
C H A P T E R 20

The Elements of Classification

A classifier is a procedure that accepts a set of features and produces a class
label for them. Classifiers are immensely useful, and find wide application, because
many problems are naturally classification problems. For example, if you wish
to determine whether to place an advert on a web-page or not, you would use a
classifier (i.e. look at the page, and say yes or no according to some rule). This
is a two class classifier, but in many cases it is natural to have more classes – a
multi-class classifier. You can think of sorting laundry as applying a multi-class
classifier. You can think of doctors as complex multi-class classifiers: a doctor
accepts a set of features (your complaints, answers to questions, and so on) and
then produces a response which we can describe as a class. The grading procedure
for any class is a multi-class classifier: it accepts a set of features — performance
in tests, homeworks, and so on — and produces a class label (the letter grade).

20.1 CLASSIFICATION: GENERAL IDEAS

A classifier is usually trained by obtaining a set of labelled training examples
and then searching for a procedure that optimizes some cost function which is
evaluated on the training data. Performance on training data doesn’t really matter.
What matters is performance on run-time data, which may be extremely hard to
evaluate because one often does not know the correct answer for that data. For
example, you wish to classify credit-card transactions as safe or fraudulent. You
could obtain a set of transactions with true labels, and train with those. But what
you care about is new transactions, where it would be very difficult to know whether
the classifier’s answers are right. To be able to do anything at all, the set of labelled
examples must be representative of future examples in some strong way.

Remember this: A classifier is a procedure that accepts a set of features
and produces a label. Classifiers are trained on labelled examples, but the
goal is to get a classifier that performs well on data which is not seen at
the time of training. Training a classifier requires labelled data that is
representative of future data

20.1.1 The Error Rate, and Other Summaries of Performance

You can summarize the performance of any particular classifier using the error
or total error rate (the percentage of classification attempts that gave the wrong
answer) and the accuracy (the percentage of classification attempts that give the
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right answer). For most practical cases, even the best choice of classifier will make
mistakes. For example, an alien tries to classify humans into male and female, using
only height as a feature. Whatever the alien’s classifier does with that feature, it
will make mistakes. This is because the classifier must choose, for each value of
height, whether to label the humans with that height male or female. But for the
vast majority of heights, there are some males and some females with that height,
and so the alien’s classifier must make some mistakes. The minimum expected
error rate obtained with the best possible classifier applied to a particular problem
is known as the Bayes risk for that problem. In most cases, it is hard to know what
the Bayes risk is.

The error rate of a classifier is not that meaningful on its own, because you
don’t usually know the Bayes risk for a problem. It is more helpful to compare a
particular classifier with some natural alternatives, sometimes called baselines. The
choice of baseline for a particular problem is almost always a matter of application
logic. The simplest general baseline is a know-nothing strategy. Imagine classifying
the data without using the feature vector at all — how well does this strategy do?
If each of the C classes occurs with the same frequency, then it’s enough to label
the data by choosing a label uniformly and at random, and the error rate for this
strategy is 1− 1/C. If one class is more common than the others, the lowest error
rate is obtained by labelling everything with that class. This comparison is often
known as comparing to chance.

If the data has only two labels the highest possible error rate is 50% — if
you have a classifier with a higher error rate, you can improve it by switching the
outputs. If one class is much more common than the other, training becomes more
complicated because the best strategy – labelling everything with the common class
– becomes hard to beat.

Remember this: Classifier performance is summarized by either the
total error rate or the accuracy. You will very seldom know what the best
possible performance for a classifier on a problem is. You should always
compare performance to baselines. Chance is one baseline that can be sur-
prisingly strong.

The error rate is a fairly crude summary of the classifier’s behavior. For a
two-class classifier and a 0-1 loss function, one can report the false positive rate (the
percentage of negative test data that was classified positive) and the false negative
rate (the percentage of positive test data that was classified negative). Note that
it is important to provide both, because a classifier with a low false positive rate
tends to have a high false negative rate, and vice versa. As a result, you should be
suspicious of reports that give one number but not the other. Alternative numbers
that are reported sometimes include the sensitivity (the percentage of true positives
that are classified positive) and the specificity (the percentage of true negatives that
are classified negative).

The false positive and false negative rates of a two-class classifier can be
generalized to evaluate a multi-class classifier, yielding the class confusion matrix.
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0 1 2 3 4 Class error
0 151 7 2 3 1 7.9%
1 32 5 9 9 0 91%
2 10 9 7 9 1 81%
3 6 13 9 5 2 86%
4 2 3 2 6 0 100%

TABLE 20.1: The class confusion matrix for a multiclass classifier. This is a table
of cells, where the i, j’th cell contains the count of cases where the true label was
i and the predicted label was j (some people show the fraction of cases rather than
the count).

