
C H A P T E R 29

Camera Matrices

29.1 SIMPLE PROJECTIVE GEOMETRY

Draw a pattern on a plane, then view that pattern with a perspective camera. The
distortions you observe are more interesting than are predicted by simple rotation,
translation and scaling. For example, if you drew parallel lines, you might see lines
that intersect at a vanishing point – this doesn’t happen under rotation, translation
and scaling. Projective geometry can be used to describe the set of transformations
produced by a perspective camera.

29.1.1 Homogeneous Coordinates

The coordinates that every reader will be most familiar with are known as affine
coordinates. In affine coordinates, a point on the plane is represented by 2 numbers,
a point in 3D is represented with 3 numbers, and a point in k dimensions is rep-
resented with k numbers. Now adopt the convention that a point in k dimensions
is represented by k+ 1 numbers not all of which are zero. Two representations X1

and X2 represent the same point (write X1 ≡ X2) if there is some λ ̸= 0 so that

X1 = λX2.

These coordinates are known as homogeneous coordinates, and will offer a particu-
larly convenient representation of perspective projection.

Remember this: In homogeneous coordinates, a point in a k dimen-
sional space is represented by k + 1 coordinates (X1, . . . , Xk+1), together
with the convention that

(X1, . . . , Xk+1) ≡ λ(X1, . . . , Xk+1) for λ ̸= 0.

The point (0, 0, . . . , 0) is meaningless in homogeneous coordinates.

The space represented by k+1 homogeneous coordinates is different from the
space represented by k affine coordinates in important but subtle ways.

342



Section 29.1 Simple Projective Geometry 343

Example: 29.1 Lines on the affine plane

Lines on the affine plane form one important example of homogeneous
coordinates. A line is the set of points (x, y) where ax+by+c = 0 . We
can use the coordinates (a, b, c) to represent a line. If (d, e, f) = λ(a, b, c)
for λ ̸= 0 (which is the same as (d, e, f) ≡ (a, b, c)), then (d, e, f) and
(a, b, c) represent the same line. This means the coordinates we are
using for lines are homogeneous coordinates, and the family of lines in
the affine plane is a projective plane. Notice that encoding lines using
affine coordinates must leave out some lines. For example, if we insist
on using (u, v, 1) = (a/c, b/c, 1) to represent lines, the corresponding
equation of the line would be ux + vy + 1 = 0. But no such line can
pass through the origin – our representation has left out every line
through the origin.

29.1.2 The projective line

In homogenous coordinates, we represent a point on a 1D space with two coor-
dinates, so (X1, X2) (by convention, homogeneous coordinates are written with
capital letters). Two sets of homogeneous coordinates (U1, U2) and (V1, V2) repre-
sent different points if there is no λ ̸= 0 such that λ(U1, U2) = (V1, V2). The set of
all distinct points is known as a projective line. You should think of the projective
line as an ordinary line (an affine line) with an “extra point”. Every point on an
affine line has a corresponding point on a projective line. A point on an affine line
is given by a single coordinate x. This point can be identified with the point on a
projective line given by (X1, X2) = λ(x, 1) (for λ ̸= 0) in homogeneous coordinates.
The extra point has coordinates (X1, 0). These are the homogeneous coordinates
of a single point (check this), but this point would be “at infinity” on the affine
line.

There isn’t anything special about the point on the projective line given by
(X1, 0). You can see this by identifying the point x on the affine line with (X1, X2) =
λ(1, x) (for λ ̸= 0). Now (X1, 0) is a point like any other, and (0, X2) is “at infinity”.
A little work establishes that there is a 1-1 mapping between the projective line
and a circle (exercises).

29.1.3 The projective plane

The space represented by three homogeneous coordinates is known as a projective
plane. You can map an affine plane (the usual plane, with coordinates x, y) to a
projective plane by writing (X1, X2, X3) = (x, y, 1). Notice that there are points
on the projective plane — the points where X3 = 0 — that are missing. These
points form a projective line (check this!). This line is often referred to as the line
at infinity.

