
mix

R G

B

FIGURE 3.1: A number of pointwise image transformations applied to the image
on the top left. The bottom left shows plots of the function applied; on the
right, results of applying these functions to that image. These transformations
tend to spread out the dark values, and squash the brighter values. R, G and
B respectively show the red, green and blue functions applied to each of the color
channels of the image. Mix shows the result of applying the red function to the red
channel, the green function to the green channel, and the blue function to the blue
channel. Darker pixels tend to shift to the blue in the mix result, and brighter pixels
have a less pronounced color shift. Image credit: Figure shows my photograph of a
sunset at Gordon’s Bay.

C H A P T E R 3

Geometric Image Transformations

3.1 POINTWISE IMAGE TRANSFORMATIONS

Linear image sensors present problems. The dynamic range (ratio of largest value
to smallest value) of spectral energy fields can be startlingly large (1e6: 1 is often
cited). Simple consumer cameras report 8 bits (256 levels) of intensity per channel.
A picture from a linear camera that reports 8 bits per channel will look strange,
because even relatively simple scenes have a higher dynamic range than 255. One
can build cameras that can report significantly higher dynamic ranges, but this
takes work (Chapter 41.2). If the camera has a linear response and a dynamic
range of 255, either a lot of the image will be too dark to be resolved, or much
of the image will be at the highest value, or both will happen. This is usually
fixed by ensuring that the number digitized by the camera isn’t linearly related to

31

32 Chapter 3 Geometric Image Transformations

gamma=2

gamma=0.5

FIGURE 3.2: Many imaging and rendering devices have a response that is a power
of the input, so that output = Cinputγ , where γ is a parameter of the device. One
can simulate this effect by applying a transform like those shown in the center
(curves for several values of γ). Note that you can remove the effect of such a
transform – gamma correct the image – by applying another such transform with an
appropriately chosen γ. The image on the left is transformed to the two examples
on the right with different γ values. Image credit: Figure shows my photograph of
a river in Singapore.

brightness. Internal electronics ensures that the camera response function mapping
the intensity arriving at the sensor to the reported pixel value looks something
like Figure ??. This increases the response to dark values, and reduces it to light
values, so that the overall distribution of pixel values is familiar. Typically, the
function used approximates the response of film (which isn’t linear) because people
are familiar with that. A camera response function is one example of a pointwise
image transformation.

Most such transformations occur after the image has been digitized. You take
the array of pixels and apply some function to each pixel value. Simple, but useful,
examples include: forming a negative (map x to 1−x); contrast adjustment (choose
a function that makes dark pixels darker and light pixels lighter, Figure 3.1); and
gamma correction (using a function that corrects for a quirk of image encoding,
Figure 3.2).

3.2 GEOMETRIC TRANSFORMATIONS

There are a number of important and useful geometric transformations of the plane
that can be applied to images. Image transformations are implemented in the
same way as subsampling: by scanning the pixels of the target and modifying
them using interpolates of pixels from the source. This means it is important

Section 3.2 Geometric Transformations 33

that transformations are invertible. Adopt the convention that a point x = (x, y)
is mapped by a transformation to the point u = (u, v) = (u(x, y), v(x, y)), and
u = (u, v) is mapped to x = (x, y) by the inverse. In vector notation, x is mapped
to u, and so on. Write A for a 2× 2 matrix, whose i, j’th component is aij .

Translation maps the point (x, y) to the point (u, v) = (u(x, y), v(x, y)) =
(x+ tx, y+ ty) for two constants tx and ty. Here (x, y) = (u− tx, v− ty). In vector
notation, u = x+t and x = u−t. Translation preserves lengths and angles. Choose
two points x1 and x2. The squared distance from x1 to x2 is (x1 − x2)

T (x1 − x2);
but for a translation (u1 − u2) = (x1 − x2). A similar argument shows that angles
are preserved (exercises).