This is a table of cells, where the i, j’th cell contains the count of cases where the
true label was i and the predicted label was j (some people show the fraction of
cases rather than the count). Table 20.1 gives an example. This is a class confusion
matrix from a classifier built on a dataset where one tries to predict the degree of
heart disease from a collection of physiological and physical measurements. There
are five classes (0 . . . 4). The i, j’th cell of the table shows the number of data
points of true class i that were classified to have class j. As I find it hard to recall
whether rows or columns represent true or predicted classes, I have marked this on
the table. For each row, there is a class error rate, which is the percentage of data
points of that class that were misclassified. The first thing to look at in a table like
this is the diagonal; if the largest values appear there, then the classifier is working
well. This clearly isn’t what is happening for table 20.1. Instead, you can see that
the method is very good at telling whether a data point is in class 0 or not (the
class error rate is rather small), but cannot distinguish between the other classes.
This is a strong hint that the data can’t be used to draw the distinctions that we
want. It might be a lot better to work with a different set of classes.

Remember this: When more detailed evaluation of a classifier is re-
quired, look at the false positive rate and the false negative rate. Always look
at both, because doing well at one number tends to result in doing poorly
on the other. The class confusion matrix summarizes errors for multiclass
classification.

20.1.2 Overfitting and Cross-Validation

Choosing and evaluating a classifier takes some care. The goal is to get a classifier
that works well on future data for which we might never know the true label, using
a training set of labelled examples. This isn’t necessarily easy. For example, think
about the (silly) classifier that takes any data point and, if it is the same as a point
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in the training set, emits the class of that point; otherwise, it chooses randomly
between the classes.

The training error of a classifier is the error rate on examples used to train
the classifier. In contrast, the test error is error on examples not used to train
the classifier. Classifiers that have small training error might not have small test
error, because the classification procedure is chosen to do well on the training
data. This effect is sometimes called overfitting. Other names include selection
bias, because the training data has been selected and so isn’t exactly like the test
data, and generalizing badly, because the classifier must generalize from the training
data to the test data. The effect occurs because the classifier has been chosen to
perform well on the training dataset. An efficient training procedure is quite likely
to find special properties of the training dataset that aren’t representative of the
test dataset, because the training dataset is not the same as the test dataset. The
training dataset is typically a sample of all the data one might like to have classified,
and so is quite likely a lot smaller than the test dataset. Because it is a sample,
it may have quirks that don’t appear in the test dataset. One consequence of
overfitting is that classifiers should always be evaluated on data that was not used
in training.

Now assume that you want to estimate the error rate of the classifier on test
data. You cannot estimate the error rate of the classifier using data that was used
to train the classifier, because the classifier has been trained to do well on that
data, which will mean our error rate estimate will be too low. An alternative is
to separate out some training data to form a validation set (confusingly, this is
sometimes called a test set), then train the classifier on the rest of the data, and
evaluate on the validation set. The error estimate on the validation set is the value
of a random variable, because the validation set is a sample of all possible data
you might classify. But this error estimate is unbiased, meaning that the expected
value of the error estimate is the true value of the error.

However, separating out some training data presents the difficulty that the
classifier will not be the best possible, because we left out some training data when
we trained it. This issue can become a significant nuisance when we are trying
to tell which of a set of classifiers to use — did the classifier perform poorly on
validation data because it is not suited to the problem representation or because it
was trained on too little data?

You can resolve this problem with cross-validation, which involves repeatedly:
splitting data into training and validation sets uniformly and at random, training a
classifier on the training set, evaluating it on the validation set, and then averaging
the error over all splits. Each different split is usually called a fold. This procedure
yields an estimate of the likely future performance of a classifier, at the expense of
substantial computation. A common form of this algorithm uses a single data item
to form a validation set. This is known as leave-one-out cross-validation.
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Remember this: Classifiers usually perform better on training data
than on test data, because the classifier was chosen to do well on the training
data. This effect is known as overfitting. To get an accurate estimate of
future performance, classifiers should always be evaluated on data that was
not used in training.

20.2 A SIMPLE BINARY CLASSIFIER

Here is a simple problem, whose solution is useful. You wish to tell whether an
image is the output of a denoiser, or just an image. This is likely to be possible. For
example, denoising by Gaussian smoothing will produce an image that is slightly
blurred, and it should be possible to tell whether an image is a little blurred.

This section assumes that each image is represented by a known feature vector
of fixed dimension (Section 20.3 treats how to obtain this feature vector). The
classifier will accept this feature vector, then produce a number. Ideally, that
number is positive for for any image that comes out of the denoiser, and negative
for any that is a real image patch.

