
C H A P T E R 6

Fourier Transforms, Sampling and
Aliasing

Thinking of a signal g(x, y) as a weighted sum of a large (or infinite) number
of small (or infinitely small) box functions emphasizes that a signal is an element
of a vector space. The box functions form a convenient basis, and the weights
are coefficients on this basis. Three important and interrelated problems can be
addressed by working in a different basis.

• What is lost by sampling a signal?

• What signals can be recovered exactly from samples, and how?

• If a signal cannot be recovered exactly from samples, what form does the
error take?

6.1 FOURIER TRANSFORMS

Figure 2.7 implies that sampling errors are related to fast changes in a signal. It
is easiest to study these problems by a change of basis that makes fast changes
in the signal obvious. An appropriate basis is a set of sinusoids, and the signal is
represented as an infinite weighted sum of an infinite number of sinusoids.

The change of basis is effected by a Fourier transform. Write i for
√
−1, and

define the Fourier transform of a 2D signal g(x, y) to be

F(g)(u, v) =
∫ ∞∫
−∞

g(x, y)e−i2π(ux+vy)dxdy

(everything we do here can be done in arbitrary dimension, but there is no need;
those who care are likely to be able to fill in the details themselves). Be aware that
there are a variety of definitions in the literature, which differ by constants (a

√
2π

term moves around from definition to definition, and engineers tend to prefer to
write j for

√
−1).

Assume that appropriate technical conditions are true to make this integral
exist. It is sufficient for all moments of g to be finite; a variety of other possible
conditions are available [?]. For all this to make sense, think of an image as a
complex valued functions with zero imaginary component. The Fourier transform
takes a complex valued function of x, y and returns a complex valued function of
u, v.

For the moment, fix u and v, and consider the meaning of the value of the
transform at that point. The exponential can be rewritten

e−i2π(ux+vy) = cos(2π(ux+ vy)) + i sin(2π(ux+ vy)).
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FIGURE 6.1: The real component of Fourier basis elements shown as intensity im-
ages. The brightest point has value one, and the darkest point has value zero. The
domain is [−1, 1]× [−1, 1], with the origin at the center of the image. On the left,
(u, v) = (0, 0.4); in the center, (u, v) = (1, 2); and on the right (u, v) = (10,−5).
These are sinusoids of various frequencies and orientations described in the text.

These terms are sinusoids on the x, y plane, whose orientation and frequency are
given by u, v. For example, consider the real term, which is constant when ux+ vy
is constant (i.e., along a straight line in the x, y plane whose orientation is given
by tan θ = v/u). The gradient of this term is perpendicular to lines where ux+ vy
is constant, and the frequency of the sinusoid is

√
u2 + v2. These sinusoids are

often referred to as spatial frequency components or spatial frequencies; a variety
are illustrated in Figure 6.1.

The integral should be seen as a dot product. For fixed u and v, the value
of the integral is the dot product between a sinusoid in x and y and the original
function. This is a useful analogy because dot products measure the amount of one
vector in the direction of another. The value of the transform at a particular u
and v can be seen as measuring the amount of the sinusoid with given frequency
and orientation in the signal. The transform takes a function of x and y to the
function of u and v whose value at any particular (u, v) is the amount of that
particular sinusoid in the original function. This view justifies the model of a
Fourier transform as a change of basis.

The Fourier transform is linear:

F(g + h) = F(g) + F(h)
and for k any constant

F(kg) = kF(g).

It is useful to recover a signal g(x, y) from its Fourier transform F(g)(u, v).
This is another change of basis with the form

g(x, y) =

∫ ∞∫
−∞

F(g)(u, v)ei2π(ux+vy)dudv.

