
C H A P T E R 28

Color Phenomena

The light receptors in cameras and in the eye respond more or less strongly to
different wavelengths of light. Most cameras and most eyes have several different
types of receptor, whose sensitivity to different wavelengths varies. Comparing
the response of several types of sensor yields information about the distribution of
energy with wavelength for the incoming light; this is color information. The color
of an object seen in an image depends on how the object was lit, but there are
algorithms that can correct for this effect.

28.1 COLOR PHYSICS

The human visual system responds to light in a range of wavelengths from approx-
imately 400nm to approximately 700nm, making these wavelengths of particular
importance. Light may have more or less energy at different wavelengths. If the
intensity is relatively uniform across the wavelengths, the light will look white, but
if it isn’t, the light may look colored. The distribution of energy with wavelength
is sometimes called the spectral energy density. Light containing energy at just one
wavelength looks deeply colored (these colors are known as spectral colors). The col-
ors seen at different wavelengths have a set of conventional names, which originate
with Isaac Newton (the sequence from 700nm to 400nm goes Red Orange Yellow
Green Blue Indigo Violet, or Richard of York got blisters in Venice, although
indigo is now frowned upon as a name because people typically cannot distinguish
indigo from blue or violet).

28.1.1 The Color of Light

Different light sources have different relative spectral energy densities. Figure 28.1
shows examples from both measurements and from standard models of daylight.
Clear air scatters sunlight out of its direction of travel, with a probability of scat-
tering that depends on the fourth power of the wavelength. This means that light
of a long wavelength can travel much farther before being scattered than light of
a short wavelength. When the sun is high in the sky, blue light is scattered out
of the ray from the sun to the earth—meaning that the sun looks yellow—and can
scatter from the sky into the eye—meaning that the sky is quite bright, and looks
blue.

Typical artificial light sources are commonly of a small number of types:

• An incandescent light contains a metal filament that is heated to a high tem-
perature. Incandescent lights tend to produce energy over a wide range of
wavelengths, but tend not to produce much light in the short wavelengths
(i.e. blue – incandescent lights tend to look yellow).

• A fluorescent light works by generating high-speed electrons that strike gas

318



Section 28.1 Color Physics 319

slightly cloudy, 
sun behind a cloud

slightly cloudy, 
sun visible

cloudless sky, sunset

400 500 600 700

Illuminant D65

Illuminant A

400 500 600 700

Wavelength (nm) Wavelength (nm)

FIGURE 28.1: Left shows relative spectral energy density of daylight measured
under different conditions. Measurements were made by Jussi Parkkinen and
Pertti Silfsten; the data is published at https: // sites. uef. fi/ spectral/

databases-software/ daylight-spectra/ . Right shows relative spectral energy
density of standard illuminant models, standardized by the CIE. The models are
illuminant A—which models the light from a 100W Tungsten filament light bulb,
with color temperature 2800K—and illuminant D-65—which models daylight in-
doors. The data is published at https: // cie. co. at/ data-tables . In each
case, I have omitted y-labels because the point of the figure is the relative value of
the spectral energy density.

within the bulb. The gas releases ultraviolet radiation, which causes phos-
phors coating the inside of the bulb to fluoresce. The spectral energy density
of fluorescent lights tends to be “spikey” with energy concentrated in a small
range of wavelengths.

• An LEDcolor sources (light emitting diode) produces light from physical ef-
fects in semiconductors. These effects tend to produce energy in a very nar-
row range of wavelengths. Lights built out of LEDs tend to use a number
of different types of LED, and often use phosphors as well. LED lights are
now extremely common, because they can be very bright and are extremely
efficient.

The black-body model is often used to describe illuminant colors. This model,
derived from physical arguments about an idealized heated body, describes a one-
parameter family of illuminants. Write T for the temperature of the body in
Kelvins, h for Planck’s constant, k for Boltzmann’s constant, c for the speed of
light, and λ for the wavelength. Then the model gives the spectral energy density
as

E(λ;T ) = C
exp(−hc/kλT )

λ5

where C is some constant of proportionality which changes the intensity of the
source. The parameter T is often referred to as color temperature. A black-body
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FIGURE 28.2: The relative spectral energy distribution for some example LED lights
(left) and fluorescent lights (right), compared with CIE Illuminant A, which is
a model of an incandescent light. These are CIE models, so idealize the behavior
of these lights. Note the bright, narrow bands that come from LED physics or
flourescing phosphors. Some lights have quite uniform distribution of energy; others
have quite a “spikey” distribution. The data is published at https: // cie. co. at/
data-tables . In each case, I have omitted y-labels because the point of the figure
is the relative value of the spectral energy density.
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FIGURE 28.3: Albedos Spectral albedoes for a variety of natural surfaces measured
by Esa Koivisto, Department of Physics, University of Kuopio, Finland, plotted
against wavelength in nanometers. These figures were plotted from data available
at https://sites.uef.fi/spectral/databases-software/natural-colors/.

source ranges from somewhat orange in appearance (for T around 1500-3000 Kelvin)
through yellow (around 3000-4500 Kelvin) to neutral (around 6000 Kelvin) then
drifting into the light blue (around 10000 and more Kelvin). You should not think
of the color temperature as the actual temperature of an actual source (it’s not easy
to handle objects at 6000K!); it is just a parameter. Black body models are quite
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good at describing illumination outdoors, because they can match both sunlight
and skylight fairly well (exercises).