Rotation takes the point (x, y) to the point (u, v) = (u(x, y), v(x, y)) =
x cos θ − y sin θ, x sin θ + y cos θ. Here θ is the angle of rotation, rotation is anti-
clockwise, and (x, y) = u cos θ + v sin θ,−u sin θ + v cos θ. Write R for a rotation
matrix (a matrix where RTR = I and det(R) = 1); then u = Rx and x =
R−1u = RTu. Rotation preserves lengths and angles. Choose two points x1 and
x2. The squared distance from x1 to x2 is (x1 − x2)

T (x1 − x2); but for a rotation
(u1 − u2) = R(x1 − x2) and RTR = I. A similar argument shows that angles are
preserved (exercises).

A Euclidean transformation is a rotation and translation, so (u(x, y), v(x, y)) =
(x cos θ−y sin θ+ tx, v(x, y) = x sin θ+y cos θ+ ty). Euclidean transformations pre-
serve lengths and angles (and so areas) and are sometimes referred to as rigid body
transformations. Here (x, y) = ((u− tx) cos θ + (v − ty) sin θ,−(u− tx) sin θ + (v −
ty) cos θ). In vector notation, u = Rx + t and x = R−1(u − t) = RT (u − t). Eu-
clidean transformations preserve lengths and angles (you can think of a Euclidean
transformation as a rotation followed by a translation).

Uniform scaling where (u, v) = (sx, sy) for s > 0. Here (x, y) = (1/su, 1/sv).
In vector notation, u = sx and x = (1/s)u. Uniform scaling preserves angles, but
not lengths (exercises).

Non-uniform scaling where (u, v) = (sx, ty) for s and t both positive, and
so (x, y) = (1/su, 1/tv). Write diag(s, t) for the matrix with s and t on the diagonal.
In vector notation, u = diag(s, t)x and x = diag(1/s, 1/t)u. Non-uniform scaling
will usually change both lengths and angles.

Affine transformations are better written in vector notation. Write A for
a 2×2 matrix which is invertible, and t for some constant vector. Here u = Ax+ t
and x = A−1(u − t). Affine transformations will usually change both lengths and
angles.

Projective transformations involve quite inefficient notation if one does
not know homogenous coordinates (Section ??), and writing them in vector form is
clumsy. Write pij for the i, j’th component of a 3× 3 matrix P that is invertible.
Then [

u
v

]
=

[
p11x+p12y+p13

p31x+p32y+p33
p21x+p22y+p23

p31x+p32y+p33

]
.

The inverse transformation is obtained by applying the inverse of P to u according
to the recipe above. Notice that all the classes of transformation described are a
case of a projective transformation (exercises). For a vector representation,

34 Chapter 3 Geometric Image Transformations

M

N
1,1 1,6

5, 1

1

a

u, v

u, w x, w

FIGURE 3.3: The most common coordinate system for images, on the left. The
origin is at the top left corner, and we count in pixels. This is an M ×N image.
I will use the convention Iij for points in this coordinate system, so the top right
pixel is I1M . It is usual for pixel locations to be indexed starting at 1 (so 1 ≤ i ≤M
and 1 ≤ j ≤ N). In some environments (notoriously, Python), the index starts at
0. Keep track of this point, or you will lose some pixels. On the right, the origin
is at the bottom left, and the coordinate axes are more familiar. It is a good idea
to use a range from 0 − 1 (rather than 0 −M) in this coordinate system, but if
the image is not square one direction will run from 0 to a. Converting from one
coordinate system to the other is straightforward, but not being consistent about the
coordinate system you are working in is an important source of simple, annoying
errors. I will always work in the coordinate system shown on the left.

write

P =

 pT
1 p13

pT
2 p23

pT
3 p33


for a 3× 3 array with inverse Q. Then

u =

 pT
1 x+p13

pT
3 x+p33

pT
2 x+p23

pT
3 x+p33

 and x =

 qT
1 u+q13

qT
3 u+q33

qT
2 u+q23

qT
3 u+q33


Notice also that if P = λQ for some λ ̸= 0, then P and Q implement the same
projective transformation.