20.2.1 From Features to Label with a Linear Classifier

Assume you have a feature vector x that describes an image well. You must map
this feature vector to a label which identifies the class of the image. In the current
case, the label is either “real” or “denoised”, but much richer alternatives will
be important (Chapter ??). A straightforward choice is a linear classifier, which
maps x to u(x;a, b) = (aTx + b), then uses the sign of that value to classify.
Equivalently, a linear classifier constructs a hyperplane in the feature space. Data
items that map to one side of the hyperplane are real and data items that map
to the other side are denoiser outputs. The parameters a and b are chosen to
get the best performance (many more details below). You might object that this
mapping is too simple to achieve what is wanted. But the the feature vector is a
high dimensional representation of the image, so there is a good chance of finding
a linear classifier that separates the two. It will turn out that the feature vector
is the product of a learned encoder, meaning you can adjust the encoder to get the
feature vector that works best with a linear classifier.

20.2.2 Logistic Regression

The next step is to choose the parameters of the linear classifier to get good behavior
from the classifier. The recipe used in Chapter 16 applies: construct a loss, then
use some optimization procedure to minimize the loss. Notice that you can’t use
training error to adjust the parameters a and b. Gradient descent on error rate won’t
work, because the gradient is zero almost everywhere. Instead, some approximation
to the error rate is required.

One natural approximation is to interpret u(x;a, b) in terms of a probability.
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FIGURE 20.1: Left: A visualization of a linear classifier in a 2D feature space (so
f = 2) to illustrate the constraints on a classification loss. The example labelled D
should have large loss, because it is on the wrong side of the boundary and far away
from the boundary. The example labelled C should have a medium loss. It is on the
boundary, but should be some way to the right side. This is because there are likely
future examples close to it, and some of those might be on the wrong side of the
boundary. The example labelled B should have a zero loss, because it is far enough
on the right side of the boundary. Right: Plots of the hinge and cross entropy loss
for filled examples, keyed to the example labels, to show how these losses meet the
constraints.

Use the model

u(x;a, b) = log

[
P (denoise|x)
P (real|x)

]
.

This means a data item with positive u is likely to be from the denoiser, and more
likely to be from the denoiser if |u | is larger. A data item with a negative u is likely
to be real, and more likely so if |u | is larger. In particular

P (denoise|x) = eu

1 + eu
and P (real|x) = 1

1 + eu
.

Call this distribution the predictive distribution for the i’th example, and write
P (·;ui). Now write S for the set of examples, where each example has the form
(xi, yi), and

yi =

{
1 if i’th example is real
−1 otherwise

Then the log-likelihood of the dataset under this model is

Llr =
∑
i∈S

[
ui

(
1− yi

2

)
− log (1 + eui)

]
(you should check this; exercises ). It would be natural to choose a, b to
maximize this likelihood, a procedure known as logistic regression
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20.2.3 The Cross Entropy Loss

The cross-entropy between a discrete distribution p and another discrete distribu-
tion on the same space q is

Hx(p, q) = −E[p] [log q] = −
∑
u

pu log qu

where the sum is over all elements with non-zero terms in p and q. Now interpret
the label for the i’th data item as a model probability distribution, by writing
pi(real) = (1 + yi)/2 and pi(denoise) = 1 − pi(real) = (1 − yi)/2. One of these is
1 and the other 0 for each data item, and there is a different distribution for each
data item. Write mi for the i’th such example distribution and P (·;ui) for the
distribution predicted by the classifier for the i’th item. Notice that the logistic
loss is constructed out of cross-entropy terms, so

Llr =
∑
i∈S

[
ui

(
1− yi

2

)
− log (1 + eui)

]
=

∑
i∈S

[(
1− yi

2

)
[ui − log (1 + eui)] +

(
1 + yi

2

)
[− log (1 + eui)]

]
=

∑
i∈S

[pi(real) logP (real|ui) + pi(denoise) logP (denoise|ui)]

= −
∑
i∈S

H(mi, P (·;ui))

= Lxe.

This means that you can interpret the log-likelihood as a comparison between the
predicted distribution and the model distribution for each data item.

20.2.4 The Logistic Loss

Write si = yiui = yi(a
Tx+ b). The logistic loss function is given by

Llogistic(s) =
1

log 2

[
log
(
1 + e−s

)]
Then, by recalling that log

(
1 + ef

)
= f + log

(
1 + e−f

)
, you can show that the

log-likelihood for logistic regression is

Llr = (log 2)
∑
i∈S
Llogistic(si)

(though the log 2 factor is often ignored).