28.1.2 The Color of Surfaces under White Light

Assume light with a uniform distribution of energy across wavelengths falls on a
surface. For almost all applications of computer vision, energy does not arrive at one
wavelength and leave at a different wavelength, and reflections are either specular
or diffuse. As a result, surfaces can be described by the fraction of light reflected at
each wavelength for each type of reflection. Specular reflection is relatively easily
dealt with. If the surface is a conductor, the specularly reflected light may depend
quite strongly on wavelength, so that white light may result in colored specularities,
though this point does not usually appear in applications. If the surface is not a
conductor, specularly reflected light tends to take the color of the light source.

Diffuse reflection is more interesting. There are a large number of mechanisms
that cause different fractions of different wavelengths to be reflected. The result
is that diffuse albedo is wavelength dependent. The wavelength-dependent diffuse
albedo is sometimes referred to as the spectral reflectance (sometimes abbreviated
to reflectance or, less commonly, spectral albedo). Figure 28.3 shows examples of
spectral reflectances for a number of different natural objects. Each of these surfaces
will look colored even if they are illuminated by white light.

FIGURE 28.4: The same surface will appear to have different colors when viewed un-
der different lights. The effects can be quite pronounced. These images, taken from
the LSMI dataset disseminated at https: // github. com/ DY112/ LSMI-dataset .
On the far left, two images of the same scene under different illuminations. On
the left, details cut from these images to show the color checker. Next to the top
detail (on the right), the bottom detail scaled to match in intensity. This shows
that the difference is not just in brightness; colors have shifted as well. On the far
right, another pair of scenes viewed under different lights, showing further color
shifts.
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28.1.3 The Color of Surfaces in Images

Specularities are mostly ignored in the applications of computer vision, and here I
focus on diffuse surfaces. Most of the time, surfaces are lit by colored light, so the
color of the light leaving the surface is affected both by the color of the light falling
on it, and by the color of the surface. This is a significant nuisance in computer
vision, not least because it is somewhat inconsistent with experience. The effects
are pronounced, and easily observed (Figure 28.4). Humans are surprisingly good
at ignoring the effects of colored light, and typically report the color a surface would
have under white light, rather than the color of the light reflected from the surface.
If we use the Lambertian plus specular model, we have

E(λ) = ρdh(λ)S(λ)× geometric terms + specular term

28.2 IMAGING COLOR

Different kinds of color receptor in the human eye respond more or less strongly to
light at different wavelengths, producing a signal that is interpreted as color by the
human vision system. The precise interpretation of a particular light is a complex
function of context; illumination, memory, object identity, and emotion can all play
a part.
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FIGURE 28.5: Human perception of color can be studied by asking observers to mix
colored lights to match a test light shown in a split field. The drawing shows the
outline of such an experiment. The observer sees a test light T and can adjust the
amount of each of three primaries in a mixture displayed next to the test light. The
observer is asked to adjust the amounts so that the mixture looks the same as the
test light. The mixture of primaries can be written as w1P1 + w2P2 + w3P3; if
the mixture matches the test light, then we write T = w1P1 + w2P2 + w3P3. It is
a remarkable fact that for most people three primaries are sufficient to achieve a
match for many colors, and three primaries are sufficient for all colors if we allow
subtractive matching (i.e., some amount of some of the primaries is mixed with the
test light to achieve a match). Some people require fewer primaries. Furthermore,
most people choose the same mixture weights to match a given test light.
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28.2.1 Color Matching in Humans

In a simple but informative experiment, a subject is shown a colored light—the
test light—in one half of a split field (Figure 28.5). The subject can then adjust
a mixture of lights in the other half to get it to match. The adjustments involve
changing the intensity of some fixed number of primaries in the mixture.

Write T for the test light, an equals sign for a match, the weights—which are
non-negative—as wi, and the primaries Pi. A match can then be written in an
algebraic form as

T = w1P1 + w2P2 + . . . ,

meaning that test light T matches the particular mixture of primaries given by
(w1, w2, . . .). In subtractive matching, the subject can add some amount of some
primaries to the test light instead of to the match. This can be written in algebraic
form by allowing the weights in the expression above to be negative.

If subtractive matching is allowed and the primaries are independent (no
mixture of two primaries matches a third), then most subjects require only three
primaries to match a test light. This phenomenon is known as the principle of
trichromacy. Given the same primaries and test light, most subjects select the
same mixture of primaries to match that test light.Matching is (to an accurate
approximation) linear. This yields Grassman’s laws. First, if we mix two test
lights, then mixing the matches will match the result. Second, if two test lights can
be matched with the same set of weights, then they will match each other. Finally,
matching is linear: a test light with doubled intensity is matched by doubling the
weights. Trichromacy, the fact that different subjects select the same mixture to
match a test light, and Grassman’s laws are about as true as any law covering
biological systems can be. The main exceptions involve very dark or very bright
lights, and subjects suffering from genetic ill fortune, neural problems, or the effects
of aging.

