
C H A P T E R 22

Image to Image Mapping using
Classification Methods

Render the edge points of an image into an array by marking an edge point
with a 1 and a non-edge point with a 0 and call the result an edge map. This
ignores information about how edge curves join up, but allows you to think of
an edge detector as something that maps an image to an image. Now consider
predicting this map for a new image. A version of the master recipe applies. If you
had many (image, edge map) pairs, you might try to decode a representation of
the image into an edge map. Mostly, this is the right approach, but you are now
classifying pixel locations in the image rather than predicting values. Chapter 21
set up classifying a single image into one of two classes. Predicting edges requires
classifying each pixel into two classes – edge/no-edge.

Classifying each pixel is useful in other important ways, too. Choose a tax-
onomy (a collection of labels), say “sky”, “road”, “pedestrian”, “sidewalk”, “car”,
“truck”, and “unknown”. Place a label at every pixel in an image, resulting in a
map of the types of thing or stuff appearing in the image. This map is a semantic
segmentation of that image. The labels in this example might be useful for the kind
of outdoor images that autonomous vehicles observe, for example (Figure 22.7). You
could predict a semantic segmentation for new images using a version of the master
recipe, too. Doing so requires classifying each pixel into one of many classes.

22.1 MULTI-CLASS CLASSIFICATION

There are some mild differences between multi-class classification and two-class
classification, mostly in the details of loss and evaluation. It might be a good idea
to re-read Section 20.1 (for general points and evaluation) and Section 20.2.3 at
this point.

22.1.1 Multi-class Cross Entropy Loss

Imagine you wish to classify something into one of k classes. You have a set of
examples where the classes are known for each example. You can encode this
information by associating a one hot vector with each training example. This vector
has k components, one per class. The component corresponding to the class is one,
and all others are zero. Write yi for that vector for the i’th training example.

Your classifier must now produce a k dimensional vector for an example. This
is quite commonly called a score Write x for the example, b for the vector produced
by the classifier, and θ for all the parameters of the classifier. Then interpret the
score as a probability using

P (item is class u|x, θ) = exp [bu]∑
w exp [bu]

.

296

Section 22.2 Predicting Edges and Interest Points 297

There are two natural ways to turn this expression into a loss that end up with the
same expression (recall Section 20.2.3).

The loss could be the negative log-likelihood of the data y under the model.
Write p for the vector whose u’th component is

exp [bu]∑
w exp [bw]

.

Then the negative log-likelihood for the example is

C(θ;x,y) = − log
[
yTp

]
and for the whole dataset is ∑

i∈examples

C(θ;xi,yi).

Evaluating this expression might strike you as a bit of a performance but notice
there is only one non-zero element in yi, which makes things somewhat simpler. In
practice, an API will do this for you very efficiently.

Alternatively, the loss could be the cross-entropy of Section 20.2.3. Recall the
cross-entropy between a discrete distribution p and another discrete distribution on
the same space q is

Hx(p, q) = −E[p] [log q] = −
∑
u

pu log qu.

Regard y as a discrete distribution, and p as a discrete distribution on the same
space. Check that the cross-entropy between these distributions

Hx(y,p) = − log
[
yTp

]
= C(θ;x,y)

(this is almost, but not quite, trivial - look at where the log appears). Most APIs
call the loss I have derived in two ways the cross-entropy loss.

22.2 PREDICTING EDGES AND INTEREST POINTS

22.2.1 Edges

It is difficult to be sure what the true edge points for an image are. The Berkeley
Segmentation Dataset (500 image version at https://github.com/BIDS/BSDS500)
contains a set of images that have been manually segmented. Segment boundaries
can be taken as edges. Each image has been segmented by multiple annotators,
who are not required to agree, so that the dataset contains some information about
the difference in opinion between human annotators.

You should think of edge prediction as producing the result of a classifier –
this is an edge point or this is not an edge point – at each pixel location in the
input image. A quick look at Section 20.2 might be useful at this point. At every
location in the image, the u-net will predict a score of the extent to which that
location is an edge point, which can be decoded by, for example, thresholding.

