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CHAPTER 5

Convolution in Detail

THE PROPERTIES OF CONVOLUTION

Most imaging systems have, to a good approximation, three significant properties.
Write R(f) for the response of the system to input f. Then the properties are:

e Superposition: the response to the sum of stimuli is the sum of the indi-
vidual responses, so

R(f +g) = R(f) + R(9);

e Scaling: the response to a scaled stimulus is a scaled version of the response
to the original stimulus, so

R(kf) = kR(f).
An operation that exihibits superposition and scaling is linear.

e Shift invariance: In a shift invariant linear system, the response to a trans-
lated stimulus is just a translation of the response to the stimulus. This
means that, for example, if a view of a small light aimed at the center of the
camera is a small, bright blob, then if the light is moved to the periphery, the
response is same small, bright blob, only translated.

A device that is linear and shift invariant is known as a shift invariant linear system.
The operation represented by the device is a shift invariant linear operation.

Some systems accept a continuous signal and produce a continuous signal. A
natural example is a lens, which takes a pattern of light and produces a pattern of
light. Others accept a discrete signal (a vector; an array) and produce a discrete
signal. A natural example would be smoothing with a Gaussian. Either kind of
system can be linear, and either kind of system can be shift invariant. It turns
out that any operation that is shift invariant and linear can be represented by a
convolution (Section ?? has the details). I have already shown an expression for
convolution for discrete signals. There is an analogous expression for convolution for
continuous signals, developed below. Mostly, I will overload the term convolution
and the % operation to refer to either case.

Convolution is:

e linear, by construction;
e shift-invariant, by construction;

e commutative (meaning
(9 h)(x) = (h*g)(x)

exercises);
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e associative (meaning that

(fx(gxh))=((f*g)=*h)

exercises).

5.1.1 Application: Derivative of Gaussian Filters

Because convolution is associative, smoothing an image and then differentiating
it is the same as convolving it with the derivative of a smoothing kernel. First,
differentiation is linear and shift invariant. This means that there is some kernel
that differentiates. Given a function I(x,y),

ol
% = K(a/am) x 1.
Write the convolution kernel for the smoothing as S. Now

as
Ox
Usually, the smoothing function is a gaussian, so an estimate of the derivative can
be obtained by convolving with the derivative of the gaussian (rather than convolve
and then differentiate), yielding

09s 1 —x 2% 4+ 92
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Dy = 2702 {M] b < 202 )
As they should (Section ?7?), derivative of gaussian filters look like the effects they
are intended to detect. The x-derivative filters look like a vertical light blob next

to a vertical dark blob (an arrangement where there is a large z-derivative), and so
on.

(K(a/02) % (S * 1)) = (K@g/az) *S) x I = (5=) * 1.

Large gradients in images are interesting (Chapters ?? and ?7?) because they
tend to occur on the outlines of objects, at shadow boundaries, and so on. Generally,
if there is a large x derivative at a pixel, there will be a large x derivative at
neighboring pixels. Smoothing across the direction of the derivative may result in
smeared or blurred derivatives; but smoothing along the direction of the derivative
will tend to average the value at points with similar derivatives and improve the
noise resistance. It is quite usual to use

09, 1 —x z2 y?
or  2ro. H exp‘(wz*zaz)
09o 1 —y P
By T o [m} eXP‘(zoz+2oz)

where g, > 0. Smoothing results in much smaller noise responses from the deriva-
tive estimates, and more smoothing yields less noisy, but more blurry, gradients
(Figure 5.1 and 5.2).
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FIGURE 5.1: Derivative of gaussian filters, equivalent to applying a finite difference
to a smoothed image, very significantly improve estimates of derivatives. Compare
this figure with Figure 4.5. Rows show image, horizontal derivative and vertical
derivative, where derivatives are estimated by convolution with difference of gaus-
sian filters. The filters are shown at the top. As you should expect, one looks like
a dark bar next to a light bar, the other looks like a dark bar below a light bar. As
should be apparent from the filters, the smoothing is the same in each direction.
First row is noise free image; others have additive Gaussian noise added, with
standard deviation shown on the right. Notice how this noise hardly affects deriva-
tives. The derivatives are scaled so that positive values are bright, negative values
are dark, and 0 is mid-range. Although the scale is chosen per row, the derivative
1mages look the same from row to row — this means that each row has about the same
largest magnitude value. Image credit: Figure shows Robert Forsyth’s photograph
of historical dock pilings in Lake Michigan.
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FIGURE 5.2: Derivative of gaussian filters, equivalent to applying a finite difference
to a smoothed image, very significantly improve estimates of derivatives. Compare
this figure with Figure 4.5. As should be apparent from the filters, the smoothing
is over a much larger range along the derivative direction than across it (compare
Figure 5.1). Image credit: Figure shows Robert Forsyth’s photograph of historical
dock pilings in Lake Michigan.