Recall that a line on an affine plane is the set of points x, y such that ax +
by+ c = 0 for some a, b, c. Map the points on this line to homogeneous coordinates
to get (x, y, 1) = (X1/X3, X2/X3, 1) ≡ (X1, X2, X3). If ax + by + c = 0, then
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FIGURE 29.1: The point at infinity is not just an abstraction: you can see it. Recall
that lines that are parallel in the world can intersect in the image at a vanishing
point. This vanishing point is the image of the point “at infinity” on the parallel
lines. For example, on the plane y = −1 in the camera coordinate system, draw
two lines (1,−1, t) and (−1,−1, t) (the lines shown in the figure). Now these lines
project to (f1/t, f(−1/t), f) and (f(−1/t), f(−1/t), f) on the image plane, and
their vanishing point is (0, 0, f). This vanishing point occurs when the parameter t
reaches infinity — it is the image of the point at infinity.
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FIGURE 29.2: The line at infinity is not just an abstraction: you can see it. Recall
that, viewed in a perspective camera, planes have a horizon. This is the image of
the line at infinity. For example, the plane y = −1 in the camera coordinate system
has a horizon in the image as shown in the figure. The points on this plane can be
written (x,−1, z), and project to (fx/z,−f/z, f). When z reaches infinity, we see
the line y = 0 in the image plane. This is the image of the line at infinity.

aX1 + bX2 + cX3 = 0 as well.
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Remember this: A line on the projective plane is the set of points X
such that

aTX = 0.

Here a is a vector of homogeneous coordinates specifying the particular
line.

Notice an interesting point here. The family of lines on a projective plane can
be described by three homogenous coordinates, and so is itself a projective plane.
This plane is dual to the original projective plane. You can interpret the equation
of a line aTX = 0 as either a description of all points that lie on the line with
homogeneous coordinates a or as a description of all lines that pass through the
point with homogeneous coordinates X.

Projective planes are unlike affine planes in one important respect. On a
projective plane, every pair of distinct lines on the projective plane intersects in a
unique point (on an affine plane, parallel lines do not intersect). The intersection
of two lines a1 and a2 is the point X such that aT1 X = 0 and aT2 X = 0. This is a
point in homogeneous coordinates, and it always exists.

Example: 29.2 Where parallel lines intersect

On the affine plane, the two lines given by x = 1 and x = 2 do not
intersect – they are parallel. Corresponding lines on the projective
plane are X1 −X3 = 0 and X1 − 2X3 = 0. These two lines intersect at
the point with homogeneous coordinates (0, 1, 0).

Remember this: Write P1 and P2 for two points on the projective
plane that are represented in homogeneous coordinates and are different.
The line through these two points is given by

a = P1 ×P2

(check aTP1 = 0 and aTP2 = 0). A parametrization of this line is given
by

UP1 + VP2.

29.1.4 Projective k-Spaces

Higher dimensional spaces follow the pattern above. In affine coordinates, a point
in a k dimensional affine space (eg an affine plane; affine 3D space; etc) is given
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by k coordinates (x1, x2, . . . , xk). The space described by k + 1 homogeneous co-
ordinates is a projective space. A point (x1, x2, . . . , xk) in a k dimensional affine
space can be identified with (X1, X2, . . . , Xk+1) = λ(x1, x2, . . . , xk, 1) (for λ ̸= 0)
in the k dimensional projective space. The points in the projective space given by
(X1, X2, . . . , 0) have no corresponding points in the affine space. Notice that this
set of points is a k − 1 dimensional space in homogeneous coordinates.

When k = 3, the points “at infinity” form a projective plane, and is known
as the plane at infinity; the whole space is sometimes known as projective 3-space.
Notice this means that 3D projective space is obtained by “sewing” a projective
plane to the 3D affine space we are accustomed to. The piece of the projective
space “at infinity” isn’t special, using the same argument as above. The particular
line (resp. plane) that is “at infinity” is chosen by the homogeneous coordinate you
divide by. There is an established convention in computer vision of dividing by the
last homogeneous coordinate and talking about the line at infinity and the plane
at infinity.