28.2.2 Sensing Color

Color imagers – eyes or cameras – are arrays of sensors. In humans, the sensors
are cells that are sensitive to light. In cameras, the sensors are now semiconductor
devices that turn light into charge. These sensors do not measure wavelength
directly, but instead collect different fractions of the power arriving at different
wavelengths, and sum these fractions to produce their output. The fraction of
power arriving at a particular wavelength that is collected by the sensor is known
as the spectral sensitivity or spectral response of the sensor. Most cameras and
most eyes have several different types of sensor with different spectral sensitivities.
Comparing the response of several types of sensor yields color information. Write
σk(λ) for the spectral sensitivity of the k’th type of sensor. The energy collected
by the sensor can then be written

Ek(x) =

∫
wavelength

P (X→ x, λ)σk(λ)dλ∆t,

and the model for camera intensity becomes

Icamera,k(x) = Ck(Ek(x))
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FIGURE 28.6: There are two main ways to build color cameras. One can arrange
that light leaving the lens is split into three paths, each of which leads to a different
sensor (top left). These sensors have with different spectral sensitivities. Alterna-
tively, one can build a sensor where each location has a spectral sensitivity chosen
from a set of types (typically, three types; bottom left). These types are typically
arranged in one of a set of patterns (shown in 28.7), and a demosaicing algorithm
reconstructs the complete set of responses for each type. The sensor measurements
are then passed through camera response functions (as in Section 26.3.3). On the
right, example camera response functions for red, green and blue sensors. Note
these are similar, but not exactly the same.

where Ck is the camera response function for the k’th type of sensor. While camera
response functions for different types of sensor tend to be quite similar, they often
differ slightly.

Human retinas contain two types of cell that are sensitive to light, differen-
tiated by their shape. The light-sensitive region of a cone has a roughly conical
shape, whereas that in a rod is roughly cylindrical. Cones largely dominate color
vision. Cones are somewhat less sensitive to light than rods are, meaning that in
low light, color vision is poor. Trichromacy occurs because there are (usually!)
three distinct types of cone in the eye that mediate color perception.

Almost every camera we deal with will have either one type of sensor (a
monochrome camera) or three types of sensor (a color camera). Having more than
one sensor type creates an engineering problem. Ideally, one would like to have each
type of sensor at every location in the camera. This is difficult to achieve. One
can place whole arrays of each type of sensor in different locations, then arrange
for the incoming light to be split between the sensors. Such cameras exist, but
are expensive and tend to be large and heavy. Alternatively, one can “stack” the
sensor types on top of one another in an array. Such arrays can be built, but present
problems because the sensor types interact by “stealing” light from one another.

For consumer cameras, it is more usual to have a single array. The three
different sensor types are usually referred to as red, green and blue. The types
are allocated to locations in the array in a pattern known as a mosaic (example
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FIGURE 28.7: Many color cameras have only one of three types of sensor at each lo-
cation, where each type has a different spectral sensitivity. This is typically achieved
by placing a small filter element over each location on the sensor. The filters pass
more red light, more green light or more blue light respectively. The Bayer pattern
(left) is very widely used. Alternatives include the quad Bayer pattern (center),
which you can think of as a Bayer pattern of 2x2 super pixels and the X-trans
pattern (right). Any pattern requires some processing to reconstruct full images of
each sensor response. Different patterns offer different payoffs in this reconstruction
process.

in Figure 28.7). The camera reports a red image, a green image and a blue image
even though red (and green and blue) values are measured only in a scattered set of
locations. Each image is reconstructed from the scattered locations by an interpo-
lation procedure known as demosaicing. Most cameras use a Bayer pattern mosaic.
Careless interpolation procedures can result in odd color effects at boundaries and
around stripes (due to aliasing; more information in Section 41.2).

28.2.3 What Colored Surfaces Look Like

When a surface is viewed under different colored lights, the color of the light re-
flected from that surface changes. Lighting a green surface with white light gets a
green image; but so does lighting a white surface with green light. These changes
have a simple and orderly form, which is easily and usefully modelled. Assume
a linear camera or, equivalently, the effect of the CRF has been calibrated away.
Section 41.2 gives the response pk(x) of the k’th type of receptor with sensitivity
σk(λ) at location x as

pk(x) = gcEk(x) =

∫
wavelength

P (X→ x, λ)σk(λ)dλ∆t

(where gc is the gain constant of the linear camera). Now assume: that all power
arriving at x comes from X in the scene; all reflection is diffuse; the scene is illumi-
nated by light of one spectral energy density E(λ); and there are no interreflections.



