CHAPTER 9

Denoising Images using Distant
Pixels

Points:
TODO: Figure images have patches that match quite well
sec: you can inpaint missing pixels by matching;
matches might come from far away;
TODO: Figure showing incremental inpainting of text

TODO: The size of the window matters for incremental inpainting TODO:
The order of the window matters for incremental inpainting

You can inpaint with patches as well as pixels, though you have to worry
about boundaries

you can use these procedures to synthesize texture (the hole is on the outside
of the image)

Sec: this yields non-local means; and also the bilateral filter; using SSD might
be a bit shakey for denoising; matching norm can have interesting effects.

sec: patches match across images as well; this introduces huge issues of scale

You can denoise by smoothing because pixels tend to be like their neighbors.
The autoencoders I have described denoise by computing a description of a neigh-
borhood of pixels — usually called an image patch or patch — that is robust to noise,
then reconstructing the patch from this description. It follows that patches tend to
have quite stylized appearance — most small arrays are not patches. This chapter
introduces a new and very important property of images: similar patches tend to
appear rather often in an image. This property is extremely powerful, because it
means that if a patch at some location is degraded, there is very likely another
version of that patch at another location that is not. In turn, you can look far away
from the pixel you are denoising to find useful information about what it looks like.

Figure 9.1 illustrates this essential property. I selected five locations in an
image at random. I took the 5 x 5 patches centered at each location, then found
the top 20 matching patches in the image. The best matches are very good. Some
very good matches are to patches that are far away from the original location. It
should be clear that the size of the patch (very often, referred to as the scale) you
try to match has strong effects on this property. Experience of images will tell you
that, if the patch is 1 x 1, there will be a large number of matches (which is slightly
surprising exercises). If the patch is very large, there must be few matches. But
patches of moderate scale find many matches. Figure ?? shows matches varying by
scale.

118

Section 9.1 Inpainting Missing Pixels by Matching 119

FIGURE 9.1: Images are made up of patches chosen from quite a small vocabulary,
and so any one patch in an image tends to match a number of other patches quite
well. Top row: shows five image patches in detail, selected from the image below
at random, and their matching patches for three different patch sizes. The left
column in each shows the patch, and the other columns show 20 matching patches,
found in the image, in order of SSD distance (smallest and so best matching to the
left). Notice that there are many patches that are very like a given patch. Bottom
row shows the matches on top of the image. The center of each of the fans of
line segments is the query patch (letters key the patch to the details), and each
line segment joins a patch to a matching patch. The lines are brighter for small
distances, and fainter for large distances. A thicker line occurs when two or more
matching patches are close to one another. Notice how matching patches can be
quite far away from the query patch (long lines) and how some patches repeat often
(many bright lines) whereas others have few matches (many faint lines). Notice
also that smaller patches have more widely distributed matches (broad fan, few
thick lines) and larger patches tend to have matches that are close together. Image
credit: Figure shows my photograph of vegetation in Sao Paulo.

9.1 INPAINTING MISSING PIXELS BY MATCHING
9.1.1 Replacing Knocked-out Pixels

Imagine you have an image where some pixels have been set to zero (knocked out)
but all others are reliable. The problem of dealing with knocked out pixels is
known as inpainting. Because real pixels are never zero, you know which pixels are
noise. For the moment, assume that the noise pixels are scattered and are selected
randomly (how does not really matter), and are moderately rare. Denoising this
image requires estimating the true value of the knocked out pixels. You should
immediately think of applying a median filter (Section ??), which certainly applies
to this example.