Remember this: The k dimensional space represented by k + 1 ho-
mogeneous coordinates is a projective space. You can represent a point
(x1, . . . , xk in affine k space in this projective space as (x1, . . . , xk, 1). Not
every point in the projective space can be obtained like this – the points
(X1, . . . , Xk, 0) are “extra”. These points form a projective k − 1 space
which is thought of as being “at infinity”. Important cases are k = 1 (the
projective line with a point at infinity); k = 2 (the projective plane with a
line at infinity).

29.1.5 Planes in Projective 3-Space

Planes in projective 3-space work rather like lines on the projective plane. The
locus of points (x, y, z) where ax + by + cz + d = 0 is a plane in affine 3-space.
Because (a, b, c, d) and λ(a, b, c, d) give the same plane, we have that (a, b, c, d) are
homogeneous coordinates for a plane in 3D. We can write the points on the plane
using homogeneous coordinates to get

(x, y, z, 1) = (X1/X4, X2/X4, X3/X4, 1)

or equivalently

(X1, X2, X3, X4) where X1 = xX4, X2 = yX4, X3 = zX4.

Substitute to find the equation of the corresponding plane in projective 3-space
aX1 + bX2 + cX3 + dX4 = 0 or aTX = 0. A set of four homogenous coordinates
can be used to describe either a point in projective 3-space or a plane in projective
3-space, so points in projective 3-space are dual to planes in projective 3-space.

You can interpret the equation of a line aTX = 0 as either a description of all
points that lie on the plane with homogeneous coordinates a or as a description of
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all planes that pass through the point with homogeneous coordinates X. Every pair
of distinct planes in projective 3-space intersects in a unique line. The intersection
of two planes a1 and a2 is a line, formed by the set of points X such that aT1 X = 0
and aT2 X = 0. Check that this is a line in homogeneous coordinates. Check also
that any three distinct planes intersect in a point.

Remember this: A plane in projective 3D is the set of points X such
that

aTX = 0.

Here a is a vector of homogeneous coordinates specifying the particular
plane.

Remember this: Write P1, P2 and P3 for three points in projective
3D that are represented in homogeneous coordinates, are different points,
and are not collinear. From the exercises, the plane through these points is
given by

a = NullSpace

 PT
1

PT
2

PT
3

 .

From the exercises, a parametrization of this plane is given by

UP1 + VP2 +WP3.

Two distinct planes in projective 3-space intersect in a line. Write aT1 X = 0
for the equation of the first plane, aT2 X = 0 for the equation of the second. Then the
line is the set of all points that cause both equations to vanish. Notice that many
different pairs of planes will give the same line. As long as a11a22− a21a12 ̸= 0, the
pair a11a1 + a12a2 and a21a1 + a22a2 specifies the same line as the pair a1, a2.

Three planes in projective 3-space could: be the same plane; lie on a shared
line; or intersect in a single point. Write a1, a2 and a3 for the coefficients of the
three different planes. Then check that the common points of these planes are given
by the null space of the 3× 4 matrix aT1

aT2
aT3

 .

In the usual case, the null space is one dimensional, and so is a point (remember that
scaling a set of homogeneous coordinates doesn’t change the point they represent).
If this matrix has a two dimensional null space, the planes share a line, and if it is
three dimensional they are all the same plane.
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29.1.6 Homographies

Now assume we have a perspective camera viewing a plane in 3D. We parametrize
this plane by (s, t), and the points on the plane are given by

 X(s, t)
Y (s, t)
Z(s, t)

 =

 a11s+ a12t+ a13
a21s+ a22t+ a23
a31s+ a32t+ a33



where a11, . . . a33 are parameters that choose the plane and its parametrization.
The perspective camera maps the point in 3D (X,Y, Z) to the point (X/Z, Y/Z) on
the image plane. This means that the point on the plane given by (s, t) is mapped
to


X(s,t)
Z(s,t)

Y (s,t)
Z(s,t)

 =

 a11s+a12t+a13

a31s+a32t+a33

a21s+a22t+a23

a31s+a32t+a33



Now we write this out in homogeneous coordinates. Write (S, T, U) for the coor-
dinates on the world plane, where S/U = s and T/U = t. Write (X,Y, Z) for the
coordinates on the image plane. Then we have

 X
Y
Z

 =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 S
T
U

 .