326 Chapter 28 Color Phenomena

FIGURE 28.8: On the top left, a randomly chosen subset of spectral reflectances
(ρ(λ) plotted from data published at https: // www2. cs. sfu. ca/ ~ colour/ data/
colour_ constancy_ synthetic_ test_ data/ index. html . Top center shows a
randomly chosen subset of illuminant spectra (E(λ)) from the same source. Right
shows spectral sensitivities for receptors from the Sony DXC-930 camera, plotted
using data from that source. Below the spectral reflectances and the illuminants
is a set of basis functions obtained using principal components analysis of the full
dataset for each. I have scaled each principal componet using the standard deviation
of its coefficient when used to encode the dataset (1995 spectral reflectances, 11
illuminants in the version I used). Note that the mean and a small set of principal
components will encode the spectral reflectances (respectively, illuminants) well.

Write ρ(X, λ) for the spectral albedo at X. Then

pk(x) = gcEk(x) =

∫
wavelength

g(X)ρ(X, λ)σk(λ)E(λ)dλ∆t

where g(X) is a term due to geometric effects (as in Section 41.2). Assume the
camera gain and the time interval are known and so can be ignored. Finally,
assume that both spectral albedo and spectral energy density can be written as a
weighted sum of basis functions, so that

ρ(X, λ) =
∑
i

ri(X)ϕi(λ) and E(λ) =
∑
j

ejψj(λ).

This assumption is sound for quite a small basis (Figure 28.8). As the figure
suggests, the basis functions for albedo and for spectral energy density may be
different.

Because the lens system ensures that all power arriving at x comes from X ,
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we can substitute x for X. Now write

gijk =

∫
ϕi(λ)ψj(λ)σk(λ)dλ,

and obtain

pk(x) = g(x)
∑
ijk

eirj(x)gijk

or

p(x) = g(x)Aer(x).

(where the responses of different types of receptor have been stacked into a vector
p, the vector r represents the reflectance coefficients, the e represents the color of
the illuminant, and Ae is the matrix whose u, v’th element is

∑
i eigivu. A model

of this form is known as a finite dimensional linear model. Usually, gijk are known
or can be calibrated.

Some useful information can be extracted from finite dimensional linear mod-
els without going into details of which basis function are used. For any given illu-
minant, there is a linear map (given by Ae) from r (the coefficients of the spectral
reflectances) to p (the pixel values). If the basis for spectral reflectances has more
than three dimensions, then, for each illuminant, there will be surface reflectances
that are different, but yield exactly the same pixel values (because a linear map
from d > 3 dimensions to 3 dimensions must have a kernel).

The map Ae is quite strongly affected by e. This experimental fact is most
easily observed by looking at the collection of all pixel values in the image – its
gamut. As Figure 28.14 shows, if the illuminant is orange in color, then the colors in
the image shift toward orange; if it is blue, they shift to blue. Because Ae changes
when e changes its kernel may change. In turn, if the basis for spectral reflectances
has more than three dimensions, there may be pairs of surfaces that have different
colors under one light and the same color under another light (exercises). This
occurs in practice (Figure 28.14) and such pairs of surfaces are known as metamers.

28.3 REPRESENTING COLOR

Describing colors accurately is a matter of great commercial importance. For ex-
ample, some brands are associated with specific colors, meaning there are people
who are willing to go to a great deal of trouble to control colors exactly. Doing so
requires a standard system for talking about color. Simple color names are insuf-
ficient because relatively few people know many color names, and most people are
willing to associate a large variety of colors with a given name. This section barely
scratches the surface of a very well-developed subject: there are many linear and
non-linear color spaces (? is a good reference).

Useful color terms include: hue, the property of a color that varies in passing
from red to green; saturation, the property of a color that varies in passing from
red to pink; and brightness (sometimes called lightness or value, the property that
varies in passing from black to white.
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FIGURE 28.9: The top row shows a set of images of color patches under differ-
ent illuminants, simulated from data published at https: // www2. cs. sfu. ca/

~ colour/ data/ colour_ constancy_ synthetic_ test_ data/ index. html . No-
tice how the two color patches indicated by the white arrows look very similar under
illuminant 1, and quite different under illuminant 3. Similarly, the two patches
indicated by gray arrows look very similar under illuminant 3, but rather different
under illuminant 1. Each pair is a pair of metamers. The bottom row shows
the gamut of each image. Note how the gamut changes from illuminant color to
illuminant color.

28.3.1 Additive Linear Color Spaces

The natural mechanism for representing color is to agree on a standard set of
primaries, and then describe any colored light by the three values of weights that
people would use to match the light using those primaries. One can represent
surface colors as well by using a standard light for illuminating the surface. This is
a linear color space. The three primaries P1, P2, and P3 need not be be physically
realizable.

Because color matching is linear, predicting the weights that would be needed
to match a particular spectral energy density is straightforward. Obtain a color
matching function for each primary by experiment. The i’th color matching func-
tion (f1(λ), f2(λ), and f3(λ)) records the weight for the i’th primary matching a
unit energy source at wavelength λ. Because the human color system is linear, if a
source S(λ) is matched by w1P1 + w2P2 + w3P3, then

wi =

∫
fi(λ)S(λ)dλ.