Here is an alternative strategy. Look at the patch around a noise pixel (the
target patch). There are no other noise pixels in this patch, at least for the moment.
Images are quite repetitive in structure, meaning that there is likely another patch
in the image that matches this one. Now find a pool of patches that match the
target well enough. The center pixel in each of these patches is a good estimate

120 Chapter 9 Denoising Images using Distant Pixels

Original Knocked-out pixels

Inpainted pixels

FIGURE 9.2: Inpainting occasional missing pizels by matching patches is very suc-
cessful. Top row shows images; bottom row shows detail. For reference, the
original image is on the left; just under 1% of the pixels in this image have been
set to zero (locations chosen uniformly at random) to produce the center image;
the image on the right has been reconstructed by finding the closest 5 x 5 patch that
matches the patch surrounding the knocked out pizel (but doesn’t have a knocked out
pizel in it), then replacing the knocked out pizel with the center of the patch. Look
for problems by finding a black pixel in the center detail image that is replaced by
an implausible pizel in the right image (a fruitless search!). Tmage credit: Figure
shows my photograph of vegetation in Sao Paulo.

of the value of the knocked out pixel. The knocked out pixel can then be replaced
either by summarizing these center pixels using a mean, or choosing randomly
among them. Alternatively, you could take the center pixel from the best matching
patch.

The details are straightforward. Compute the goodness of the match with the
sum of squared differences. There should always be at least one matching patch,
otherwise you can’t obtain the value of the missing pixel. This means the pool of
matches that are good enough should always contain the best match. Build this
pool from the best match, together with the top & matches that are better than
some threshold. Leave out the center pixel when computing the SSD, and match
only to patches without a missing pixel, otherwise you might replace a knocked
out pixel with another one. Figure 9.2 shows an example. This procedure works
for blocks of pixels that have been knocked out as well, with minimal changes.
Figure 9.4 shows an example where 3 x 3 blocks of pixels have been knocked out.

Section 9.1 Inpainting Missing Pixels by Matching 121

Original .)] Knocked-out pixels

FIGURE 9.3: Inpainting still works when a lot of pizels have been knocked out, as
long as you are careful about how you match. Top row shows images; bottom
row shows detail. For reference, the original image is on the left; just under 6% of
the pizels in this image have been set to zero. The locations were chosen uniformly
at random, and pizels were knocked out in 3 x 3 blocks to produce the center image;
the image on the right has been reconstructed by finding the closest 7T x 7 patch that
matches the patch surrounding the knocked out block (but doesn’t have a knocked out
pizel in it), then replacing the knocked out block with the center of the patch. Look
for problems by finding a black block in the center detail image that is replaced by
an implausible pizel in the right image (a fruitless search!). Image credit: Figure
shows my photograph of vegetation in Sao Paulo.

FIGURE 9.4: Incremental inpainting can fill in large holes. On the top left, an
image with a large hole in it; top right shows the inpainted image, using 11 x 11
patches and a radial order. Alternatives appear in Figure 77. Image credit: Figure
shows my photograph of vegetation in Sao Paulo.

122 Chapter 9 Denoising Images using Distant Pixels

Top down, left to right Radial

4

soyored gxg

soyojed 11X

FIGURE 9.5: The size of the patch you use in matching and the order in which you
inpaint pizels have significant effects on the results of incremental inpainting. This
figure shows a detail of Figure 9.4, with the blob inpainted in four different ways:
patch size differs from row to row, order from column to column. Details in main
text. Image credit: Figure shows my photograph of vegetation in Sao Paulo.

9.1.2 Incremental Inpainting

Now imagine that the process that knocks out pixels doesn’t just choose pixels at
random, but has some some kind of spatial structure. For example, you might have
an image with writing on it, and want to replace the writing. Alternatively, the
image might have one more more large holes in it.

The pixel inpainting procedure above will work, but some details need to
change. When isolated pixels are knocked out, you expect that the patch around
the pixel is known. If the image has a large hole in it, this no longer applies. Fixing
a pixel requires you have at least some known pixel values close to it. Choose such
a pixel, and match the patch using the known pixels only. You can do this with a
mask that zeros the contribution of knocked out pixels to the SSD. This produces
a pool of matches. Now estimate the value of the pixel using this pool. For the
moment, choose the center of the best match. Place this value in the image, and you
now have an image with a slightly smaller hole in it, so you should be able to find
more candidate pixels for replacing. In this incremental reconstruction approach,
the order in which you visit pixels and the size of the patch becomes important and
can quite strongly affect the result.