This map is known as a homography. Recall that in Section 41.2, we showed how
to fit a homography to a set of corresponding points. Now assume you see (say)
an image of a tiled floor. With some simple correspondence information to support
the fitting process, you can recover the image of the tiling as it looks like from above
(Figure 41.2).

Any homography will map every line to a line. Write a for the line in the
projective plane whose points satisfy aTX = 0. Now apply the homographyM to
those points to get V =MX. Notice that

aTM(−1)V = aTX = 0,

so that the line a transforms to the lineM(−T )a. Homographies are easily inverted.
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Remember this: A homography is a mapping from the projective plane
to the projective plane. Assume M is a 3× 3 matrix with non-zero deter-
minant.

• The homography represented byM maps the point with homogeneous
coordinates X to the point with homogeneous coordinatesMX.

• The two matricesM and λM represent the same homography.

• The inverse of this homography is represented byM−1.

• The homography represented by M will map the line represented by
a to the line represented byM−Ta.

29.1.7 Projective Transformations

Write X = (X1, X2, . . . Xk+1) for the coordinates of a point in projective k-space.
Now consider V =MX, whereM is a k+1× k+1 matrix with non-zero determi-
nant. We can interpret V as a point in projective k-space. In fact,M is a mapping
from projective k-space to itself.

There is something to check here. WriteM(X) for the point that X maps to,
etc. Because X ≡ λX (for λ ̸= 0), we must have thatM(X) ≡ M(λX) otherwise
one point would map to several points. But

M(X) =MX ≡ λMX =M(λX)

so M is a mapping. Such mappings are known as projective transformations. It
should be pretty clear that this is a general version of a homography.

You should check thatM(−1) is the inverse ofM, and is a projective trans-
formation. You should check thatM and λM represent the same projective trans-
formation.
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Remember this: A projective transformation is a mapping from pro-
jective k-space to projective k-space. A projective transformation can be
represented byM, a k + 1× k + 1 matrix with non-zero determinant.

• The projective transformation represented byM maps the point with
homogeneous coordinates X to the point with homogeneous coordi-
natesMX.

• The two matricesM and λM represent the same projective transfor-
mation.

• The inverse of this projective transformation is represented byM−1.

• The projective transformation represented by M will map the line
represented by a to the line represented byM−Ta.

29.2 CAMERA MATRICES AND TRANSFORMATIONS

29.2.1 Perspective and Orthographic Camera Matrices

In affine coordinates we wrote perspective projection as (X,Y, Z) → (X/Z, Y/Z)
(remember, we will account for f later). This was in a left-hand coordinate system,
which is a natural way to think of a camera (z increases as you move into the
image) but is inconvenient otherwise. In a right-hand coordinate system, we flip
the direction of the z axis, which yields the mapping (X,Y, Z) → (−X/Z,−Y/Z).
Notice that doing so simply transforms the image in the image plane. As long as
we remember to apply the minus signs, we can continue to work in our left-hand
coordinate system.

In affine coordinates, the camera mapping is (X,Y, Z) → (X/Z, Y/Z) (re-
member: we account for f and the right-hand coordinate system later). Now write
the 3D point in homogeneous coordinates as

X = (X1, X2, X3, X4)

and the point in the image plane in homogeneous coordinates as

I = (I1, I2, I3).

Now we have

I = (I1, I2, I3) ≡ (X/Z, Y/Z, 1) ≡ (X,Y, Z) ≡ (X1/X4, X2/X4, X3/X4) ≡ (X1, X2, X3).

