
C H A P T E R 19

Mapping Images to Image-Like
Things

The encoder-decoder architecture of the previous chapters denoised images
rather well, and deblurred them acceptably. The master recipe looks like: obtain
a large number of pairs of (input image, output image); train an encoder-decoder
pair to accept those inputs and produce those outputs; now apply to other inputs.
This recipe can solve many other very important application problems if you change
what the decoder produces. Images can be mapped to image-like things, described
somewhat more crisply below. For simplicity, I will refer to this recipe as image to
image mapping, or as a regression method.

The recipe is straightforward, and best illustrated with the really important
example of transforming images into depth maps. A depth map gives a repre-
sentation of the distance at each pixel from the camera to the object along the
corresponding ray. One way to collect such a depth map is to use a specialized
camera system (details in Section 15.10). Now collect a large number of example
pairs of image-depth map. Rather than train the decoder to produce a denoised
image from the encoding, train it to produce a depth map instead.

One caution: this chapter is written in terms of encoders and decoders, quite
deliberately. This is because some readers may not have read Chapter 18. Many
of the encoders that are used to get the very best results in the applications below
are rather different in form than those of Chapters ??. Another caution: For some
cases of image to image mapping, details of the camera used to obtain an image
can have significant effects. Understanding these effects requires some background
in camera geometry, and is put off to Section 30.2.5.

19.1 MECHANISMS AND CONSIDERATIONS

A wide range of really useful predictors can be trained with minor variants of
the master recipe. Some conditions are required for the recipe to work. What is
predicted should be “like” an image – a spatial map of features, though it does not
have to be the same size as the input image. What is predicted can have many
feature dimensions. For example, predicting surface normals is successful, and a
surface normal field is a map of three dimensional unit vectors. What is predicted
needs to be continuous – the methods described here will not do well at predicting,
say, an integer at each pixel.

Perhaps the biggest difficulty is that what is predicted should be largely deter-
mined once you have an image. This test is often very hard to apply without trying
to predict, but some examples will help. One class of problem that doesn’t meet the
test occurs where there are many different right outputs for a given input. A good
example of a problem like this is colorization, where one must take a monochrome
image and predict a color image. Many different color images correspond to a given

252

Section 19.1 Mechanisms and Considerations 253

feature dimensions

spatial dimensions

stacking

skip connections

FIGURE 19.1: The original u-net, reproduced from the original paper. The blue blocks
represent feature maps; the heavy arrows are annotated in the legend. “Up-conv
2x2” means upsampling by 2 followed by a 2x2 convolution. Figure 1 of Ronneberger
O, Fischer P, Brox T (2015). ”U-Net: Convolutional Networks for Biomedical Image
Segmentation”, MICCAI 2015

monochrome image. The techniques given here tend to work poorly on most col-
orization problems. The harder aspect of the test is knowing what can be predicted
from an image. It is now known that depth can be predicted very well from a
single image in most cases, but up until quite recently it was believed that images
had very few little information about depth and were fundamentally ambiguous.
Similarly, it is now known that normals can be predicted very well from images as
well.

19.1.1 U-Nets

A u-net is an encoder-decoder combination, so-called because the encoder makes
feature blocks spatially smaller and larger in the feature dimension, then the decoder
makes feature blocks spatially larger but smaller in the feature dimension. If you
draw this structure in the right way, it looks like a U. The original u-net had a
specific architecture (Figure ??), but the term now encompasses a broad range
of networks. Networks that consist of image encoders followed by decoders that
produce image-like things are now often called u-nets.

Notice that the u-net of Figure ?? is fully convolutional. This means that
each layer is agnostic as to the spatial extent of its input, as long as the input is big
enough. For example, a 3× 3 convolutional layer will accept any input larger than
3 × 3 and a ReLU layer or an upsampling layer will accept any size of input. A

254 Chapter 19 Mapping Images to Image-Like Things

320x240 80x60 40x30

FIGURE 19.2: A u-net will accept images of the same scene at different resolutions,
but the predictions might change because any particular location in the output has
a receptive field whose size is measured in pixels. On the left, an image at 320x240
resolution; in the center the same image at 80x60 resolution; and right, that image
at 40x30 resolution. The distance between two fish heads in the image is marked
by the light line. The dark circle represents the receptive field of a location in
the output, which is measured in pixels. As a result, the receptive field is rather
smaller than the distance between fish heads in the left image, and rather larger in
the right image. Ideally, the reported value at this pixel is the same (or about the
same) for each image, even though the image values that the function that computes
the output value observes very different inputs in these three cases.

fully connected layer will not. Since each layer has this property, so does the whole
network. This is a common property of u-nets. It has the convenient feature that
the network will produce an output for any image bigger than some minimum size.