As Figure 9.4 shows, really quite large holes in images can be fixed quite sat-
isfactorily in this way. The scale of the patch and the order of inpainting matters

Section 9.1 Inpainting Missing Pixels by Matching 123

Example Synthesized Example Synthesized

= LI LWLLLAL LU P Ll LUULILL 103ELL , 30 WIS WS LW JL UK
iﬁiﬁ}ﬁ?:ﬁ: iilli: 1t ndatirears coune Teing roommns,” a5 Heft he fastnd it
wing moms." 23 House Der 25 dat nowars cortseas ribed it last ok hest bedian &1, F
L ointle 1;5'_ fall. He fai: econical Homd ith &1, Heft ars o7 a5 da Leswrindailf]
Jthe lefta ringing questiol lian A1Ths," a5 Lewning questies last aticazsticall. He
wre years of Monica Lewit is dian A1 1ast fal counda Lessn, at "this dailwears 4 ily
inda Tripp?” That now seer wdianicall. Hoorewding rooons,” a5 House De fale £ De
bt e 0, T und itical couneestscribed it last fall. He fall. Hefft
st phase of the storywill 2 orobwoned it nd it be left a ringing questica Lessrin.
dcars cogcomns,” astore wears of Monica Lewinow seee
2 Thas Fring woorne stooniscat nowea e left a yoouse
bouestof Be lelft a Lést fast ngine 1lauesticars Hef
wl it rip? Teouself, a ringind itfonestid it a ring qive:
.a5tical cods ove ywears of Moung fall. He ribof Blouse
sz wears ofanoda Tripp?" That hedian A1 Lest fasee yea
ada Tripp? olitical comedian A16t be f290 52 Ting que
olitical cora re wears of the storears ofas 1 Frat nica L
ras Lewr 5¢ lesta virne 1 He fas quest oging of, atbeow

FIGURE 9.6: Synthesizing a texture image from a small example using incremental
reconstruction, and works for tertures where the repeated structure isn’t obvious.
The case on the left is a texture that is quite periodic, but with random defor-
mations. Notice how realistic the synthesized texture seems to be, and look for
repeated cells (they are hard to find). The case on the right shows a small piece
of text from a document that was well known in 1999, together with a synthesized
image expanding that example. Text is hard, because although it does have struc-
ture (lines), it isn’t periodic. Notice how the synthesized text is almost readable.
Image credit: Elements of Figure 8 from “Texture Synthesis by Non-parametric
Sampling”, IEEE International Conference on Computer Vision, Corfu, Greece,
September 1999. No permission yet

a lot (Figure 9.5). Top down, left to right order means the pixels are ordered by
vertical coordinate, then by horizontal coordinate. This tends to produce some-
what disordered inpaintings, because some pixels with all-inpainted neighbors are
inpainted before others with known neighbors. Radial order means that pixels on
the edge of the blob are filled in first, so pixels with more known neighbors are
inpainted first. This tends to preserve structure. Notice also the effect of the scale
of the patch. Matching larger patches tends to reproduce more long-scale struc-
ture, as you should expect. For example, the regions inpainted with larger patches
appear to have leaves and stems in them.

9.1.3 Texture Synthesis by Incremental Reconstruction

Imagine you have a small texture image you would like to make larger, where the
larger image should have the same texture as the original part. There are a variety
of application reasons to do this. For example, you might want to apply a texture
to a computer graphics model. Just tiling the texture won’t work. The patches
may not join up properly, and even if they do the periodic structure that results
looks bad (exercises). Think of the problem as a rather odd inpainting problem
— rather than knocking out a block of pixels, the noise process has obscured pixels
outside the image.

It is straightforward to extend the incremental inpainting procedure to make
a larger texture image from a small one. Find a pixel location whose value isn’t

124 Chapter 9 Denoising Images using Distant Pixels

Source 5x5 11x11 15x15 23x23

=] <
=2
=] o

FIGURE 9.7: The size of the patch used for texture synthesis matters a great deal.
Various synthesized textures using differently sized windows and the same original
example image. The smallest window cannot see the whole of a ring; the next can,
but does not see that spacing is reqular; a larger window can see relatively reqular
spacing; and a very large window simply copies the example. Image credit: FEle-
ments of Figure 3 from “Texture Synthesis by Non-parametric Sampling”, IEFE In-
ternational Conference on Computer Vision, Corfu, Greece, September 1999. No
permission yet

known, but where many neighbors have known values. Find matching patches in
the known parts of the image, where you compute the SSD using only the known
pixel values. Now choose the center pixel value from the pool of matching patches
at random (rather than using the best match). The value of this pixel is now known,
and you can iterate. The result is a synthesized texture image. Figure 9.7 shows
an example.