5.2 SHIFT INVARIANT LINEAR = CONVOLUTION
5.2.1 Shift Invariant Linear = Convolution, 1D Discrete Case

I have already shown convolution is shift invariant and linear. In fact, it is easily
shown by construction that the response of a shift invariant linear system to a
stimulus is obtained by convolution. In the 1D case, a shift invariant linear system
takes a vector and responds with a vector. This case is the easiest to handle because
there are fewer indices to look after. The 2D case—a system that takes an array
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and responds with an array—follows easily. In each case, assume that the input
and output are infinite dimensional, so there are no issues at the boundaries of the
input.

For the 1D case, the input vector is f. For convenience, assume that the
vector has infinite length and its elements are indexed by the integers (i.e., there is
an element with index —1, say). The ith component of this vector is f;. Now f is a
weighted sum of basis elements. A convenient basis is a set of elements that have
a one in a single component and zeros elsewhere. We write

e =...0,0,0,1,0,0,0,...

This is a data vector that has a 1 in the zeroth place, and zeros elsewhere. Define
a shift operation, which takes a vector to a shifted version of that vector. In
particular, the vector Shift(f,) has, as its jth component, the j — ith component
of f. For example, Shift(eg, 1) has a zero in the first component (and so is e;).
Then

f =" fishift(e,).

Because the system is linear and shift invariant

R(f) =R <Z fiShift(eo, i))
- Z R(f;Shift(eq,i))
= Z fiR(Shift(ep,?)) (the system is linear)

= Z fiShift(R(ep),%)). (the system is shift invariant)

So the system’s response to any data vector can be obtained from its response to
eg. This is usually called the system’s impulse response. Write g for the impulse
response, yielding

R(f) = ZfiShift(g,i) =gxf.

This defines an operation—the 1D, discrete version of convolution—which we write
with a . This doesn’t yield a particularly easy expression for the output. Write
R; for the jth element of R(f), and find

Rj=> g ifi
%

5.2.2 Shift Invariant Linear = Convolution, 2D Discrete Case

Now use an array of values and write the ¢, jth element of the array D as D;;. The
appropriate analogy to an impulse response is the response to a stimulus that looks
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like
... 0 0 o0
Eo= ... 0 1 O
0O 0 O

If G is the response of the system to this stimulus, the same considerations as for
1D convolution yield a response to a stimulus F, that is,

Rij = ZGifu,jvauva =GxF

u,v

It should be clear that this construction works for any dimension, with minor ad-
justments to indexing, etc. So, by construction, any shift-invariant linear operation
applied to a discrete N-d signal can be represented as convolution with some kernel.

5.2.3 Shift Invariant Linear = Convolution, 1D Continuous case

Understanding aliasing requires understanding what happened when a continuous
signal was sampled to produce a discrete image. It turns out that shift-invariant
linear operations applied to continuous signals are important. All the logic of the
previous section applies, but some new notation is required. The key question is
obtaining some object analogous to eg in the discrete case. It turns out this object
is a rather unnatural function, the J-function (which is not a function in formal
terms). The process will be:

e Represent a continous input function as a weighted sum of a set of narrow
boxes, shifted to sit on discrete sample points. The weights form a discrete
vector.

e Apply the expressions for discrete convolution to represent the output.
e Now make the boxes narrow, and consider the limit.
Representing the input function: Define the box function by:

[ 0 abs(z) >
box (w) = { 1 abs(z) <

The value of bozx.(e/2) does not matter. The input function is f(z). Construct an
even grid of points z;, where z;11 — z; = €. Now construct a vector f whose ith
component (written f;) is f(x;). Define Shift operator, which takes functions to
functions:

[SILYNIE

Shift(f,c) = f(u — ¢).

This vector can be used to represent the function, f as

Z fishift(box,,x;).
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Apply discrete convolution: A shift invariant linear system applied to this
function will yield a weighted sum of shifted responses to box functions, so

R (Z fiShift(boxe, :m) = ZR(fiShift(boxe,xi))

3

- Z fiR(Shift(box,,z;))

box,
6)’ xZ)
€

= fiShift(R(

box,

- ZfiShift(R( ), @i )€.

€

So far, everything has followed our derivation for discrete functions. The result
looks like an approximate integral if e — 0, assuming that % can be interpreted.

A new device, called a d-function, deals with the term boz./e. Define

do(z) = box.(x) '

€

The d-function is:
0(z) = lim d ().

e—0

There is no need to discuss the value of §(0), but notice that

/_00 () f(x)de = elgr(l) _00 de(x) f(x)dx
=y [ 2D
= lgr(l) ‘ bo%e(x)(f(ie)boxe(x —i€)e
= f(0).

The d-function is the natural analogue for eg in the continuous case. One interesting
feature of this function is that, for practical shift invariant linear systems, the
response of the system to a d-function exists and has compact support (i.e., is zero
except on a finite number of intervals of finite length). For example, a good model
of a d-function in 2D is an extremely small, extremely bright light. The result of
making the light smaller and brighter while ensuring the total energy is constant is
a small but finite spot due to the defocus of the lens.
This means that the expression for the response of the system,

box,

)7 xi)€7
€

> fishift(R(
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turns into an integral as € limits to zero. The integral is
~ [{RE) @)} s
— [ gtu-a)s)as

where R(§)—which is usually called the impulse response of the system— was
written g. The limits of the integral could be from —oo to oo, but more strin-
gent limits could apply if g and h have compact support. This operation is called
convolution (again), and can be written

R(f) = (g% f).