One can obtain a linear color space by constructing the color matching functions
and then looking for primaries that produce these color matching functions. A
variety of different systems have been standardized by the CIE (the commission
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international d’éclairage, which exists to create standards for such things).
The CIE XYZ color space is one quite popular standard. The color matching

functions were chosen to be everywhere positive, so that the coordinates of any
real light are always positive. It is not possible to obtain CIE X, Y, or Z primaries
because for some wavelengths the value of their pectral energy density is negative.
However, given color matching functions alone, one can specify the XYZ coordinates
of a color and hence describe it. It is common to intersect the XYZ space with the
plane X + Y + Z = 1 and draw the resulting figure using coordinates

(x, y) =

(
X

X + Y + Z
,

Y

X + Y + Z

)
.

This space, which is often referred to as the CIE xy color space is shown in Figure ??.
CIE xy is widely used in vision and graphics textbooks and in some applications,
but is usually regarded by professional colorimetrists as out of date.

The RGB color space is a linear color space that formally uses single wave-
length primaries (645.16 nm for R, 526.32 nm for G, and 444.44 nm for B). Available
colors are usually represented as a unit cube—usually called the RGB cube—whose
edges represent the R, G, and B weights. In practice, RGB refers to the values
of Red, Green and Blue components found in images. These are not particularly
reliable or accurate measures of color. An easy experiment shows that images of
the same scene under the same lighting with different cameras can have somewhat
different RGB values. The main possible causes are that the spectral sensitivity of
the camera sensors (Section 41.2) can differ from camera to camera, and the camera
response function (Section 41.2) can differ from camera to camera. Another easy
experiment shows that the same image can look rather different on different mon-
itors, looks different in printed form and on a monitor, and usually looks different
when printed in different ways (exercises). Another difficulty with RGB is that
the R, G and B layers in an RGB image are typically very similar, but a linear
transformation can decorrelate these layers quite well (exercises).

There are three constructions worth remembering.

• In both RGB and XYZ space, the sum of the color coefficients is a good
representation of intensity.

• Because the color spaces are linear, and color matching is linear, all colors
that can be obtained by mixing two primaries A and B lie on the line segment
joining them plotted on the color space.

• Because the color spaces are linear, and color matching is linear, all colors
that can be obtained by mixing three primaries A, B, and C lie in the triangle
formed by the three primaries plotted on the color space. This construction
determines the set of colors (or gamut) that a monitor can display. A glance
at Figure 28.10 confirms that no triangle of points inside the color space will
encode everything, meaning that no monitor will display all colors.

28.3.2 Uniform Color Spaces

In many computer vision applications it is important to know whether a color
change is big enough to be noticed by a human. A straightforward experiment
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FIGURE 28.10: The standard 1931 standard CIE xy color space, with color names
marked on the diagram. The curved boundary of the figure is often known as the
spectral locus; it represents the colors experienced when lights of a single wavelength
are viewed. Generally, colors that lie farther away from the neutral point are more
saturated—the difference between deep red and pale pink—and hue—the difference
between green and red—as one moves around the neutral point. Near the center
of the diagram is the neutral point, the color whose weights are equal for all three
primaries. CIE selected the primaries so that this light appears achromatic. I have
deliberately not shown this space in color, because the colors that would print on
the figure are misleading. Color printing processes cannot reproduce the full set of
colors that people can perceive. For example, colors on the spectral locus cannot be
reproduced in print.

determines for each color how big a change in color is required for the change to
be noticeable (this is a just noticeable difference). Show a split screen with two
colors in it to an observer. Start with both colors the same base color, then change
one until the observer can only just tell it has changed by comparing it to the
other. The result is a set of small blobs of equivalent colors around each base color.
These can be represented as ellipses (Figure 28.11). In linear color spaces, these
ellipses vary quite strongly with the base color. In turn, this means that, to get
an accurate estimate of the significance of a color difference (say (∆R,∆G,∆B)),
one needs to apply some transformation to (∆R,∆G,∆B) that depends on the
particular (R,G,B) of the base color. This is wildly inconvenient in practice.

With an appropriate choice of non-linear transformation applied to linear color
coordinates, one can find a uniform color space. In such a space, if the distance
in coordinate space is below some threshold, a human observer would not be able
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FIGURE 28.11: This figure shows variations in color matches on a CIE xy space. At
the center of the ellipse is the color of a test light; the size of the ellipse represents
the scatter of lights that the human observers tested would match to the test color;
the boundary shows where the just noticeable difference is. The ellipses in the figure
on the left have been magnified 10x for clarity; on the right they are plotted to
scale, with color names on the CIE diagram as a reference. The ellipses are known
as MacAdam ellipses after their inventor. Notice that the ellipses at the top are
larger than those at the bottom of the figure, and that they rotate as they move up.
This means that the magnitude of the difference in x, y coordinates is a poor guide
to the difference in color. Ellipses are plotted using data from ?.

to tell the colors apart. A uniform space can be obtained from CIE XYZ using
a projective transformation to obtain the CIE u′v′ space CIE u’v’ space. The
coordinates are:

(u′, v′) =

(
4X

X + 15Y + 3Z
,

9Y

X + 15Y + 3Z

)
.

Generally, the distance between coordinates in u′, v′ space is a fair indicator of the
significance of the difference between two colors. Of course, this omits differences
in brightness.