This means that, in homogeneous coordinates, we can represent perspective pro-
jection as

(X1, X2, X3, X4)→ (X1, X2, X3).
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or  I1
I2
I3

 =

 1 0 0 0
0 1 0 0
0 0 1 0



X1

X2

X3

X4


where the matrix is known as the perspective camera matrix (write Cp).

Remember this: The perspective camera matrix is

Cp =

 1 0 0 0
0 1 0 0
0 0 1 0

 .

Recall the focal point of a camera cannot be imaged because you can’t con-
struct a unique line through the focal point and the focal point. The focal point of
our camera is at (0, 0, 0, T ) in homogeneous coordinates (here T ̸= 0). Notice that
the perspective camera matrix maps this point to the point (0, 0, 0) in homogeneous
coordinates — but this point is meaningless. You should check no other point maps
to (0, 0, 0).

In affine coordinates, in the right coordinate system and assuming that the
scale is chosen to be one, scaled orthographic perspective can be written as (X,Y, Z)→
(X,Y ). Following the argument above, we obtain in homogeneous coordinates

 I1
I2
I3

 =

 1 0 0 0
0 1 0 0
0 0 0 1



X1

X2

X3

X4


where the matrix is known as the orthographic camera matrix (write Co).

Remember this: The orthographic camera matrix is

Co =

 1 0 0 0
0 1 0 0
0 0 0 1



29.2.2 Cameras in World Coordinates

The camera matrix describes a perspective (resp. orthographic) projection for a
camera in a specific coordinate system – the focal point is at the origin, the camera
is looking backward down the z-axis, and so on. In the more general case, the
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camera is placed somewhere in world coordinates looking in some direction, and we
need to account for this. Furthermore, the camera matrix assumes that points in the
camera are reported in a specific coordinate system. The pixel locations reported
by a practical camera might not be in that coordinate system. For example, many
cameras place the origin at the top left hand corner. We need to account for this
effect, too.

X

Y

Z

(u, v, w)

U V

W

T
S

(s, t)

FIGURE 29.3: A perspective camera (in its own coordinate system, given by X, Y
and Z axes) views a point in world coordinates (given by (u, v, w) in the UVW
coordinate system) and reports the position of points in ST coordinates. We must
model the mapping from (u, v, w) to (s, t), which consists of a transformation from
the UVW coordinate system to the XY Z coordinate system followed by a perspective
projection followed by a transformation to the ST coordinate system.

A general perspective camera transformation can be written as: I1
I2
I3

 =


Transformation
mapping image
plane coords to
pixel coords

 Cp


Transformation
mapping world
coords to camera

coords



X1

X2

X3

X4



= TiCpTe


X1

X2

X3

X4


The parameters of Ti are known as camera intrinsic parameters or camera intrin-
sics, because they are part of the camera, and typically cannot be changed. The
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parameters of Te are known as camera extrinsic parameters or camera extrinsics,
because they can be changed.

29.2.3 Camera Extrinsic Parameters

The transformation Te represents a rigid motion (equivalently, a Euclidean transfor-
mation, which consists of a 3D rotation and a 3D translation). In affine coordinates,
any Euclidean transformation maps the vector x to

Rx+ t

where R is an appropriately chosen 3D rotation matrix (check the endnotes if
you can’t recall) and t is the translation. Any map of this form is a Euclidean
transformation. You should confirm the transformation that maps the vector X
representing a point in 3D in homogeneous coordinates to

λ

[
R t
0T 1

]
X

represents a Euclidean transformation, but in homogeneous coordinates. It follows
that any map of this form is a Euclidean transformation. Because Te represents
a Euclidean transformation, it must have this form. The exercises explore some
properties of Te.

29.2.4 Camera Intrinsic Parameters

Camera intrinsic parameters must model a possible coordinate transformation in
the image plane from projected world coordinates (write (x, y)) to pixel coordinates
(write (u, v)), together with a possible change of focal length. This change is caused
by the image plane being further away from, or closer to, the focal point. The
coordinate transformation is not arbitrary (Figure 29.4).