Proving that this inverse works requires a fair amount of ducking and weaving to
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FIGURE 6.2: On the top left, the image of a four striped grass mouse with the
log magnitude of its Fourier transform on the bottom left. Center left, the
gaussian with σ = 10 in u, v space. This is multiplied by the weights, and the log
magnitude of the result appears center right. Above this is the image obtained
by inverting the Fourier transform – equivalently, the low pass filtered image. Far
left shows the high pass filtered image, obtained by subtracting the low pass filtered
image from the original. I have not shown the log magnitude of the high pass
filtered image, because scaling makes the result quite difficult to interpret (it doesn’t
look filtered). The low pass filtered version is heavily blurred, because only the lowest
spatial frequencies appear in the result. Note the high pass filtered version contains
what is missing from the low pass version, so has few large values which appear at
edges. Image credit: Figure shows my photograph, taken at Kirstenbosch and Long
Beach respectively.

do with limits and function spaces, and I will omit a proof (you could look one up
in []).

6.1.1 Filtering with a Fourier Transform

One obvious use of a Fourier transform is to change the amount of different spatial
frequencies in an image. Do this by multiplying the Fourier transform by some set
of weights, then applying an inverse Fourier transform to the result. The easiest
case – which will prove fruitful later – is to use weights that are large around
(u, v) = (0, 0) and fall off as the frequency increases. A natural choice is a gaussian
in spatial frequency space. Write

gσ(u, v) =
1

2πσ2
exp

(
− (u2 + v2)

2σ2

)
.



76 Chapter 6 Fourier Transforms, Sampling and Aliasing

Image

Gaussian

FT magnitude LP magnitude

LP Image

HP Image

FIGURE 6.3: On the top left, the image of a four striped grass mouse with the log
magnitude of its Fourier transform on the bottom left. Center left, the gaussian
with σ = 100 in u, v space. This is multiplied by the weights, and the log magnitude
of the result appears center right. Above this is the image obtained by inverting
the Fourier transform – equivalently, the low pass filtered image. Far left shows
the high pass filtered image, obtained by subtracting the low pass filtered image from
the original. I have not shown the log magnitude of the high pass filtered image,
because scaling makes the result quite difficult to interpret (it doesn’t look filtered).
The low pass filtered version is less heavily blurred than that in Figure 6.2, because
only the lowest spatial frequencies appear in the result. Note the high pass filtered
version contains what is missing from the low pass version, so has very few large
values which appear at edges. Image credit: Figure shows my photograph, taken at
Kirstenbosch and Long Beach respectively.

If σ is small, then the result of this process should have only low spatial frequencies,
which will make it look blurry. The image has had a low pass filter applied. An
alternative is to multiply the Fourier transform by (1−gσ(u, v)), which will yield an
image of only high spatial frequencies (a high pass filter). Figure 6.2 and 6.3 show
the results. Your suspicion of a strong relationship between multiplying the Fourier
transform with a gaussian and convolving the image with a gaussian is correct.
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FIGURE 6.4: On the left, images of a four striped grass mouse and an octopus;
center, the log magnitude of the Fourier coefficients of the corresponding image,
shown in a coordinate system where (0, 0) is at the center of the image; right,
the phase of the Fourier coefficients. The magnitude image appears monochrome
because magnitudes in each color channel tend to be very similar. The phase appears
colored because the phases in the color channels tend to be different. Notice that
the magnitude images look quite similar, and that the phases are hard to interpret.
Image credit: Figure shows my photographs, taken at Kirstenbosch and Long Beach
respectively.

6.1.2 Phase and Magnitude

The Fourier transform consists of a real and a complex component:

F(g(x, y))(u, v) =

∫ ∫ ∞

−∞
g(x, y) cos(2π(ux+ vy))dxdy +

i

∫ ∫ ∞

−∞
g(x, y) sin(2π(ux+ vy))dxdy

= ℜ(F(g)) + i ∗ ℑ(F(g))
= FR(g) + i ∗ FI(g).