298 Chapter 22 Image to Image Mapping using Classification Methods

FIGURE 22.1: Image to image methods can find edges satisfactorily. On the left,
an image from the BSDS500 dataset. Multiple human segmentations of this image
appear in the center (look closely: people largely agree with one another, but in
some places you will see many boundaries close to one another). On the right,
edge predictions made by an image to image mapping. Image credit: Part of Figure
1 of “Holistically-Nested Edge Detection” Xie and Tu 2015

The unet takes an image I and uses parameters θ to predict an “edgeness”
score at each location. Write s(x, I; θ) for the score predicted by the unet at location
x. Interpret s(x, I; θ) as

s(x, I; θ) = log
P (x is edge|I, θ)

P (x is not edge|I, θ)

Now the loss is the cross-entropy loss of Section 20.2.3 (equivalently, the log-
likelihood of the data under this model). Write yi(x; I) for the value at location x
in the i’th annotation of I (there may be more than one). Use the convention that

yi(x, I) =
{

1 if x is an edge point
−1 otherwise

Then use the negative log-likelihood (or cross entropy) as the loss, to get

C(θ; I, i,x) = −
(
1 + yi(x; I)

2

)
[s(x; I, θ) + log (1 + exp s(x; I, θ))]

−
(
1− yi(x; I)

2

)
[log (1 + exp s(x; I, θ))]

and the overall loss is

L(θ) =
∑

I∈images

 ∑
i∈ground truth

 ∑
x∈locations

[C(θ; I, i,x)]

 .
This loss does not work well, because there are very many more non-edge points
than there are edge points, so the classes are unbalanced. A predictor can obtain a
very good score by simply reporting no edges anywhere. One way to deal with this
effect is to introduce a weight to balance the classes. Write T for the total number
of pixels in the annotated images (so if there are 3 annotations for an M × N

Section 22.2 Predicting Edges and Interest Points 299

training image, you count 3 M N pixels) and E for the total number of edge points
in the annotated images. Then β = E/T is the total fraction of edge points in the
annotated training images. Then the reweighted loss is for the i’th value at location
x in image I is

C(θ;β, I, i,x) = − (1− β)
(
1 + yi(x; I)

2

)
[s(x; I, θ) + log (1 + exp s(x; I, θ))]

−β
(
1− yi(x; I)

2

)
[log (1 + exp s(x; I, θ))]

(notice you want a high weight on the positives when edges are rare, which this
achieves). The overall loss is then

L(θ) =
∑

I∈images

 ∑
i∈ground truth

 ∑
x∈locations

[C(θ;β, I, i,x)]

 .
Now recovering an edge map from an image is straightforward. Pass the image
into the u-net which yields the score (negative log probability) that a pixel is an
edge point at every pixel. Test that score against a threshold. If it is low enough
(equivalently, if the probability the point is an edge point is high enough), it is an
edge point.

There is an evaluation procedure for edge detectors that compares predictions
against human predictions. At a high level, the test is whether human edge points
are the same as predicted edge points. The F-measure measures this property.
Write TP (true positive) for the number of points where the method predicts an
edge and so do humans; FP (false positive) for the number of points where the
method predicts an edge and humans do not; TN (true negative) for the number of
points where neither method nor human predict an edge; and FN (false negative)
for the points where the method does not predict an edge but humans do.

Definition: 22.1 Recall

Recall is the fraction of predicted edge points that are also marked by
humans as edge points. The recall of a system is given by

R =
TP

TP + FP
.

Definition: 22.2 Precision

Precision is the fraction of actual edge points (those marked by humans)
that the method finds. The precision of a system is given by

P =
TP

TP + FN
.

300 Chapter 22 Image to Image Mapping using Classification Methods

You cannot properly evaluate a predictor using only one of these numbers. For
example, you can get excellent recall by building an extremely cautious predictor
that has no false positives, and very few true positives (though the precision will be
low). Similarly, an enthusiastic predictor might label almost everything as positive,
and so get a very good precision (but low recall). One can summarize these two
numbers with an F1 measure, which is the harmonic mean of recall and precision.

Definition: 22.3 The F-measure

A system with precision P and recall R has F-measure

F =
2

1
R + 1

P

.

With some effort, you can show that

F =
2

1
R + 1

P

=
2TP

2TP + FP + FN
.

Notice that to get a large value of this number, both R and P must be large.
In practice, evaluation requires care, and it is important to have a consistent

protocol, because humans are not consistent with one another. This means that
a very good predicted edge point may be very close to, but not on top of, any
human prediction. Such a point should be counted as a true positive. There is a
standard protocol in place, with code available at https://www2.eecs.berkeley.
edu/Research/Projects/CS/vision/grouping/resources.html.