It is quite important to have several patches to choose the pixel value from, and
to choose at random. This prevents the texture you synthesize from being overly
repetitious or even constant. The size of the patch you use also has important
effects (Figure 77)

9.1.4 Patches and Efficiency
9.2 DENOISING WITH PATCHES

Inpainting relies on a somewhat specialized model of noise. A small fraction of
pixels need fixing, you which ones they are, and other pixel values are reliable. If
the noise is, say, additive gaussian noise, these constraints don’t apply. In turn, this
means that all the pixels surrounding the pixel you want to fix may be somewhat
wrong as well, so matching using their values may not be wise.

9.2.1 Non-Local Means

Here is one strategy to exploit the other patches. Estimate the true value of the
pixel in the center of a target patch as a weighted sum of all other pixels, where
the weight is big when the patch around the pixel is similar to the target patch and
small when it isn’t. These weights should be normalized to add up to one. The big
difference between this strategy and filtering is that distant pixels can contribute
if they are in comparable patches. This approach should yield a good estimate of
the true value, at a ferocious cost. You need to look at every pixel in the image to
estimate the true value of a single pixel, so estimating the whole image is quadratic

Section 9.2 Denoising with Patches 125

Additive gaussian noise, 0.1 gaussian smoothing, 0=2 gaussian smoothing, 0=4
PSNR=18.4 PSNR=18.0

Y

Y

LAB RGB

PSNR: 24.7 PSNR: 21.5 333 poNR: 2,5 pSNR;25,3
FIGURE 9.8: Top row: Gaussian smoothing suppresses noise, but blurs edges,
whereas non-local means preserves edges while smoothing gaussian noise (bottom
row). Image credit: Figure shows my photograph of a building in downtown Man-
aus.

in the number of pixels.

The approach is easily formalized. Write K (p;j;, puy») for a function that
compares an image patch p;; around the 4, j'th pixel with the image patch around
the u, v’th pixel. This function should be large when the patches are similar, and
small when they are different. A useful estimate of the pixel value x;; at ¢, j is then

Z K(pijapuv)xuv

uwveimage EklEimage K(pij’ plm)

Notice that the weights sum to one. The estimate clearly depends quite strongly
on the choice of K.

The gaussian Kernel: One natural choice uses SSD between patches. Write
NSSD(pij, Puv)) for the sum of squared differences between the two patches nor-
malized to deal with the number of pixels in the patch (exercises), write o for some
scale chosen to work well, note that I have suppressed the size of the patch, and

126 Chapter 9 Denoising Images using Distant Pixels

use
(NS5Dewy; v

KNSSD (pija puv) =€ 252

The method described here is sometimes known as non-local means. As described,
it is very slow (quadratic in the number of pixels). Methods to speed it up remain
difficult, and are out of scope (exercises). As Figure 9.8 shows, non-local means
can suppress a great deal of noise without blurring edges.

Some details are important. Using larger patches will tend to increase the
computation time, and can improve denoising up to a point. If the patch is too
small, there will be many matches but some noise will be preserved. Similarly, if
the patch is too large, there will be too few matches to be helpful. Further, the
choice of color representation has an effect (see Figure 9.8). You should expect
this. RGB values are somewhat correlated (Section 41.2), while LAB values are
not. This means that some SSD values computed from RGB will overstate the
difference between patches (exercises).

The gaussian kernel weights down patches that are different from the target
patch, but pays no attention to the distance between patches. A natural extension,
known as the bilateral filter, downweights patches based on their distance. This
gives

(_NSSD@U,M,)) (-[a-w?+G-»?])
Kpilat (Pij: Puv) = € 207 e 2%
where o4 controls the rate at which a patches contribution falls off with distance.
The bilateral filter admits significant speedups (exercises).