3.3 GEOMETRIC TRANSFORMATIONS OF IMAGES

Write S for a source image and T for a target image. The pixel values for the
source image Sij are known for i, j integer points where 1 ≤ i ≤ s1 and 1 ≤ j ≤ s2.
The target image has pixel locations on the i, j integer points where 1 ≤ j ≤ t1 and
1 ≤ j ≤ t2. As in Section 2.2, the correct procedure is to scan the pixels of T and
then modify them using interpolates of pixels from S. This means it is important
that transformations are invertible, and both (u(x, y), v(x, y)) and (x(u, v), y(u, v))
are known.

Section 3.3 Geometric Transformations of Images 35

1052

632

(300, 500)

(100, 500)

(100, 800)

(300, 800)

FIGURE 3.4: The chicken in the left image has been cropped to yield the center
image (which is 162 × 187), then translated and pasted to various points in the
left image, to yield the images on the right. Note the choice of coordinate system
strongly affects the value of translation. The chicken’s origin is at the top left
hand corner, yielding the translations shown in the overlay (left image scales are
shown for reference). You should check you agree the translations indicated yield
the chickens shown. Image credit: Figure shows my photograph of jungle fowl in
Singapore.

Coordinate systems: The most common convention for image coordinate
systems is strange at first glance. This coordinate system is shown in Figure 3.3 on
the left. The inversion of the y-axis and of the order of coordinates is an annoying
leftover from the way matrices are indexed. It is quite usual to use this coordinate
system, and I will do so in what follows. Readers should be aware that there are
a variety of alternative conventions, and the choice of coordinate system has a
significant effect on the expressions used to describe image transformations.

Notation: I will need to refer to image values both at sample points – which
I will write Sij – and at points that are possibly not sample points – S(x, y). For
points that are not sample points, care is required. If 1 ≤ x ≤ s1 and 1 ≤ y ≤ s2,
then S(x, y) can be obtained by interpolation; otherwise, there is no meaning to
the expression (and this should never occur). Transformations always take a source
image S which is sM × sN to a target image T which is tM × tN .

3.3.1 Cropping, Translation, Pasting and Blending

Cropping creates a smaller target image from a source image. One specifies a crop
window in the sM × sN source image by 1 ≤ xn, xx ≤M and 1 ≤ yn, yx ≤ N . Here
the vertices of the window are integers, and there is no interpolation. The target
image is an (xx − xn)× (yx − yn) image. For 1 ≤ i ≤ xx − xn and 1 ≤ j ≤ yn − yx,

36 Chapter 3 Geometric Image Transformations

Blended

Mask

FIGURE 3.5: The chickens of Figure 3.4 are simply pasted in the top row (as in
that figure, reproduced here for comparison; the arrow on the left shows a problem
with pasting not identified in that figure). In the bottom row, the chickens have
been blended using the blending mask shown. Note the pasting is much less obvious.
Image credit: Figure shows my photograph of jungle fowl in Singapore.

we have

Tij = Si−xn,j−yn

For more complicated transformations of an image, the range of pixels in the
target image has an important effect. If the transformation you apply to the source
image places the result outside the window of the target image, you will not see
anything. The range of pixels in the source image is also important. For pixels
outside the range of the image, the value of an image isn’t known and can’t be
interpolated.

Translation as a geometric transformation moves the location of each source
pixel value. Write cx, cy for the translation – equivalently, the top left corner of the
source image will go to cx + 1, cy + 1 in the target image – to get

Tij ←
{
Si−cx,j−cy If 1 ≤ i− cx ≤ sM and 1 ≤ j − cy ≤ sN
Tij Otherwise

where 1 ≤ i ≤ tM and 1 ≤ j ≤ tM . You should check what happens for all values
of cx, cy, and that the result is always tM × tN (exercises). There are really two
cases here. If you start with T that contains only zeros, then translation creates
an image which has S at some offset, possibly cropped to fit T . If T is a more
conventional image, then translation will paste S into T at the given location.