You can construct the edge map of an image at any scale, which offers a
training opportunity. The decoder produces a sequence of data blocks with different
spatial dimensions. Each of these blocks could be decoded using a simple linear
map to a predicted edge map at those spatial dimensions. It turns out that doing
so can help training significantly, because you can compel the intermediate layers
to contain strong edge information ([]).

22.2.2 Finding Interest Points

A version of the trick that produced edge points from an image to image mapping
procedure also works for interest points. In the case of edge points, the map pro-
duced a score at each pixel, which I interpreted as the negative log probability that
the point was an edge point. Interest points tend to be scattered, and don’t form
curves in images, meaning there is no reason to expect an interest point at every
pixel. Tile an image with non-overlapping 8×8 tiles, and assume that there is only
one interest point in each tile in an image (the 8 here isn’t magical, but is the choice
of a very effective method called Superpoint []). Then you could build a u-net that
accepted an 8H × 8W image (or a 3× 8HW block for a color image) and predicted
a 65×H×W block. Interpret the values in the 65 dimensional vector in a location
as a score vector.

This score vector is the negative log probability for each of 65 cases, of which
64 = 8× 8 cover the possibility that the interest point is at the corresponding pixel

Section 22.2 Predicting Edges and Interest Points 301

FIGURE 22.2: Image to image methods can locate interest points very well, and are
now unequivocally better than corner detectors. This figure shows results from the
MagicPoint detector. On the left, examples from a collection of synthetic image
datasets, where the location of the interest points is known. This data is used to
train a detector as in the text, which predicts locations shown as green circles on
the right. Notice the comparison with the Harris corner detector of Section 8.2.1.
MagicPoint detections are less frequent, and more strongly associated with actual
corners. Image credit: Part of Figure 4 of “SuperPoint: Self-Supervised Interest
Point Detection and Description DeTone et al., 2018.

in the 8× 8 block attached to that location, and the last covers the possibility that
there is no interest point at all. Imagine you have a collection of pairs (images,
interest point locations). Here the interest point locations could, for example, be a
list.

You can turn this data into training data as follows. For each tile, if there is
more than one interest point in the tile, choose one of those at random. Now every
tile has either one interest point or none, so you know which of the 65 cases occurs
at that tile. You could now train the image to image network to predict the interest
points using the multiple class cross entropy loss of Section 22.1.1. You can create
data with interest points in known locations. For example, place a dark triangle
on a light background, and keep track of where the corners are. Notice that any
reasonable warp of that image also has interest points at locations predicted by
the warps, but has no others. As a result, very large quantities of synthetic data
are relatively straightforward to produce. This strategy for producing an interest
point detector is extremely strong (Figure 22.2). The results are comparable to the
output of a corner detector, because the method produces a location that is well
behaved under image warps, but not a neighborhood, orientation or description.

A detector trained on synthetic images can be fine-tuned on unlabelled data.
Interpret the 65×M×N block produced by the u-net as a probability distribution.
Write bij for the 65 dimensional vector at location i, j. Recall that this vector
encodes the probability that an interest point is located in each of the 64 locations
in an 8 × 8 image tile, together with the probability that there is not one. Form
the 64 dimensional vector pij whose u’th element is

puij =
exp buij∑
w exp bwij

302 Chapter 22 Image to Image Mapping using Classification Methods

FIGURE 22.3: The covariance properties that an interest point detector should have
can be used to produce a fine-tuning loss that can be applied to unlabelled images.
A transformed version of the image should have interest points that transform in
a known way. The loss takes the image, applies various random transformations,
forms heatmaps from the network output, then applies the appropriate inverse trans-
formation to the heat maps and averages the results. This average represents a good
target heatmap for the original image. Image credit: Part of Figure 4 of “Super-
Point: Self-Supervised Interest Point Detection and Description DeTone et al.,
2018.