It is usually inconvenient to draw complex functions of the plane. One solution
is to plot FR(g) and FI(g) separately; another is to consider the magnitude and
phase of the complex functions, and to plot these instead. These are then called
the magnitude spectrum and phase spectrum, respectively.
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FIGURE 6.5: Magnitudes of images tend to be the same, and most information is
conveyed by phase. This is easily shown by swapping phase and magnitude for two
images, applying an inverse, and looking at the result. This figure uses the images of
Figure 6.4. On the left, the phase comes from the mouse and the magnitude from
the octopus; on the right, the phase comes from the octopus and the magnitude
from the mouse. Although this swap leads to substantial image noise, it doesn’t sub-
stantially affect the interpretation of the image, suggesting that the phase spectrum
is more important for perception than the magnitude spectrum.

The value of the Fourier transform of a function at a particular u, v point
depends on the whole function. This is obvious from the definition because the
domain of the integral is the whole domain of the function. It leads to some subtle
properties, however (below). The magnitude spectra of images tends to be similar.
This appears to be a fact of nature, rather than something that can be proven
axiomatically. As a result, the magnitude spectrum of an image is surprisingly
uninformative (see Figure 6.5 for an example). Fourier transforms are known in
closed form for a variety of useful cases; a large set of examples appears in ?. We
list a few in Table 6.1 for reference.

Table 6.1 contains mostly easy statements, made for reference and to save
time. A few lines (2, 4, 5, 9, 12) require some care, and should be assumed true.
Others are easy to derive assuming the form of the transform, that the integral
exists, and so on (exercises).

There are a number of facts below the surface. Write swap for the operation
that swaps first and second arguments. Then

F(f · swap) = F(f) · swap

(use line 12). This means that

F(∂f
∂y

) = vF(u, v)
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TABLE 6.1: Some useful Fourier transform pairs.

Function Fourier transform Tag

f(x, y)
∫ ∞∫
−∞

f(x, y)e−i2π(ux+vy)dxdy = F(f)(u, v) 1

∫ ∞∫
−∞

F(f)(u, v)ei2π(ux+vy)dudv = f(x, y) F(f)(u, v) 2

∂f
∂x

(x, y) uF(f)(u, v) 3

0.5δ(x+ a, y) + 0.5δ(x− a, y) cos 2πau 4

cos 2πax 0.5δ(u+ a, v) + 0.5δ(u− a, v) 5

e−π(x2+y2) e−π(u2+v2) 6

box1(x, y)
sinu
u

sin v
v

7

f(ax, by) F(f)(u/a,v/b)
ab

8

∑∞
i=−∞

∑∞
j=−∞ δ(x− i, y − j)

∑∞
i=−∞

∑∞
j=−∞ δ(u− i, v − j) 9

f(x− a, y − b) e−i2π(au+bv)F(f) 10

f(x cos θ − y sin θ, x sin θ + y cos θ) F(f)(u cos θ − v sin θ, u sin θ + v cos θ) 11

(f ∗ g)(x, y) F(f)F(g)(u, v) 12

(use line 3).

Use line 11 and line 2 to get

F(F(f)) = f(−x,−y)
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and notice that this means that, in principle, an inverse Fourier transform isn’t
really required (you could just Fourier transform twice, then rotate the resulting
function).

6.1.3 Practical Details

Fourier transforms are an extremely helpful conceptual device, and can be very
powerful computational tools, but need to be approached with caution because
a given Fourier transform coefficient depends on the entire image. Changing one
pixel in an image will change some, but not all, results of a convolution with that
image because convolution is local – only a window of pixels affects the results. But
change one pixel in an image, and you change the whole Fourier transform.