CIE LAB is now almost universally the most popular uniform color space.
Coordinates of a color in LAB are obtained as a non-linear mapping of the XYZ
coordinates:

L∗ = 116

(
Y

Yn

) 1
3

− 16

a∗ = 500

[(
X

Xn

) 1
3

−
(
Y

Yn

) 1
3

]

b∗ = 200

[(
Y

Yn

) 1
3

−
(
Z

Zn

) 1
3

]
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FIGURE 28.12: This figure shows the CIE 1976 u′, v′ space, which is obtained by a
projective transformation of CIE x, y space. The intention is to make the MacAdam
ellipses (from Figure 28.11) uniformly circles. This would yield a uniform color
space. A variety of non-linear transforms can be used to make the space more
uniform (see ? for details).

Here Xn, Yn, and Zn are the X, Y , and Z coordinates of a reference white patch.
The reason to care about the LAB space is that it is substantially uniform. In
some problems, it is important to understand how different two colors will look to
a human observer, and differences in LAB coordinates give a good guide.

28.3.3 HSV Color Space

It is a common intuition that hue changes from red through orange to yellow, and
then green, and from there to cyan, blue, purple, and then red again. Another
way to think of this is to picture local hue relations: red is next to purple and
orange; orange is next to red and yellow; yellow is next to orange and green; green
is next to yellow and cyan; cyan is next to green and blue; blue is next to cyan
and purple; and purple is next to blue and red. Each of these local relations works,
and globally they can be modeled by laying hues out in a circle. This means that
no single coordinate of a linear color space can model hue, because that coordinate
has a maximum value that is far away from the minimum value. Applying a non-
linear transformation to the RGB space can produce a color space that respects
these relations. The HSV space (for hue, saturation, and value), is obtained by
looking down the center axis of the RGB cube. Because RGB is a linear space,
brightness—called value in HSV—varies with scale out from the origin. We can
flatten the RGB cube to get a 2D space of constant value and for neatness deform
it to be a hexagon. This gets the structure shown in Figure 28.13, where hue is
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given by an angle that changes as one goes round the neutral point and saturation
changes as one moves away from the neutral point.

R

G

B

Green

Yellow

Red

Magenta

Blue

Cyan

Hue

(angle)

Saturation

Value

Green (120 )

Blue (240 )

Red (0 )

FIGURE 28.13: On the left, we see the RGB cube; this is the space of all colors that
can be obtained by combining three primaries (R, G, and B—usually defined by the
color response of a monitor) with weights between zero and one. It is common to
view this cube along its neutral axis—the axis from the origin to the point (1, 1,
1)—to see a hexagon. This hexagon codes hue (the property that changes as a color
is changed from green to red) as an angle, which is intuitively satisfying. On the
right, we see a cone obtained from this cross-section, where the distance along a
generator of the cone gives the value (or brightness) of the color, the angle around
the cone gives the hue, and the distance out gives the saturation of the color.

28.3.4 Subtractive Mixing and Inks

Intuition from one’s finger-painting days suggests that the primary colors should
be red, yellow, and blue, and that yellow and blue mix to make green. The reason
this intuition doesn’t apply to monitors is that paints involve pigments—which mix
subtractively—rather than lights. Pigments can behave in quite complex ways,
but the simplest model is that pigments remove color from incident light, which
is reflected from paper. Thus, red ink is really a dye that absorbs green and blue
light—incident red light passes through this dye and is reflected from the paper.
This is subtractive color mixing.

Color spaces for this kind of mixing can be quite complicated. In the simplest
case, mixing is linear (or reasonably close to linear), and the CMY space applies.
In this space, there are three primaries: cyan (a blue-green color), magenta (a
purplish color), and yellow. These primaries should be thought of as subtracting
a light primary from white light; cyan is W −R (white− red); magenta is W −G
(white − green), and yellow is W − B (white − blue). Now the appearance of
mixtures can be evaluated by reference to the RGB color space. For example, cyan
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and magenta mixed give

(W −R) + (W −G) = R+G+B −R−G = B,

that is, blue. Notice that W +W = W because we assume that ink cannot cause
paper to reflect more light than it does when uninked. Practical printing devices
use at least four inks (cyan, magenta, yellow, and black) because mixing color inks
leads to a poor black, it is difficult to ensure good enough registration between
the three color inks to avoid colored haloes around text, and color inks tend to be
more expensive than black inks. One reason that fingerpainting is hard is that the
color resulting from mixing paints can be quite hard to predict. This is because the
outcome depends very strongly on details such as the specific pigment in the paint,
the size of pigment particles, the medium in which the pigment is suspended, the
care put into stirring the mixture, and similar parameters; usually, we do not have
enough detailed information to use a full physical model of these effects. A useful
study of this difficult topic is [?].

28.4 INFERENCE FROM COLOR

28.4.1 White Balancing

Color changes caused by illuminant color are an established nuisance in photogra-
phy. The mechanism that allows humans to discount the effect of the illuminant
color seems not to work on photographs. In turn, a scene viewed near (say) sunset
that looks natural to the photographer may look very strongly colored in the pho-
tograph. White balancing is the process of changing the color cast of the image to
make it look as if it had been taken under white light.