Typically, the origin of the pixel coordinates is usually not at the camera
center; instead, the camera center is at c′x, c

′
y in pixel coordinates. Write ∆x for

the step in the image plane from pixel (i, j) to (i + 1, j) and ∆y for the step to
(i, j+1). These are vectors parallel to the camera coordinate axes. The vector ∆x
may not be perpendicular to the vector ∆y, causing skew. For many cameras, ||∆x ||
is different from ||∆y || – such cameras have non-square pixels, and ||∆x ||/||∆y || is
known as the aspect ratio of the pixel. Furthermore, ||∆x || is not usually one unit
in world coordinates. Finally, we have to apply the minus sign inherited from using
a left-handed coordinate system.

There is one tricky point here. Rotating the world about the Z axis has
an effect equivalent to rotating the camera coordinate system (Figure ??). This
means we cannot tell whether this rotation is the result of a change in the extrinsics
(the world rotated) or the intrinsics (the camera coordinate system rotated). By
convention, there is no rotation in the intrinsics except for the 180o rotation required
to handle the left-handed coordinate system, so a pure rotation of the image is
always the result of the world rotating.

There are two possible parametrizations of camera intrinsics. Recall f is the
focal length of the camera. Write (c′x, c

′
y) for the location of the camera center in
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pixel coordinates; a for the aspect ratio of the pixels ; and k′ for the skew. Then
Ti is parametrized as

 −||∆x || k′ c′x
0 −||∆y || c′y
0 0 1/f

 ≡
 −af ||∆y || fk′ fc′x

0 −f ||∆y || fc′y
0 0 1


Notice in this case we are distinguishing between scaling resulting from ||∆y || and
scaling resulting from the focal length. This is unusual, but can occur. More usual
is to conflate these effects and parametrize the intrinsics as

 −as k cx
0 −s cy
0 0 1


where s = f ||∆y ||, a = ||∆x ||∆y, k = fk′, cx = fc′x, cy = fc′y.

X

Y

Z C  , Cx xy

y
u

v

FIGURE 29.4: The camera reports pixel values in pixel coordinates, which are not
the same as world coordinates. The camera intrinsics represent the transformation
between world coordinates and pixel coordinates. On the left, a camera (as in Figure
26.1), with the camera coordinate system shown in heavy lines. On the right, a
more detailed view of the image plane. The camera coordinate axes are marked
(u, v) and the image coordinate axes (x, y). It is hard to determine f from the
figure, and we will conflate scaling due to f with scaling resulting from the change
to camera coordinates. The camera coordinate system’s origin is not at the camera
center, so (cx, cy) are not zero. I have marked unit steps in the coordinate system
with ticks. Notice that the v-axis is not perpendicular to the u-axis (so k - the skew
- is not zero). Ticks in the u, v axes are not the same distance apart as ticks on the
x, y axes, meaning that s is not one. Furthermore, u ticks are further apart than v
ticks, so that a is not one.
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Remember this: A general perspective camera can be written in
homogeneous coordinates as:

 I1
I2
I3

 = Ti

 1 0 0 0
0 1 0 0
0 0 1 0

 Te

X1

X2

X3

X4



=

 as k cx
0 s cy
0 0 1

 1 0 0 0
0 1 0 0
0 0 1 0

[ R t
0T 1

]
X1

X2

X3

X4


where R is a rotation matrix.

By the arguments above, a general orthographic camera transformation can
be written as:  I1

I2
I3

 = Ti

 1 0 0 0
0 1 0 0
0 0 0 1

 Te

X1

X2

X3

X4



Remember this: Alternative representations of perspective cameras
are quite common. It is usual to write K for Ti (the intrinsic transforma-
tion). If you then write (

R t
0T 1

)
for the extrinsic transformation, and multiply out, you get the quite common
form

K [Rt]

29.2.5 Cameras and Image to Image Mapping

PROBLEMS

29.1. We construct the vanishing point of a pair of parallel lines in homogeneous
coordinates.
(a) Show that the set of points in homogeneous coordinates in 3D given by

(s,−s, t, s) (for s, t parameters) form a line in 3D.
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(b) Now image the line (s,−s, t, s) in 3D in a standard perspective camera
with focal length 1. Show the result is the line (s,−s, t) in the image
plane.

