the window. Robustness is
another important issue. Outlier pixels, which are dramatically different from those
predicted by the right transformation, could be caused by dead pixels in the camera,
specularities, minor deformations on the object, and a variety of other effects. If
we use a squared error metric, then such outlier pixels can have a disproportionate
effect on the results. The usual solution is to adopt an M-estimator. A good choice
of ρ is

ρ(u, v) =
(u− v)2

(u − v)2 + σ2

where σ is a parameter (there is greater detail on M-estimators in Section 10.4.1).

We now have the best value of θ, given by θ̂. The new domain is given by

Dn+1 =
{

u | u = x+ v(x; θ̂), ∀x ∈ Dn

}

.

We can build domain models that simplify estimating Dn+1; for example, if the
domain is always a circle, then the flow must represent a translation, rotation, and
scale, and we would allow the flow to act on the center, radius, and orientation of
the circle.

Tracking can be started in a variety of ways. For a while, it was popular
to start such trackers by hand, but this is now rightly frowned on in most cases.
In some cases, objects always appear in a known region of the image, and in that
case one can use a detector to tell whether an object has appeared. Once it has
appeared, the flow model takes over.

The most important pragmatic difficulty with flow-based trackers is their ten-
dency to drift. A detection-based tracker has a single appearance model for an
object, encoded into the detector. This is applied to all frames. The danger is that
this model might not properly account for changes in illumination, aspect, and so
on, and as a result will fail to detect the object in some frames. In contrast, a flow-
based tracker’s model of the appearance of an object is based on what it looked like
in the previous frame. This means that small errors in localization can accumulate.
If the transformation estimated is slightly incorrect, then the new domain will be
incorrect; but this means the new appearance model is incorrect, and might get

Section 11.3 Tracking Linear Dynamical Models with Kalman Filters 339

worse. Section 11.1.3 showed how to prune tracks by testing against a model of
appearance. If we have few tracks, we cannot just prune, but must correct the drift.
This requires a fixed, global model of appearance, like those of Section 20.3.

Another important pragmatic difficulty is that an object’s appearance is often
not as fixed as one would like. Loose clothing is a particularly important problem
here because it forms folds in different ways, depending on the body configura-
tion. These folds are very minor geometric phenomena, but can cause significant
changes in image brightness, because they shadow patches of surface. This means
that there can be a strong, time-varying texture signal that appears on the body
segments (Figure 11.6). Although this signal almost certainly contains some cues
to configuration, they appear to be very difficult to exploit.

11.3 TRACKING LINEAR DYNAMICAL MODELS WITH KALMAN FILTERS

In Section 11.1.1, we described methods to match patches or object detector re-
sponses with tracks. This matching process is straightforward if we can be confident
that the thing we are matching hasn’t moved much: we search around the old loca-
tion for the best match. To know where to search, we don’t really need the object
to be slow-moving. Instead, if it moves in a predictable way, the motion model can
predict a search domain that might be far from the original location, but still reli-
able. Exploiting dynamical information effectively requires us to fuse information
from observations with dynamical predictions. This is most easily done by building
a probabilistic framework around the problem. The algorithmic goal is to maintain
an accurate representation of the posterior on object state, given observations and
a dynamical model.

We model the object as having some internal state; the state of the object at
the ith frame is typically written as Xi. The capital letter indicates that this is a
random variable; when we want to talk about a particular value that this variable
takes, we use small letters. The measurements obtained in the ith frame are values
of a random variable Y i; we write yi for the value of a measurement, and, on
occasion, we write Y i = yi for emphasis. In tracking, (sometimes called filtering or
state estimation), we wish to determine some representation of P (Xk|Y0, . . . , Yk). In
smoothing (sometimes called filtering), we wish to determine some representation
of P (Xk|Y0, . . . , YN) (i.e., we get to use “future” measurements to infer the state).
These problems are massively simplified by two important assumptions.

• We assume measurements depend only on the hidden state, that is, that
P (Yk|X0, . . . , XN , Y0, . . . , YN) = P (Yk|Xk).

• We assume that the probability density for a new state is a function only of the
previous state; that is, P (Xk|X0, . . . , Xk−1) = P (Xk|Xk−1) or, equivalently,
that Xi form a Markov chain.

We will use these assumptions to build a recursive formulation for tracking
around three steps.

Prediction: We have seen y0, . . . ,yk−1. What state does this set of mea-
surements predict for the ith frame? To solve this problem, we need to obtain a
representation of P (Xi|Y 0 = y0, . . . ,Y k−1 = yk−1). Straightforward manipula-
tion of probability combined with the assumptions above yields that the prior or