There is a version of the Fourier transform that maps discrete signals to
discrete signals. This version applies to a discrete signal where only the values at
the sample points [1, 2, . . . , N ] are non-zero. The Fourier transform is linear, and so
is the discrete version. Viewing the Fourier transform as a change of basis should
suggest that the discrete Fourier transform can be represented as multiplication by
an N × N complex matrix; this is correct. However, discrete Fourier transforms
can be computed very much faster than by routine matrix multiplication by careful
management of intermediate values, justifying the name fast Fourier transform or,
almost always, FFT. Details are out of scope. Mostly, the FFT can be treated as
a Fourier transform, but there are some important details to keep track of. The
change of basis description should suggest to you that an N × N image will have
an N ×N Fourier transform, and this is the case.

For most people, it is “natural” to think of the spatial frequency where (u, v) =
(0, 0) as lying at the center of the image, with u and v running from negative to
positive values from left to right and bottom to top. For computational reasons,
most API’s report the FFT of an image in a rather odd coordinate system where
the highest spatial frequencies are at the center and the lowest ones are at the
corners. If your API does this, it will also have some form of shift command that
changes the coordinate system.

It is much more usual to think in terms of magnitudes and phases rather
than real and imaginary components of the complex values of the transform. This
is mostly because the magnitude of the FFT at u, v can be interpreted as “how
much” of that spatial frequency is present. Finally, the magnitude of a Fourier
transform tends to have quite large dynamic range, and it is usual to show pictures
of log magnitude (actually log(abs (z) + 1), to avoid problems with small numbers)
rather than magnitude.

6.1.4 The Convolution Theorem and the Support of Filters

The convolution theorem (line 12 of Table 43.1) says convolution in the signal do-
main is the same as multiplication in the Fourier domain. This makes it possible
to visualize the effect of a linear filter in the Fourier domain. Further, it makes
it possible to think about what interpolation does to a signal (recall Section 5.3.3
establishes that interpolation is a convolution). Because the inverse Fourier trans-
form is a Fourier transform (up to a flip, above), the convolution theorem works
both ways. Multiplication in the signal domain is the same as convolution in the
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Fourier domain.
One application of the convolution theorem illustrates some possible difficul-

ties building filters. Write

gσ(x, y) =
1

2πσ2
e
−
(
[x2+y2]

2σ2

)

then
F(gσ(x, y)) = Cg 1

2πσ
(u, v)

(where the constant C depends on σ – work out the details in the exercises). There
is a big point here: a gaussian that is spread out in x, y is concentrated in u, v,
and vice versa. This is a rather distant manifestation of Heisenberg’s uncertainty
principle. Now consider building a low pass filter that accepts a very small range of
spatial frequencies. This could be modelled as multiplying the Fourier transform of
the image by a gaussian with very small σ. The convolution kernel that implements
this filter is the inverse Fourier transform of this gaussian – which has very large σ.
You would need a very large convolution to implement this filter without further
tricks.

Here is a trick, which relies on the gaussian pyramid of Section 2.3.4. Recall
that

gσ1
∗ gσ2

= g√
σ2
1+σ2

2

(exercises). This means that to convolve with a very large gaussian, you could
convolve with a small one repeatedly, which is one use of the gaussian pyramid.
Each layer of the gaussian pyramid is obtained by convolving the previous layer
with a gaussian, then downsampling. For the moment, ignore the downsampling,
and write I for the image. Then layer 0 is I and layer N is gσ ∗ gσ ∗ . . . ∗ I which
is the same as gσ

√
N ∗ I. Downsampling doesn’t really affect this argument (which

is why I omitted it), but just makes the convolution more efficient by removing
redundant values.

These scaling effects are interesting for more than just gaussians. Imagine you
wish to find large stripes in a large image (which you could apply a large convolution
kernel to that image). A natural strategy is to downsample both kernel and image,
and apply the small version of the kernel to the small image. Further, you could
find many different sizes of stripe efficiently by applying one stripe filter to each
layer of a gaussian pyramid. Responses at the early layers give fine stripes, and at
the later layers give coarse stripes.