(c) Now image the line (−s,−s, t, s) in 3D in a standard perspective camera
with focal length 1. Show the result is the line (−s,−s, t) in the image
plane.

(d) Show that the lines (s,−s, t) and (−s,−s, t) intersect in the point (0, 0, t).

29.2. We construct the horizon of a plane for a standard perspective camera with
focal length 1. Write a = [a1, a2, a3, a4]

T for the coefficients of the plane, so
that for every point X on the plane we have aTX = 0.
(a) Show that the plane given by u = [a1, a2, a3, 0] is parallel to the plane

given by a, and passes through (0, 0, 0, 1).
(b) Write the points on the image plane (u, v, 1) ≡ (U, V,W ) in homogeneous

coordinates. Show that the horizon of the plane is the set of points u in
the image plane given by lTu = 0, where l = [a1, a2, a3]

T .

29.3. A pinhole camera with focal point at the origin and image plane at z = f
views two parallel lines u+ tw and v + tw. Write w = [w1, w2, w3]

T , etc.
(a) Show that the vanishing point of these lines, on the image plane, is given

by (f w1
w3

, f w2
w3

).
(b) Now we model a family of pairs of parallel lines, by writing w(r, s) =

ra + sb, for any (r, s). In this model, u + tw(r, s) and v + tw(r, s) are
the pair of lines, and (r, s) chooses the direction. First, show that this
family of vectors lies in a plane. Now show that the vanishing point for
the (r, s)’th pair is (f ra1+sb1

ra3+sb3
, f ra2+sb2

ra3+sb3
).

(c) Show that the family of vanishing points (f ra1+sb1
ra3+sb3

, f ra2+sb2
ra3+sb3

) lies on a

straight line in the image. Do this by constructing c such that cT a =
cTb = 0. Now write (x(r, s), y(r, s)) = (−f ra1+sb1

ra3+sb3
,−f ra2+sb2

ra3+sb3
) and

show that c1x(r, s) + c2y(r, s) + c3 = 0.

29.4. All points on the projective plane with homogeneous coordinates (U, V, 0) lie
“at infinity” (divide by zero). As we have seen, these points form a projective
line.
(a) Show this line is represented by the vector of coefficients (0, 0, C).

(b) A homography M =
[
mT

1 ;m
T
2 ;m

T
3

]
is applied to the projective plane.

Show that the line whose coefficients are v3 maps to the line at infinity.
(c) Now write the homography as M =

[
m′

1,m
′
2,m

′
3

]
(so m′ are columns).

Show that the homography maps the points at infinity to a line given in
parametric form as sm′

1 + tm′
2.

(d) Now write n for a non-zero vector such that nTm′
1 = nTm′

2 = 0. Show
that, for any point x on the line given in parametric form as sm′

1 + tm′
2,

we have nTx = 0. Is n unique?
(e) Use the results of the previous subexercises to show that for any given line,

there are some homographies that map that line to the line at infinity.
(f) Use the results of the previous subexercises to show that for any given

line, there are some homographies that map the line at infinity to that
line.

29.5. We will show that there is no significant difference between choosing a right-
handed camera coordinate system and a left-handed camera coordinate system.
Notice that, in a right handed camera coordinate system (where the camera
looks down the negative z-axis rather than the positive z-axis) the image plane
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is at z = −f .
(a) Show that, in a right-handed coordinate system, a pinhole camera maps

(X,Y, Z) → (−fX/Z,−fY/Z).

(b) Show that the argument in the text yields a camera matrix of the form

C′p =

 1 0 0 0
0 1 0 0
0 0 −1/f 0

 .

(c) Show that, if one allows the scale in Ti to be negative, one could still use

Cp =

 1 0 0 0
0 1 0 0
0 0 1/f 0


as a camera matrix.