MagicPoint SuperPoint

FIGURE 22.4: Fine tuning MagicPoint on unlabelled data using the averaging proce-
dure described in the text yields SuperPoint, and produces significant differences in
the interest point locations that are marked. Left shows MagicPoint predicted loca-
tions; right shows SuperPoint predicted locations. Image credit: Part of Figure 7
of “SuperPoint: Self-Supervised Interest Point Detection and Description DeTone
et al., 2018.

where u ranges over the locations of the interest points. This means there are only
64 values of u and the 65’th represents the possibillity there is no interest point.
The components of pij do not sum to one. Now rearrange the components of pij

so they form an 8× 8 tile, putting the components in the location they represent.
This process turns the input M ×N image into a 1× (8M)× (8N) block where the
value at a pixel is non-negative and larger if the location has an interest point. Call
this block a heatmap (it is “warm” where there are likely interest points and “cool”
otherwise). Now take an unlabelled image and form its heatmap. Then apply (say)
an affine transformation to the image, compute the heatmap for the result, then
apply the inverse transformation to the heatmap. The two heatmaps should be the
same, up to some minor issues to do with interpolation. This is the covariance of
Section 8.2.

Fine-tuning on unlabelled data then proceeds as follows. Take the current

Section 22.2 Predicting Edges and Interest Points 303

FIGURE 22.5: Attaching a second decoder to SuperPoint makes it possible to produce
descriptions for interest points, as well as their locations. On the left, the two
decoder architecture. The second decoder produces a d× (H/8)× (W/8) block from
a H ×W dimensional image. This block is then upsampled using interpolation to
form a d × H ×W block. If the first decoder reports an interest point at i, j in
the image, the d values in the second block at location i, j are taken as a vector
describing that interest point. These vectors can be trained using a self supervised
loss. You know which descriptors should and should not match between a warped
version of an image and the original image, yielding the loss. Details in the text.
Image credit: Parts of Figure 3 and 2 of “SuperPoint: Self-Supervised Interest
Point Detection and Description DeTone et al., 2018.

interest point detector, and build a training dataset by: taking an unlabelled im-
age; applying a collection of randomly selected transformations; computing the
heatmap for each resulting image; apply the inverse of each transformation to each
heatmap, and averaging the results; then using this average as a target distribution
for training the unlabelled image. Now train the current interest point detector on
this dataset. Repeat this process with the resulting detector as necessary. This
approach leads to really significant improvements in performance (Figure 22.6).

22.2.3 Describing Interest Points

The interest points located in Section 22.6 are not much use without a description.
This description will be used to match interest points so that, for example, images
can be registered to one another. If you have an image and a transformed version
image, then the interest points that correspond can be recovered from the transfor-
mation. This means that you know which descriptions should be similar. You also
know that interest points that do not correspond should have different descriptions.
This means you can learn descriptions using a self-supervised method.

A natural procedure is to have two decoders attached to the encoder (these
decoders are sometimes called heads, so doing so produces a multiheaded network).
One decoder produces the interest points, as above, and the other produces their
descriptions. Because there is only one interest point per tile, it is enough to have
one description per tile and upsample the descriptions by interpolation. Now take
an image I and apply a transform T to the image to obtain T (I). This transform
induces a correspondence between tiles, but remember the tiles are relatively coarse.
For a point located at x = (i, j)T in the image, write u = (u, v)T = T (x) for the

304 Chapter 22 Image to Image Mapping using Classification Methods

FIGURE 22.6: Attaching a second decoder to SuperPoint makes it possible to produce
descriptions for interest points, as well as their locations. On the left, the two
decoder architecture. The second decoder produces a d× (H/8)× (W/8) block from
a H ×W dimensional image. This block is then upsampled using interpolation to
form a d × H ×W block. If the first decoder reports an interest point at i, j in
the image, the d values in the second block at location i, j are taken as a vector
describing that interest point. These vectors can be trained using a self supervised
loss. You know which descriptors should and should not match between a warped
version of an image and the original image, yielding the loss. Details in the text.
Image credit: Parts of Figure 3 and 2 of “SuperPoint: Self-Supervised Interest
Point Detection and Description DeTone et al., 2018.

transformed coordinates. Now write

sx,u =

{
1 if ||x− u ||2 ≤ 8
0 otherwise

Here sx,u is one if the tiles correspond (roughly - the tiles are on a grid) and
zero otherwise. As in the case of edge detection, there are more pairs that do not
correspond than there are pairs that correspond. Deal with this using a weight λ.
Then for a pair x ∈ Itiles and u ∈ T (I)tiles, the cost