20.2.5 The Hinge Loss

The logistic loss has a helpful geometric interpretation in terms of the hyperplane
aTx+ b = 0. If the i’th example is correctly classified and far from the hyperplane,
si is large and positive, and so Llogistic(si) is very close to zero. As si gets closer
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to zero (and so the example gets closer to the hyperplane on the right side), the
logistic loss grows. If si is a lot smaller than zero (and so the example is far from
the hyperplane and on the wrong side), the loss grows close to linearly in si There
are other loss functions that have this behavior. The hinge loss function

Lhinge(s) = max1− s0

has this behavior as well. Recall si = yi(a
Txi + b). The hinge loss for a dataset is∑

i

Lhinge(si).

If the example is correctly classified and far from the hyperplane, s is larger than 1,
and so the hinge loss is zero. If the example is correctly classified and close to the
hyperplane, s is less than 1, and so the hinge loss is positive and gets bigger as the
example gets closer to the hyperplane. If the example is incorrectly classified, the
loss is positive, and the loss grows as the example gets further from the hyperplane
(Figure ??).

For both the hinge and the logistic loss, there is some cost to having an
example close to the hyperplane even if it is on the right side. This effect helps
ensure that the classifier performs well on test examples. You should expect future
test examples to occur near to training examples. If (say) a training example is on
the right side of the hyperplane, but is close to it, there is some possibility that
some other, future example that is near the training example might also be on the
wrong side of the hyperplane. This means it is a good idea for the loss to have a
margin – a training example that is on the right side, but close to the hyperplane,
should have loss greater than zero, and the loss should get bigger for examples that
are closer to the hyperplane.

20.3 BUILDING A CLASSIFIER

The feature representation x used to classify the image patches could come from a
fixed encoder recovered from an autoencoder. There is no good reason to do this,
and several good reasons not to. It is mildly inconvenient to train an encoder on one
problem, and use it on another. Worse, an encoder trained to do one thing may not
be good at another. The encoder parameters were chosen to be good at denoising
images, rather than to be good at distinguishing between real and denoised patches.

Much more natural is to build a classifier that accepts an image and predicts
a value. If that value is positive, the classifier has labelled the patch a denoised
patch; if negative, a real patch. Mostly, you know how to do this already. It is
straightforward to repurpose the tools of Chapter ?? to do so. The classifier consists
of a learned encoder that accepts an image and produces an f×1 dimensional vector
which is passed to a linear classifier that produces a number. Sections 20.2.2,
20.2.3 and 20.2.5 offer options for scoring the numbers produced from a training
set. The losses are (mostly) differentiable functions of the parameters a and b, so
the machinery of Sections 16.2.3, 16.2.1 (and variants in Section 17.3) apply. The
main open question is good ways to turn a block of encoded features into a vector.
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20.3.1 Pooling

Chapters 16 and 17 showed procedures to produce a learned image representation:
Apply a sequence of layers to an image, typically, convolutional, then ReLU, then
convolutional, then ReLU, and so on. There could be stride in these layers, so that
the block of features gets spatially smaller as it moves up the encoder.

For the result to be a vector, it must be f×1×1. This could be achieved with
stride alone, but an alternative is a pooling layer – a layer that reduces the spatial
extent of the data block by forming summaries of local windows. Windows may
overlap (depending on the API), but often don’t. Quite usual is halve the spatial
dimension of the image by pooling over non-overlapping 2×2 windows, so mapping
from f × 2a× 2b to f × a× b. In average pooling, the summary is the mean of the
elements in the window in each feature layer, and in max-pooling, the summary is
the maximum of the elements in the window in each feature layer. These pooling
layers have no learnable parameters (unlike, say, a convolutional layer with stride
2). Pooling layers differ by how they react to unusual (outlying) responses from
feature detectors. Average pooling will tend to suppress them, whereas max-pooling
will tend to emphasize them; there is some evidence that emphasizing them, and
so max-pooling, is better on the whole for some classification purposes.

The layers, stride, padding and pooling are arranged so that the c × d × d
image results in a g× s× s block. It is straightforward to turn this into a g× 1× 1
block by average pooling over the two spatial dimensions.

20.3.2 Fully Connected Layers

You could regard the g×1×1 block as a vector (in some APIs, you need to reshape,
but this is housekeeping) and simply pass it to a linear classifier. Alternatively, you
could transform this vector with a fully connected layer, which maps a vector u to
a vector Cu + d, where the parameters C and d are learned, and C does not need
to be square.