Translation can yield quite convincing composite images (Figure ??). How-
ever, close scrutiny of the multi-chicken image shows boundaries of the window
where the translated chicken was pasted. These boundaries can be spotted because

Section 3.3 Geometric Transformations of Images 37

(0, 0)

(0, 187)

(162, 0)

(-90, 164)

(52, 241)

(142, 78)

(0, 0)

(1, 0)

(0, 1)
θ

FIGURE 3.6: Left shows the image coordinate system for reference, together with the
result of rotating coordinate axes clockwise by θ (which in this example is 0.5 radi-
ans, about 300). Notice that a significant chunk of the source image ends up with
negative coordinates. Right shows the original source rectangle from the cropped
chicken of 3.4 (recall this is 162×187) as an open rectangle, and the rotated source
rectangle in gray. The target image is then set up to enclose the whole result (im-
plicitly translating the rotated source image) and pixels are then scanned into the
target.

the grass on the left of the chicken is a little darker than the grass on which it was
placed. Notice that translation can result in the source image ending up outside
the window of the target image (exercises).

Blending can help to alleviate problems with boundaries. Blending requires
a mask the same size as the source image, with values in the range [0, 1]. Write
Mij for the i, j’th mask pixel. Then

Tij ←
{
MijSij + (1−Mij)Tij If 1 ≤ x ≤ s1 and 1 ≤ y ≤ s2
Tij Otherwise

Of course, one can translate and blend rather than translating and pasting (ex-
ercises). As Figure 3.5 indicates, blending can suppress problems at boundaries
fairly effectively. The choice of blending mask can get interesting (exercises).

3.3.2 Rotation, Scaling, Affine and Projective Transformations

Rotation rotates the source image, then pastes it into the target image. Rotation
presents a problem. Imagine rotating the grid of positive integer points by 1800

anti-clockwise around the origin – all the grid points are still integer, but they are
now all negative. This means that you can rotate an image and have an empty
result (because all the pixels in the rotated image are outside the span of the
target image). Usually, this is fixed by translating the image as well as rotating

38 Chapter 3 Geometric Image Transformations

Nearest Neighbors Bilinear

FIGURE 3.7: The chicken of Figure 3.4, rotated by 0.5 radians as in Figure 3.6,
showing the effect of different choices of interpolation. I have zoomed in on a
section of the tail feathers to make the difference more apparent. Image credit:
Figure shows my photograph of jungle fowl in Singapore.

it. Another problem is caused by the fact that the rotated image usually spans
more pixels in the coordinate directions than the source image (Figure 3.6). As a
result, several reasonable choices of translation are possible, and most APIs support
many different choice. One natural choice creates a target image whose horizontal
and vertical spans are big enough to contain the rotated image, and translates the
source image to be centered in that target. Informally, one determines how big the
rotated image will be; constructs a target image that will span that; then scans the
target, picking up pixels from the source image using the inverse transformation.
In detail, to construct this result for a rotation R:

• Write x1 = (1, 1)T , x2 = (s1, 1)
T , x3 = (s1, s2)

T and x4 = (1, s2)
T for the

four vertices of the source image.

• Compute ui = Rxi for the result of rotating these vertices by R. Now write
un, ux for the smallest (resp. largest) value of the first component of these
points; similarly, vn, vx for the smallest (resp. largest) value of the second
component of these points.

• T is now a ceil(ux − un) + 1 × ceil(vx − vn) + 1 image. Write ρmn for the
m, n’th component of R−1; x(i, j) = ρ11(i − 1 − un) + ρ12(j − 1 − vn); and

Section 3.3 Geometric Transformations of Images 39

y(i, j) = ρ21(i− 1− un) + ρ22(j − 1− vn) Now

Tij ←
{
S(x(i, j), y(i, j)) If 1 ≤ x ≤ s1 and 1 ≤ y ≤ s2
Tij otherwise

The choice of interpolate has a real effect (Figure 3.7).

Uniform scaling involves two cases. Section 2.2 dealt with the case s > 1.
Uniform scaling for s < 1 is downsampling, and has been dealt with in some detail
in Section 2.3.