5.2.4 Shift Invariant Linear = Convolution, 2D Continuous case
The derivation of convolution in two dimensions requires a little more notation. A

box function is now given by box.2(x,y) = box.(x)box(y) and

boxe2(x,y)
de(z,y) = e

The J-function is the limit of d.(z,y) function as e — 0. Again, discussion of the
value of 0(0) is better avoided, but notice

/ " g, y)d(a, y)dady = (0,0).

Finally, there are more terms in the sum. All this activity results in the
expression

)(,y) // -’y =y )h(z',y)dzdy
= (g*h)(z,y),

The impulse response of a 2D shift-invariant linear system is sometimes called its
point spread function.

5.3 SAMPLING, INTERPOLATION AND CONVOLUTION
5.3.1 Sampling: Passing from Continuous to Discrete

Passing from a continuous function—Ilike the irradiance at the back of a camera
system—to a collection of values on a discrete grid —like the pixel values reported
by a camera—is referred to as sampling. For sampling in one dimension, the most
important case involves sampling on a uniform discrete grid. Assume that the
samples are defined at integer points, yielding a process that takes some function
and returns a vector of values:

sample, (/(x)) = f.



70 Chapter 5 Convolution in Detail

Sample
P 1D

————

I | ; >_ I ' ; >

FIGURE 5.3: Sampling in 1D takes a function and returns a vector whose elements
are values of that function at all integer points. The vector is infinite to avoid
having to write indices, etc.

Here the ¢th component of f is f(x;), and f is an infinite vector to avoid having to
write indices, etc. (Figure 43.2).

Sampling in 2D is very like sampling in 1D. Although sampling can occur on
nonregular grids (the best example being the human retina), the most important
case has samples on a uniform grid of integer coordinates. This gives

sample,,(F(z,y)) = F,

where the 4, jth element of the array F is F'(z;,y;) = F(¢,7). The grid is infinite
in each dimension to avoid having to write ranges, etc. (Figure 43.4). Notice that
the kernel of Section 2.3.3 and 4.2.3 is a sampled version of a continuous function.

That kernel was e
exp— (%)

C

Wi j =

which is sample,,(go(x,y)) for

(2.y) = — (=* +9%)
o(z,y) = exp | ———2~
g 4 2mo2 P 202

(which is the probability density function of an isotropic bivariate normal distribu-
tion with mean at (0, 0)).

Samples are not always evenly spaced in practical systems. This is quite
often due to the pervasive effect of television; older television sets had an aspect
ratio of 4:3 (width:height), though 16:9 is commone for more recent sets. Cameras
quite often accommodate this effect by spacing sample points slightly farther apart
horizontally than vertically (in jargon, they have non-square pizels).

5.3.2 A Continuous Model of a Sampled Function

Understanding aliasing will require a continuous model of a sampled signal. Write
C(Z) for the operation that maps a sampled image Z to this continuous model. This
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SamplezD }

FIGURE 5.4: Sampling in 2D takes a function and returns an array; again, we allow
the array to be infinite dimensional and to have negative as well as positive indices.

model should respect convolution and sampling in a sensible way. Choose some
continuous convolution kernel g(z,y) A desirable property of this model is that if
you convolve C(Z) with g(z,y), then sample the result, you get what you would
have gotten if you convolve Z with sample,,(g). To write this out, it is helpful to
distinguish discrete convolution (I will write *4) and continuous convolution (I will
write *.). The property is:

sample,(C(Z) *. g) = I x4 sample,(g).

Now C(Z cannot just be a function that takes the value of the signal at integer
points and is zero everywhere else, because this model has a zero integral so the
left hand side will be zero. Instead, use

and find
C(I) *cg= E Tijg(x — x5,y — yj)
@,

so that the u, v’th component of
sample,,(C(Z) *. g) is ZL-jg(xu — Zi, Yo — Yj)
2]
and the property holds.

5.3.3 Interpolation: Passing from Discrete to Continuous

Recall the interpolate of Section 2.2 had the form

I(x,y) = Tijb(x — i,y — j).
]
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b is some function with the properties 5(0,0) = 1 and b(u,v) = 0 for u and v
any other grid point. This is linear and shift invariant (exercises) so it must be a
convolution. The way to see the convolution is to use the continuous model of the
sampled image. This exposes the convolution in interpolation. Notice that

C(T) + b / / CT) (@ — 1w,y — v)b(u, v)dudy

Zzij//5(x—u—i,y—v—j)b(u,v)dudv
ij

Zij(aj — 4,y — j) from the property of a § function
4,J

which is the form of an interpolate.