C(x,u) = λsx,umax(0, c1 − dT (x)d(u)) + (1− sx,u)max(0,dT (x)d(u)− c2)

forces d(x) and d(u) to be similar when x and u correspond and different when
they do not. This yields a loss∑

x∈Itiles

∑
u∈T (I)tiles

C(x,u)

The resulting descriptors are comparable in accuracy with SIFT descriptors []

22.3 SEMANTIC SEGMENTATION

Choose a taxonomy (a collection of labels), say “sky”, “road”, “pedestrian”, “side-
walk”, “car”, “truck”, and “unknown”. Place a label at every pixel in an image,
resulting in a map of the types of thing or stuff appearing in the image. This map is
a semantic segmentation of that image. The labels in this example might be useful
for the kind of outdoor images that autonomous vehicles observe, for example (Fig-
ure 22.6). In that figure, notice that many different cars all have the same label.

Section 22.3 Semantic Segmentation 305

FIGURE 22.7: Semantic segmentation places a label taken from some taxonomy at
each pixel in an image. On the left, three example images from a well-known dataset
for semantic segmentation (KITTI). On the right, semantic segmentations of each
image from the ground truth. The color at each location corresponds to the label
(deep purple for roads, blue for cars, bright red for people, and so on).

This might be fine for some applications – you don’t need to know which car you
should not bump into – but may not be good enough for others.

The distinction between things and stuff is important. A thing is an object
one can count (“car”, “truck”, and so on – count nouns in linguist jargon). Stuff
can’t meaningfully be counted (“sky”, “road”, “grass”, and so on – mass nouns).
By convention, “unknown” is stuff. Because things can be counted, there can be
multiple instances of a thing class, so many distinct cars on the road. Distinguishing
between instances can be useful. For example, if you want to predict where a car will
be in the near future, it helps to distinguish between individual cars because some
will move and others won’t. Marking different instances of each thing class label is
known as instance segmentation. Some pixels might not be marked, because they
are stuff pixels. Finally, panoptic segmentation marks every pixel. Here stuff pixels
should get stuff labels and different instances of things should get different instances
of thing labels (so, for example, “car-1”, “car-2”). The terminology is not exactly
established, so at least some references to the panoptic segmentation task appear
not to label different instances with different labels. This section concentrates on
semantic segmentation, so each pixel should receive a label; labels could be thing
or stuff labels; but there is no need to distinguish between distinct instances of the
same category.

Semantic segmentation largely follows a quite familiar recipe. If there are k
classes, construct a u-net that maps an M ×N image to a k ×M ×N data block.
At each pixel location, there is a k dimensional vector. Interpret the components of
this vector as scores, one for each class, rather as in Section 22.6. Train this u-net
using a dataset that consists of pairs (image, labelled image), where at each pixel
location in the labelled image there is a k-dimensional one-hot vector identifying

306 Chapter 22 Image to Image Mapping using Classification Methods

the class for that pixel. Construct a loss by averaging the multi-class cross-entropy
loss evaluated at each pixel over all the pixels in the dataset.

This description is a jumping off point for a wide range of variants. There is
room for a great deal of innovation in the architecture of the encoder and decoder
used to produce the results. You might predict coarse scale semantic segmentations
first, then upsample and refine. You might weight the terms in the cross entropy
loss to reflect the fact that some classes have more pixels than others. Label maps
have quite strong spatial structure – you tend not to get one isolated “grass” pixel
in an enveloping field of “sky”, for example – and many variants explore procedures
to impose this structure on predictions. Typical numbers of classes as of writing
range from 13 to 40, and the recipe gets difficult to use in the form I have given
when the number of classes is very large. One difficulty is the data block is very big.
Another is that, when there are very many classes, there are typically few examples
of many classes. Many variants are built around managing these problems.

22.3.1 Evaluation

At a high level, semantic segmentation is evaluated by scoring whether pixel labels
are correctly predicted. Obtain a test set consisting of pairs (images, label maps).
Choose a class c. For that class, there are two interesting sets: Gc, the pixels that
are labelled with c and Pc, the pixels where the label c is predicted.

Definition: 22.4 IoU or intersection over union for a class

The IoU is given by

IoUc = IoUc(Gc,Pc) =
#(Gc ∩ Pc)

#(Gc ∪ Pc)
.