Non-uniform scaling presents a combination of problems. If, say s > 1 and
t < 1, we are upsampling in one direction and downsampling in the other. If t is
relatively close to 1 (so there is not much downsampling), it is usually sufficient
to ignore the upsampling, apply a gaussian smoother to the source, then resample
with interpolation. If the downsampling is very aggressive, it may be better to
smooth in one direction only, which is beyond scope.

Affine transformations follow the recipe for the rotation. One determines
how big the transformed image will be; constructs a target image that will span
that; then scans the target, picking up pixels from the source image using the
inverse transformation. Finding the size of the transformed image is straightforward
(exercises). However, an affine transformation may involve a component of
scaling, which might be non-uniform. One way to see this is to apply a singular
value decomposition to A which will yield

A = UΣVT

where U and V are rotations. But Σ is diagonal, and may be non-uniform. As long
as the values on the diagonal of Σ are not too different, and the smallest is not too
small, then one can apply a gaussian smoother to the source, and resample with
interpolation. A robust smoothing strategy is firmly beyond scope, however.

Projective transformations follow the same general recipe as rotations,
but smoothing is now tricky. One determines how big the transformed image will
be; constructs a target image that will span that; then scans the target, picking up
pixels from the source image using the inverse transformation. For a general projec-
tive transformation, there might be singular points, caused by a divide-by-zero. For
geometric reasons, these projective transformations do not arise in cases interesting
to us (Section 41.2), and should be seen as evidence of a problem elsewhere. Nasty
smoothing problems occur because at some pixels a projective transformation may
upsample an image and at different pixels downsample the image. For this effect,
look at Figure 3.9 and consider what happens if the transform scales the image as
well (the exercises do the details). It is relatively straightforward to predict at
a given pixel whether downsampling is occuring, and the degree of downsampling
(exercises), meaning a gaussian pyramid is useful. At a pixel in the target im-
age, predict which location in the source image will be used; estimate the degree of
smoothing required; then look at the relevant layer of the gaussian pyramid. This
strategy is sometimes referred to as MIP-mapping.

40 Chapter 3 Geometric Image Transformations

(0, 0)

(0, 187)

(162, 0)

(218, 235)

(56, 187)

(162, 48)

(0, 0)

(1, 0)

(0, 1)

1, 0.3
0.3, 1

Nearest neighbors

Bilinear

FIGURE 3.8: Top left shows the image coordinate system for reference. In this
coordinate system, the affine transformation whose matrix is shown at the bottom
is applied to the original chicken crop of Figure 3.4 (recall this is 162 × 187; open
rectangle). The gray diamond indicates the result. The target image is then set
up to enclose the whole result, and pixels scanned into the target. In this case, the
source image was not smoothed, because there is relatively little downsampling (the
diamond is not much smaller than the open rectangle). Top right shows the result
using nearest neighbors interpolation, and bottom right shows the result using
bilinear interpolation. Look closely at the tail feathers to see the difference.

3.4 APPLICATIONS

3.4.1 Aligning Color Separations

Simple geometric transformations can be extremely useful. One application comes
from early color photography. Color photography is usually dated to the 1930’s
when it first became available to the public. In fact, James Clerk Maxwell described
a method to capture a color photograph in an 1855 paper. The procedure likely
looks straightforward to you: obtain three color filters, and take a picture of the
scene through each of these filters. Capturing these color separations presented a
number of technical challenges, and the first color photograph was taken by Thomas
Sutton in 1861. Actually displaying pictures obtained like this was tricky. One had
to pass red light through the red separation, green through the green, and blue
through the blue, then ensure all three resulting images lay on top of one another
on screen. Turning them into the image files we are familiar with is also tricky,
because each layer of the separation is typically a bit offset from the others (the

Section 3.4 Applications 41

(0, 0)

(0, 187)

(162, 0)

(0, 0)

(1, 0)

(0, 1)

1/3, 0, 0
-187/(3*162), 1/3, 187/3
-2/(3*162), 0, 1

(0, 187/3)