Line 8 of the table together with the convolution theorem supports this
idea. Imagine you have a filter f(x, y) that detects a small pattern. Then (say)
f(x/10, y/10) will detect a larger version of this pattern. Now line 8 shows that
the Fourier transform of this new scaled filter will shrink by a factor of 10 in u, v
space, so the value depends on only low spatial frequencies. In turn, not much will
be lost if you apply the scaled filter to a low pass filtered version of the image.
Further, applying the scaled filter to a low pass filtered version of the image will
be equivalent to applying the original filter to a scaled version of the image (line 8
again). But this is equivalent to applying the original filter to a downsampled layer
of the gaussian pyramid.
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6.2 SAMPLING AND ALIASING

The crucial reason to discuss Fourier transforms is to get some insight into the
difference between discrete and continuous images. In particular, it is clear that
some information has been lost when we work on a discrete pixel grid, but what?
A good, simple example comes from an image of a checkerboard, and is given in
Figure 2.7. The problem has to do with the number of samples relative to the
function; we can formalize this rather precisely given a sufficiently powerful model.

6.3 SAMPLING AND ALIASING

Sampling involves a loss of information. As this section shows, a signal sampled
too slowly is misrepresented by the samples; high spatial frequency components
of the original signal appear as low spatial frequency components in the sampled
signal—an effect known as aliasing.

6.3.1 The Fourier Transform of a Sampled Signal

As Section 5.3.3 showed, an appropriate continuous model of a sampled signal
consists of a δ-function at each sample point weighted by the value of the sample
at that point. We can obtain this model by multiplying the sampled signal by
a set of δ-functions, one at each sample point. In one dimension, a function of
this form is called a comb function (because that’s what the graph looks like). In
two dimensions, a function of this form is called a bed-of-nails function (for the
same reason). By the convolution theorem, the Fourier transform of this product
is the convolution of the Fourier transforms of the two functions. This means that
the Fourier transform of a sampled signal is obtained by convolving the Fourier
transform of the signal with another bed-of-nails function.

Now convolving a function with a shifted δ-function merely shifts the function
(see exercises). This means that the Fourier transform of the sampled signal is the
sum of a collection of shifted versions of the Fourier transforms of the signal, that
is,

F(sample2D(f(x, y))) = F

f(x, y)


∞∑
i=−∞

∞∑
j=−∞

δ(x− i, y − j)




= F(f(x, y)) ∗ ∗F


∞∑

i=−∞

∞∑
j=−∞

δ(x− i, y − j)




=

∞∑
i=−∞

F (u− i, v − j),

where we have written the Fourier transform of f(x, y) as F (u, v).
If the support of these shifted versions of the Fourier transform of the signal

does not intersect, reconstructing the signal from the sampled version is straight-
forward. Take the sampled signal, Fourier transform it, and cut out one copy of
the Fourier transform of the signal and Fourier transform this back (Figure 43.8).

However, if the support regions do overlap, we are not able to reconstruct the
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FIGURE 6.6: The Fourier transform of the sampled signal consists of a sum of copies
of the Fourier transform of the original signal, shifted with respect to each other
by the sampling frequency. Two possibilities occur. If the shifted copies do not
intersect with each other (as in this case), the original signal can be reconstructed
from the sampled signal (we just cut out one copy of the Fourier transform and
inverse transform it). If they do intersect (as in Figure 43.9), the intersection
region is added, and so we cannot obtain a separate copy of the Fourier transform,
and the signal has aliased.