19.1.2 U-nets, Scale and Resolution

A network that is fully convolutional has some important advantages for image to
image mapping. As long as the input image is big enough in each dimension, the
network will produce an output. The minimum size depends on the network (you
need to ensure that the smallest feature block is big enough that the convolution
will succeed exercises). This means you can train the network on images of a
fixed size, and expect it to produce outputs for images of somewhat different sizes.
What is remarkable is that this output is usually quite close to what you would
want. For example, you could train a u-net to produce 320x240 depth maps from
320x240 images. If you then pass this u-net an image at 640x480 resolution, the
output is likely quite close to the 640x480 depth map. This form of generalization
is quite useful.

Just how far this generalization extends depends in some detail on the ap-
plication. Think about the responses in the network to two images of the same
scene of an interior. One image is N × N and the other is kN × kN . The actual
distance between two items – for example, two chairs which are two metres apart
– in the scene is not affected by the change in resolution. However, the number
of pixels between these chairs has changed by a factor of k. When the network
observes the first image, the receptive field for any feature is very different than
when it observes the second image (Figure 19.2). As k gets bigger, the effect is more

Section 19.1 Mechanisms and Considerations 255

significant. You should expect the network to be somewhat resistant to problems
caused by the change in receptive field. In the example, the training set should be
big enough to contain pictures with two chairs two metres apart seen from fairly
far away (so they appear close in the image) and seen from fairly nearby (so they
appear well separated in the image). Experience teaches that u-net based image to
image mappers behave rather well in the presence of this effect unless the change
of image scale is very large.

19.1.3 Equivariance

Many image to image maps should have properties that are referred to as equivari-
ance. Annoyingly, this term is almost always misused. It applies to the behavior of
a function under a group action (there is no particular reason to look this up if you
don’t know what it is), so one should specify what kind of equivariance is intended.
Properly, translation equivariance is the shift-invariance of Section 5. As a thought
experiment, think about an image to image mapping that accepts an input I(x, y)
and produces an output O(x, y) =M(I). Assume that each is defined on the entire
plane. Then translation equivariance of the mapping requires that if you translate
the input, the output translates. In turn, this means that for any tx, ty, if

I2(x, y) = I1(x+ tx, y + ty) and O1 =M(I1)

then

M(I2) = O1(x+ tx, y + ty).

Notice that with very little work, you can extend this definition to apply to functions
of an infinite grid on the plane and discrete translations exercises . This property
is entirely desirable for an image to image mapping, yet almost always unattainable
because you never have an infinite image. If you happened to be in a position to
apply a u-net to infinite images I1 and I2, you would discover (after a very long
wait) that it was translation equivariant. But if you apply a u-net to a finite I1,
you will discover that when you translate the image to get I2 some pixels of I1
disappear and new pixels appear (Figure 15.10). This means the translation isn’t a
group action and the u-net isn’t translation equivariant in any useful sense (there
is a method to fix this mathematical difficulty, exercises , but it doesn’t apply
to real images).

A somewhat weaker form of translation equivariance is highly desirable for
most image to image mappings. Imagine that I1 and I2 are finite windows cut out
of an infinite image and they overlap. Then it is desirable that O1 and O2 agree
with one another in the region of overlap. This property does not appear to emerge
naturally just as a result of having a large training set exercises .

Section 19.1.2 argued that passing the same image at different resolutions to
a well-trained u-net mostly produces the same result at different resolutions. While
this can’t be true for very coarse or very fine resolutions, there is usually a range
of resolutions for which it is largely true. You should regard this property as being
a weaker form of scale equivariance.

256 Chapter 19 Mapping Images to Image-Like Things

x

y

height

Image
Plane

(x, y, f(x, y))

FIGURE 19.3: Normal measurements and predictions can be derived from depth mea-
surements and predictions. On the left, at the (x, y) location in the image, the depth
is f(x, y), leading to a surface (x, y, f(x, y)). Straightforward computations yield the
normal of this surface as long as it is differentiable. On the right, an example of
an RGB image registered to a depth map. The depth map was obtained with a
Kinect device. Bluer points are closer, redder are further away. Notice a scattering
of black points, which correspond to locations where the Kinect could not determine
depth. These tend to occur at the outlines of objects, but can be elsewhere. They are
often a result of shadowing effects or specular reflection at the surface. These effects
mean some care is required to get normal estimates, as derivatives may be unreli-
able. Image credit: The images come from the very well known NYUV2 dataset,
published at https: // cs. nyu. edu/ ~ fergus/ datasets/ nyu_ depth_ v2. html .