(0, 2*187/3)

Bilinear

Nearest neighbors

FIGURE 3.9: Top left shows the image coordinate system for reference. In this coor-
dinate system, the projective transformation whose matrix is shown at the bottom
is applied to the original chicken crop of Figure 3.4 (recall this is 162 × 187; open
rectangle). The gray region indicates the result. Note that the projective transfor-
mation has taken the rectangular source to a shape that is not even a parallelogram.
The target image is then set up to enclose the whole result, and pixels scanned
into the target. In this case, the source image was not smoothed, because there is
relatively little downsampling (the gray region is not much smaller than the open
rectangle). Top right shows the result using nearest neighbors interpolation, and
bottom right shows the result using bilinear interpolation. Look closely at the tail
feathers to see the difference.

camera moved slightly between photographs), and each layer has aged and been
damaged slightly differently.

Separations are in register if they lie over one another exactly and so form a
color image. If they are out of register, objects will have slight, odd color halos.
Early color separations tend not to be in register. A class assignment, now hallowed
by tradition in computer vision, but likely to have originated with A. Efros in 2010,
uses the pictures of Sergei Mikhailovich Prokudin-Gorskii (1863-1944). Prokudin-
Gorskii traveled the Russian empire and took color photographs of many scenes.
He left Russia in 1918. His negatives survived and ended up in the Library of
Congress. A digitized version of the collection is available online. The assignment
asks students to register the color separations for some of these images.

There is a natural strategy: write a function that is smallest when the G
(respectively B) separation is in register with the R separation; now search for the
best value of the cost function obtained by small translations of the G (respectively
B) separation.

The search is easy when the separations are at relatively low resolution. The
offsets will be relatively small (a few pixels or so). It is then practical to simply
evaluate the cost function at a grid of translations, and choose the best (fussier

42 Chapter 3 Geometric Image Transformations

Squared error
Correlation Cosine distance

FIGURE 3.10: Top left shows a Gurnard, flashing its pectoral fins in alarm. Top
rest shows the color separations of this image (in red, green, blue order). The
image is slightly blue-green (taken at about 5 meters depth, where water absorbs
red light), and this shows as a darker red separation. Bottom shows how various
cost functions react to registering red to blue. The correct alignment is at 0, 0 and
the images are 257 by 323. Notice that: all the extrema are in the right place,
but the correlation and cosine distance must be maximized, and the squared error
minimized; the squared error changes relatively little from the best to the worst,
because the blue image is rather unlike the red; both cosine distance and correlation
are much more sensitive than SSD – they fall off much more quickly than the SSD
rises. Image credit: Figure shows my photograph of a Gurnard, at Long Beach in
Cape Town.

readers might interpolate, exercises). The remaining issue is the cost function.
Section 3.4.2 describes a number of possible cost functions.

This assignment requires care when one works with the high resolution ver-
sion of the scans. These are quite big, and there can be moderately large offsets.
Simply looking at each offset in turn will be hideously expensive (dealt with in
Section 13.1.2).

3.4.2 Scoring an Overlap with a Cost Function

The sum of squared differences or SSD scores the similarity between the overlapping
parts of two separations R and B. Given an offset m,n, the SSD is

Creg(m,n;R,B) =
1

No

∑
overlap

(Rij − Gi−m,j−n)
2
.

Here overlap is the rectangle of pixel locations with meaningful values for both R
and G and No is the number of pixels in that rectangle. Notice that overlap and
so No change with m and n, so we must compare overlaps of different sizes for
different offsets. This means it is important that Creg is an average.

Section 3.4 Applications 43

The SSD assumes that the images to be registered are very close to the same
when they are aligned. But the separations do not agree exactly when they overlap –
if they did, the image would be a monochrome image. It is useful to have alternative
cost functions that (a) will tend to be minimized or maximized when the images
are correctly registered and (b) change quite quickly when they are not.