Notice that applying a linear classifier aTx + b to the output of a fully con-
nected layer is not particularly interesting, because the result is aTCu+ aTd+ b,
which is just a different linear classifier. Similarly, applying a fully connected layer
to another fully connected layer directly is not interesting. Instead, each fully
connected layer is followed by a ReLU.

It is usual to take the g × 1 × 1 block, turn it into a vector if your API
wants that, then pass it through a fully connected layer and then a ReLU layer at
least once and possibly multiple times before applying a linear classifier. Experience
teaches that it is helpful to pass high dimensional features to a linear classifier. This
creates a minor tension, because big fully connected layers have a lot of parameters
in them and can create issues with both inference and learning speed.

20.3.3 Training a Classifier

The encoder architecture produces an f × 1× 1 block, and the classifier dots that
vector with a parameter vector a, adds b, and reports the result. This process
is another layer, like the convolutional layers. Fold a and b into the parameter
vector θ. The result is a function that accepts an example image Ii and produces
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FIGURE 20.2: A (very simple) classifier built out of convolutional layers, a pooling
layer, a fully connected layer, and a linear classifier. Each light block represents a
convolutional layer (arguments are, in order: input dimension, output dimension,
kernel size, stride, padding); vertical lines are ReLU layers; the gray block with
rounded corners pools over all spatial dimensions to produce a vector; and the dark
gray block is a fully connected layer.

a number. Write F (Ii, θ) for the number that comes out of the classifier.
Choose one of the logistic or hinge losses, and write C for your chosen loss.

Then the loss of applying the classifier to all training examples is∑
i∈train

C(F (Ii, θ), yi)

and stochastic gradient descent can be applied to choose θ as in Section 16.2.1.

20.3.4 Worked Example

Figure 20.2 shows the architecture of a very simple classifier I used to classify real
vs. denoised. I trained this classifier using a cross-entropy loss; the optimizer
was Adam (Section 17.3.6); and I used batches of 128 images. I used 100, 000
images from the ImageNet training set (Section ??), which I mapped to gray level
images at 128 × 128 resolution. I obtained denoised images by applying the noise
of Section 21.1.3 to training images, then denoising them with the autoencoder
from that section (the one that uses skip connections). I used 20, 000 images from
that set as test examples, and constructed denoised test examples as in training
examples. This classifier is about as simple as it could be, and still quite easily
tells test denoise images from test real images. The behavior of the classifier is
summarised in Figure 20.3. Various modifications should lead to an improved
classifier (exercises ). There is a very good chance of telling accurately whether
an image has been through the autoencoder described in the text or not using a
simple classifier – the error rate averaged over the whole validation set is 0.06 (so
about one in 20 images will be misclassified).

The classifier of Figure 20.2 compares every pixel to every other pixel. You
could reasonably expect that you could tell the difference between a denoised image
and an image just by looking at image patches. The classifier of Figure 20.4 does
this. This classifier computes a feature vector for each image patch; applies a linear
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FIGURE 20.3: A plot of training loss (left) and validation error rate (right) for the
classifier of Figure 20.2, plotted against the number of training images the classifier
has seen. These are fairly characteristic of a simple classifier. The loss mostly goes
down, but there is some noise, particularly in the early stages of training (where a
randomly selected batch may show the classifier effects it hasn’t seen before). The
validation error mostly goes down, then slows. The validation error is somewhat
noisy, because it is measured on batches of 128 images rather than the whole valida-
tion set, so there is some chance of an odd batch. Eventually, the validation error
rate must stall (it can’t go below 0!) but – in this case – is small. There is a very
good chance of telling accurately whether an image has been through the autoencoder
described in the text or not using a simple classifier – the error rate averaged over
the whole validation set is 0.06 (so about one in 20 images will be misclassified).

classifier to each such feature vector; and then reports (a) the hinge loss and (b)
the score, averaged over all patches. It is worth taking a moment to check these
statements against the figure. This classifier has the useful property that it checks
whether individual image patches look good. The value of this property will become
apparent (Section 8.2.2). This isn’t a particularly good classifier for this application
(validation error rate of 0.28).
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FIGURE 20.4: This classifier looks at each image patch of a particular size, computes
a score for that patch, and reports a loss (or score) averaged across the whole
image. The patches overlap, and the size of the patches can be computed from the
parameters of the convolutional layers (exercises ). Each light block represents a
convolutional layer (arguments are, in order: input dimension, output dimension,
kernel size, stride, padding); vertical lines are ReLU layers; the gray block with
rounded corners pools over all spatial dimensions to produce a vector; and the dark
gray block is a fully connected layer. This classifier is not particularly accurate –
the error rate averaged over the whole validation set is 0.28 (so about one in four
images will be misclassified) – but classifiers built like this will turn out to be useful.