signal because we can’t determine the Fourier transform of the signal in the regions
of overlap, where different copies of the Fourier transform will add. This results in
a characteristic effect, usually called aliasing, where high spatial frequencies appear
to be low spatial frequencies (see Figure 43.10 and exercises). Our argument also
yields Nyquist’s theorem: the sampling frequency must be at least twice the highest
frequency present for a signal to be reconstructed from a sampled version. By the
same argument, if we happen to have a signal that has frequencies present only in
the range [2k−1Ω, 2k+1Ω], then we can represent that signal exactly if we sample
at a frequency of at least 2Ω.
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FIGURE 6.7: The Fourier transform of the sampled signal consists of a sum of copies
of the Fourier transform of the original signal, shifted with respect to each other by
the sampling frequency. Two possibilities occur. If the shifted copies do not intersect
with each other (as in Figure 43.8), the original signal can be reconstructed from
the sampled signal (we just cut out one copy of the Fourier transform and inverse
transform it). If they do intersect (as in this figure), the intersection region is
added, and so we cannot obtain a separate copy of the Fourier transform, and the
signal has aliased. This also explains the tendency of high spatial frequencies to
alias to lower spatial frequencies.

6.3.2 Smoothing and Resampling

Nyquist’s theorem means it is dangerous to shrink an image by simply taking ev-
ery kth pixel (as Figure 43.10 confirms). Instead, filter the image so that spatial
frequencies above the new sampling frequency are removed. You may think you
could do this exactly by multiplying the image Fourier transform by a scaled 2D
box function, which would act as a low-pass filter. The convolution theorem and
Table 43.1 yield that this is equivalent to convolving the image with a kernel of
the form (sinx sin y)/(xy). This convolution is impossible, because the kernel has
infinite support. You should wonder why a convolution that is impossible appears
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easy in the Fourier domain; it isn’t easy in the Fourier domain (exercises).
Assume you wish to halve the width and height of the image. Assume that

the sampled image has no aliasing (because if it did, there would be nothing to do
about it anyway; once an image has been sampled, any aliasing that is going to
occur has happened). This means that the Fourier transform of the sampled image
is going to consist of a set of copies of some Fourier transform, with centers shifted
to integer points in u, v space.

If this signal is resampled by half, the copies now have centers on the half-
integer points in u, v space. This means that avoiding aliasing requires applying a
filter that strongly reduces the content of the original Fourier transform outside the
range |u| < 1/2, |v| < 1/2 before you resample the signal. This takes a filter whose
response is pretty close to constant for some range of low spatial frequencies—
the pass band—and whose response is also pretty close to zero—for higher spatial
frequencies—the stop band.

A gaussian is a low-pass filter because its response at high spatial frequencies
is low and its response at low spatial frequencies is high, so the downsampling
process of Section 2.3.3 is justified. In fact, the Gaussian is not a particularly
good low-pass filter. It is possible to design low-pass filters that are significantly
better than Gaussians. The design process involves a detailed compromise between
criteria of ripple—how flat is the response in the pass band and the stop band?—
and roll-off—how quickly does the response fall to zero and stay there? Mostly,
the advantages of being able to use a gaussian pyramid and the complexities of
better filter design mean that, in practice, smoothing for subsampling is done with
a gaussian.
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FIGURE 6.8: The top row shows sampled versions of an image of a 512x512 grid
obtained by multiplying two sinusoids with linearly increasing frequency—one in x
and one in y. The other images in the series are obtained by resampling by factors
of two without smoothing (i.e., the next is a 256x256, 128x128, then 64x64, etc.,
all scaled to the same size). Note the substantial aliasing; high spatial frequencies
alias down to low spatial frequencies, and the smallest image is an extremely poor
representation of the large image. The center row shows sampled versions where
the image was smoothed by a gaussian with σ = 1 before downsampling in each
round of downsampling (so the 256x256 is smoothed then downsampled once; the
128x128 is a smoothed and downsampled version of that; and so on). Note the
reduction in aliasing (some remains), combined with a loss of information – rather
than get the structure of the image wrong, one loses some information. The bottom
row is same as center row, but now the image was smoothed by a gaussian with
σ = 2 before downsampling. There is less aliasing and less information about the
original image.
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FIGURE 6.9: Log magnitude of the Fourier transforms of Figure 43.10, showing the
effect of the gaussian – reducing high spatial frequencies – and the reduction in
aliasing.