Quite widely used alternatives are:

• The cosine distance, given by:

Ccos(m,n) =
∑

overlap

(Aij ∗ Bi−m,j−n)√∑
overlapA

2
ij

√∑
overlap B

2
i−m,j−n

.

Annoyingly, this cost function is largest when best, even though it’s called a
distance. Some authors subtract this distance from one (its largest value) to
fix this.

• The correlation coefficient, given by:

Ccorr(m,n) =
∑

overlap

(Aij − µA) ∗ (Bi−m,j−n − µB)√∑
overlapA

2
ij

√∑
overlap B

2
i−m,j−n

where µA =
1

NO

∑
overlap

Aij and

where µB =
1

NO

∑
overlap

Bij .

This is big for the best alignment. Notice how this corrects for the mean of
the overlap in each window.

Each is in the range −1 to 1, and neither scales with the size of the overlap neigh-
borhood. Terminology in this area is severely confused. The cosine distance isn’t
a distance; it is sometimes referred to as normalized correlation; and sometimes as
correlation. Several functions similar to correlation are referred to as correlation.
Figure 3.10 shows how these cost functions behave when trying to register the red
and blue separations of an image. These separations will be fairly similar, but not
exactly the same.

3.4.3 Elementary Object Detection, or Find the Chicken

Object detection is the problem of determining whether an object appears in an
image and where it is if it is there. There are a wide range of variants, explored
in much greater detail in Chapter 41.2; differences hinge on how one interprets the
word “object”, an alarmingly rich question.

A very simple object detector can be built out of the mosaic procedure. As-
sume A is an image which might contain an object, and B is a template – an example
image of the object to be detected. For every offset m,n where B lies inside A,
compute the cost function and store values in an array (the score array). Notice
that if the values are small, then at that offset, the overlapping bits of B and A

44 Chapter 3 Geometric Image Transformations

Target SSD Cosine Correlation

FIGURE 3.11: Translation and an image matching cost function yield an elementary
detector. Model the object – here, the chicken – using an image window (leftmost
column), then translate this window to each location in the image (top) and com-
pute the cost of the overlap. If the underlying image looks a lot like the chicken, you
will get a good value of the cost function (other columns. For SSD, a good value is
small – and so dark – for others it is large – and so light. This elementary detector
has serious problems. In the second row, the chicken template is darker than the
original image, and so SSD matches are not particularly good. Cosine distance and
correlation are less affected. But chickens don’t stay in a fixed configuration, and
if the chicken moves third row, all scores fall off. Image credit: Figure shows my
photograph of jungle fowl in Singapore.

“look like” one another. If they “look like” one another sufficiently (test the cost
function against a threshold), declare that the object is present. Figure 3.11 shows
what the arrays look like for a variety of cost functions.

This detector will tend to overcount objects rather significantly. Shifting a
template by one or two pixels will not tend to change the cost function by much.
This means if the cost function is below threshold at m,n, it is likely to be below
threshold at neighboring points in the score array, too. This could mean you find
many instances of the object nearly on top of one another. A straightforward
procedure called non-maximum suppression deals with this. Find the smallest below
threshold value in the score array. Record an object present at that location, then
suppress that location and all nearby values (nearby might mean, for example, all
values in a k × k window centered on the current best value in score array) by
setting all to a large value. Repeat this procedure until there are no more below
threshold values in the score array.

There are other good reasons this isn’t a good object detector. Look at Fig-

Section 3.4 Applications 45

ure 3.11. The detector will only find chickens if they are in the same configuration
as the template, and on a grass background, and with the same lighting. Some of
this can be fixed with straightforward procedures. For some specialized applica-
tions, where very little computing is available, and where relatively few pixels lie
on the object, a detector built like this can be useful, but outside these applica-
tions different procedures are used. A large family of modern detectors are built on
this framework, with some crucial modifications: the cost function for evaluating
the match between an image window and the concept “chicken” is much more so-
phisticated than just comparing image pixels with template pixels and the search
procedure is more elaborate and more efficient (Chapter ??).

46 Chapter 3 Geometric Image Transformations