Definition: 22.5 The Jaccard index for a class

The Jaccard index of a system for a class is the same as the IoU for
that class.

Write TP for the number of true positive pixels (ie #(Gc ∩ Pc)); FP for the
number of pixels where c is predicted, but the true label is different (false positives);
and FN for the number of pixels where c is not predicted, but the true label is c
(false negatives). You can show that

IoUc(Gc,Pc) =
TP

TP + FP + FN
.

Annoyingly, the Jaccard index is not the same as the F-measure. Summarize per-
formance by averaging the IoU per class over classes. The result is referred to as
the IoU.

Section 22.3 Semantic Segmentation 307

FIGURE 22.8: The three images in the MS-CoCo dataset that contain an aeroplane,
a bird and a person (the bird in the image on the left is the airline’s logo). Note
how objects are delineated with polygons and the relatively rich context in which the
objects occur.

Definition: 22.6 IoU of a semantic segmenter

The IoU is
1

C

∑
c∈C

IoUc

In some datasets, labels are themselves distinguished between category labels
(like “vehicle”) and class labels (like “car”). For these datasets, it is quite usual to
compute an IoU over all labels, an IoU over category labels, and an IoU over class
labels. Comparison between these IoUs can offer some insight into the behavior of
the method.

As Figure 22.7 shows, some cars in the image are large and some are small.
Experience teaches that the IoU measure tends to favor methods that do well on
large cars over methods that do well on small cars. To control this effect, introduce
per instance weights that are large for small instances and small for large instances.
The segmenter does not need to produce instance annotations for this strategy to
work. It is enough for the ground truth to contain them. At a pixel that lies on a
particular car in a particular image, use the ground truth annotations to compute
Ntc, the number of pixels that lie on that car. Write N c for the mean number of
pixels on a car in the dataset, and write wtc = N c/Ntc for the weight (so pixels
that lie on small cars get big weights). Any pixel on that car now contributes wtc

(rather than 1) to the count of true positives and false negatives, yielding iTP and
iFN which are counted over all cars. In this case, predictions that are right or
wrong and are on smalll cars are weighted higher than predictions that are on large
cars. The weighted score iIoU for the class is given by

iIoU =
iTP

iTP + FP + iFN

and the average of this score over classes is the evaluation metric.

22.3.2 Datasets

There is a rich collection of datasets for semantic segmentation.

308 Chapter 22 Image to Image Mapping using Classification Methods

• The Pascal VOC 2012 dataset can be found in many locations (the original
source is http://host.robots.ox.ac.uk/pascal/VOC/voc2012/, but I have
had little success with this server). The dataset originates with a challenge
workshop held in 2012. It contains 1464 labelled training images and another
1449 validation images. Test images were held back for evaluation. There
are 20 object classes, and a “background” class. Object classes cover a broad
range (the “potted plant” has been challenging for years). The dataset is suf-
ficiently well established as a reference dataset that it is available in PyTorch
(look at VOCSegmentation).

• The Kitti semantic segmentation dataset can be found at https://www.

cvlibs.net/datasets/kitti/eval_semseg.php?benchmark=semantics2015.
There are 200 annotated training images and 200 validation images, from a
benchmark launched in 2012. There are 30 classes, to do with the stuff and
things an autonomous vehicle is likely to encounter. At the URL, there is a
very extensive set of evaluations of different methods applied to this dataset.
The dataset is sufficiently well established as a reference dataset that it is
available in PyTorch (look at Kitti).

• The Cityscapes dataset can be found at https://www.cityscapes-dataset.
com. There are 5, 000 images labelled carefully, and some 20, 000 frames that
are weakly annotated. There are 30 classes, which are the same as the Kitti
classes. At the URL, there is a very extensive set of evaluations of different
methods applied to this dataset. The dataset is sufficiently well established
as a reference dataset that it is available in PyTorch (look at Cityscapes).

• The MS-CoCo (common objects in context) dataset can be found at https:
//cocodataset.org/#home. There are some 123,287 images showing 886,284
instances of objects in context. Images are extremely varied (Figure 22.8).
Objects are delineated by polygons. The dataset is used for a very wide
variety of challenges.

22.3.3 Applications

Corrosion condition https://data.lib.vt.edu/articles/dataset/Corrosion_

Condition_State_Semantic_Segmentation_Dataset/16624663

22.3.4 Variants: Voxel Completion