Recall the map Ae from Section 28.2.3. Write t for the vector of coefficients
of the target light in the basis for the illuminant. The pixel at x in the photograph
sees a spectral reflectance represented by r(x), and has color p(x) = Aer(x). In
white light, this surface would take the color Awr(x). Assume for the moment that
e is known. It is tempting to think that one might recover r(x) using an inverse.
Resist this temptation, because Ae will not have an inverse in most circumstances
(recall metamers from Section 28.2.3; these are pairs surfaces that have the same
color under one light, and different colors under another).

Instead, assume there are one or more references in the image. In practical
photography, the reference is usually a surface that the photographer knows to be
neutral and light in color (perhaps a wall painted white indoors, or the body of a
seagull). Write pi,t for the color of the i’th reference surface under the target light
and pi,e for the color of that surface under the illuminant of the photograph. Then
the image can be corrected by finding

argmin
M

∑
i

(pi,t −Mpi,e)
T
(pi,t −Mpi,e)

which is a simple least-squares problem (exercises). The material of Section 28.2.3
implies thatM is a general 3×3 matrix (exercises). It is quite usual to assume that
M is a diagonal matrix instead, and compute one scale for each channel. In the
simplest case, one simply scales by the pixel values for a white surface (exercises).
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dw: 8.6 dl: 6.1 ls: 5.1 dw: 5.5 dl: 3.1 ls: 2.7 dw: 14.8 dl: 13.1 ls: 8.3

FIGURE 28.14: White balancing using a linear map, illustrated for various regimes.
The top row shows a set of images of color patches under different illumi-
nants, simulated from data published at https: // www2. cs. sfu. ca/ ~ colour/

data/ colour_ constancy_ synthetic_ test_ data/ index. html . The bottom
row shows these images corrected to the illuminant of the first image by computing
theM of the text using every pixel value as a reference. Details in text.

If you scale each channel separately, the color space in which you work makes
some difference (exercises). You could reasonably expect all these effects to make a
large difference, but Figure ?? suggests the differences are quite small. This figure
compares an extreme case of white balancing using a general M and all pixels as
references to a range of other strategies. This exposes the extent to which the kernel
of Ae can create problems. The first image has no error. Under each of the other
corrected images is the root mean square error of correcting using each of three
regimes. The error is on a scale of 0-255, very common for 8 bit images. The cases
are: dw, where the image is corrected by scaling R, G, and B independently so that
the patch in the bottom right corner matches the original, so M is diagonal and
determined by one reference; dl, where the image is corrected by scaling R, G, and
B independently so that all pixels match, soM is diagonal and determined by all
pixels; and ls, where M is general and determined by all pixels. Notice ls gives
the lowest error, but the error is not zero (metamers again!); dl has larger error
than ls, but not much larger; and dw is surprisingly good given there is only one
reference and the map is diagonal.

28.4.2 Color Constancy: Surface Color from Image Color

Color constancy refers to algorithms that can take an image, discount the effect of
the light, and report the actual color of the surface being viewed. This report could
be in the form of the color of the scene under white light, so there is a strong link
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to white balancing. One strategy involves identifying some form of reference, then
using that reference to white balance the image.

Humans have some form of color constancy algorithm. People are often un-
aware of this, and inexperienced photographers are sometimes surprised that a
scene photographed indoors under fluorescent lights has a blue cast, whereas the
same scene photographed outdoors may have a warm orange cast. Human color
constancy is not perfectly accurate, and people can choose to disregard information
from their color constancy system. As a result, people can often report:

• the color a surface would have in white light (often called surface color);

• the color of the light arriving at the eye (a useful skill that allows artists to
paint surfaces illuminated by colored lighting); and

• the color of the light falling on the surface.

Color constancy is easiest when the camera is linear or can be photometrically
calibrated to behave like a linear camera. In the first instance, assume the scene
is flat and frontal, and has piecewise constant spectral albedo. This is known as
a Mondrian world assumption, because such a scene looks like a collage of colored
papers apparently reminiscent of the works of the artist Piet Mondrian. Because
the scene is frontal and the spectral albedos are constant, x can be replaced with
an index u (one index for each colored patch), yielding

pu = c(ru, e)

The receptor responses are observed, and the problem is to recover each ru (the
spectral albedo of each patch) and e (the color of the illuminant). Straightforward
strategies are:

• Assume there is a white patch, and it can be identified. For that patch, r is
known. It is an exercise to show that, assuming appropriate dimensions for
the bases, e can then be recovered, and from that the other r.

• Assume that the average spectral albedo is known. It is again an exercise to
show that e can be recovered from this information, and from that the r.

These assumptions yield quite workable algorithms in practice. More sophisticated
procedures rely on the gamut of observed colors. Illuminating a colored surface
with a colored light tends to shift the color of the surface somewhat toward the
color of the light, and so some colors aren’t observed. So, for example, in greenish
light one does not see strongly red surfaces; in reddish light one does not see very
blue surfaces; and so on. This effect is sufficiently pronounced that it can be used
to estimate the illuminant (exercises).

It is convenient to ignore the geometric term g(x) for simplicity, but it isn’t
necessary. Recall the lightness model of Section 41.2. Assume that g(x) varies
slowly like the shading term in that model, and that r(x) is piecewise constant
like the lightness term in that algorithm. Apply that algorithm to each type of
receptor response separately, to recover the components of r(x) separately up to
a constant (exercises). Now recover these constants using one of the procedures
above (exercises)
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28.4.3 Shadow Removal Using Color

Lightness methods make the assumption that “fast” edges in images are due to
changes in albedo (Section 27.4.1). This assumption is usable, but fails badly at
shadows, particularly shadows in sunlight outdoors (Figure 28.16), where there can
be a large and fast change of image brightness. People usually are not fooled into
believing that a shadow is a patch of dark surface, so must have some method to
identify shadow edges. Home users often like editing and improving photographs,
and programs that could remove shadows from images would be valuable. A shadow
removal program would work something like a lightness method: find all edges,
identify the shadow edges, remove those, and then integrate to get the picture
back.

There are some cues for finding shadow edges that seem natural, but don’t
work well. One might assume that shadow edges have very large dynamic range
(which albedo edges can’t have; see Section ??), but this is not always the case.
One might assume that, at a shadow edge, there was a change in brightness but not
in color. It turns out that this is not the case for outdoor shadows, because the lit
region is illuminated by yellowish sunlight, and the shadowed region is illuminated
by bluish light from the sky, or sometimes by interreflected light from buildings,
and so on. However, a really useful cue can be obtained by modelling the different
light sources.

Assume that light sources are black bodies (Section ??), so that their spectral
energy density is a function of temperature, that surfaces are diffuse, and that the
color receptors each respond only at one wavelength. Write λk for the wavelength
at which the k’th receptor responds, so that σk(λ) = δ(λ − λk). View a surface
with spectral albedo ρ(λ) illuminated by one of these sources at temperature T .
The response of the j’th receptor will be

rj =

∫
σj(λ)ρ(λ)K

exp(−hc/kλT )
λ5

dλ = Kρ(λj)
exp(−hc/kλjT )

λ5j
.

A color space that is very well behaved can be formed by taking c1 = log(r1/r3),
c2 = log(r2/r3), because (

c1
c2

)
=

(
a1
a2

)
+

1

T

(
b1
b2

)
where a1 = log ρ(λ1)− log ρ(λ3) + 5 log λ3 − 5 log λ1 and b1 = (hc/k)(1/λ3 − 1/λ1)
(and a2, b2 follow). Notice that, when one changes the color temperature of the
source, the (c1, c2) coordinates move along a straight line. The direction of the
line depends on the sensor, but not on the surface. Call this direction the color
temperature direction. The intercept of the line depends on the surface.

Now consider a world of colored surfaces, and map the image colors to this
space. There is a family of parallel lines in this space, whose direction is the color
temperature direction. Different surfaces may map to different lines. Changing
the color temperature of the illuminant will cause each color in this space to move
along the color temperature direction, but colors will not move from line to line.
Represent a surface color by a coordinate describing its line. For example, construct
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FIGURE 28.15: Changing the color temperature of the light under which a surface
is viewed moves the (c1, c2) coordinates of that surface along the color temperature
direction (left; the different gray patches represent the same surface under different
lights). Project the coordinates along the (c1, c2) direction onto some line to obtain
a value that doesn’t change when the illuminant color temperature changes. This
is the invariant value for that pixel. Generally, we do not know enough about the
imaging system to estimate the color temperature direction. However, we expect
to see many different surfaces in each scene; this suggests that the right choice of
color temperature direction on the right is 1 (where there are many different types
of surface) rather than 2 (where the range of invariant values is small).

a line through the origin that is perpendicular to color temperature direction, then
represent a surface color by distance along this line (Figure 28.15). Represent each
pixel in the image in this space. In this representation the color image becomes a
gray-level image, where the gray level does not change inside shadows (because a
shadow region just has a different color temperature to the non-shadowed region).
? calls this the invariant image. Any edge that appears in the image but not in the
invariant image is a shadow edge, so now apply the original formula: find all edges,
identify the shadow edges, remove those, and then integrate to get the picture back.

There are some practical difficulties. Usually, it is hard to know enough
about the sensors to evaluate the as and bs that define this family of lines, so it
is hard to get the invariant image directly. However, as Figure 28.15 suggests, a
good estimate of the color temperature direction in (c1, c2) follows from a form
of entropy reasoning. This means the invariant image can be constructed without
knowing anything about the sensor. Search directions in (c1, c2) space, projecting
all the image colors along that direction; the estimate of the color temperature
direction is the one where this projection yields the largest entropy. In practice,
the method works well, though great care is required with the integration procedure
to get the best results (Figure 28.16).
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Invariant image Shadow removed imageImage

FIGURE 28.16: The invariant of the text and of Figure 28.15 does not change value
when a surface is shadowed. Finlayson et al. use this to build a shadow removal
system that works by (a) taking image edges; (b) forming an invariant image; then
(c) using that invariant image to identify shadow edges; and finally (d) integrating
only non-shadow edges to form the result. The results are quite convincing.