Remember this: Many very useful image-to-image mappings can
be implemented with an encoder-decoder pair, usually called a u-net. A
fully convolutional u-net will produce a useful output for any input above
a minimum size. Not all u-nets are fully convolutional. This depends on
how the encoder is built. U-nets are not – and cannot be made – formally
translation equivariant. In practice, u-nets display good behavior under
scale and translation.

19.2 APPLICATION: DEPTH AND/OR NORMAL FROM A SINGLE IMAGE

The basic recipe for predicting depth from a single image is straightforward. Obtain
a large number of (image, depth map) pairs, then train an encoder-decoder pair
(perhaps a u-net) to predict the depth from the image. The same basic recipe
applies to predicting surface normal from a single image, with minor variations.
Getting normal data that is accurate at every pixel is mostly impossible, and this
needs to be managed. Depth and normal are related, and this can be exploited.
Mostly, the prime obstacle is obtaining enough data, and depth predictors have
improved notably as the size of the available datasets has increased. Improvements
in encoder structure have also been important (Chapter 18). You should regard
single image depth prediction and single image normal prediction as technologies
that “just work” for most purposes.

Section 19.2 Application: Depth and/or Normal from a Single Image 257

19.2.1 Normal from Depth

A surface normal or (usually) normal is a unit vector at a point on a surface that is
at right angles to the surface. This vector exists if the surface has a tangent plane
– a plane of tangent vectors. Most surfaces in real life do. If a surface has a sharp
crease in it, the tangent plane may be hard to define or meaningless. If a surface
wiggles significantly at very small scales – for example, the surface of a natural
sponge – it may require care to define a meaningful tangent plane. Mostly, objects
in images can be thought of as surfaces which are smooth enough that they have a
normal at most points. There is a close relationship between depth and normal, so
if you can predict one from an image, you should be able to predict the other.

The relationship is important. Assume that a camera maps the point at
(x, y, z) in 3D to the point (x, y) in the image (there are other camera models,
and everything here can be adapted to them). Further, write f(x, y) for the image
depth at the point (x, y) in the camera. Then there is a surface in 3D given by

(x, y, f(x, y))

illustrated in Figure 19.4 Now consider the vector from (x, y, f(x, y) to (x+δx, y, f(x+
δx, y); as δx gets smaller, this vector will get shorter, but

lim
δx→0

1

δx
(δx, 0, f(x+ δx, y)− f(x, y))T =

(
1, 0,

∂f

∂x

)T

will be tangent to the surface if the derivative exists. Similarly,(
0, 1,

∂f

∂y

)T

is tangent to the surface. Using the very widely established convention of writing

p =
∂f

∂x
and q =

∂f

∂y

the normal is
1√

1 + p2 + q2
[−p,−q, 1]T

(although you can flip the sign depending on whether you want the normal pointing
from the surface to the camera or from the camera to the surface).

What all this means is that if you have a depth estimate that is good enough
that you can form acceptable estimates of the partial derivatives, you can estimate
a normal. Estimating the normal from the partial derivatives isn’t a particularly
good idea, however, because the depth tends to be noisy. It is better to use the
approach of Section 13.1.3 (here you would get the nearest neighbors by looking at
neighboring image points). Even this approach will produce poor normal estimates
at some image locations, because depth measurement devices have problems mea-
suring depth at some locations. These are typically around the outlines of objects
in images, where the depth can change very sharply from pixel to pixel (Figure 19.4
and Section ?? for more details). Most images in image-depth datasets are affected
by these missing points. If you see a depth image that appears not to be, you
should suspect that it has been postprocessed in some way.

258 Chapter 19 Mapping Images to Image-Like Things

FIGURE 19.4: Ground truth normals estimated from depth measurements can present
difficulties. The top row shows images from the NYUV2 dataset of Figure 19.4.
Bottom row shows normal estimates derived from the depth, and used as ground
truth on occasion. Normal estimates are rendered by mapping R, G and B to
components of the normal. Here, a normal pointing to the left in the image is
pink, one pointing up in the image is light green, and the normal of a frontal
surface is blue. These estimates aren’t the same as the true normals (look at the
venetian blinds, for example; the blodges on the back wall in the bicycle image or the
bedroom image; and the blodges in the bookshelf image). Evidence that the difficulty
comes from problem depth predictions includes the tendency of deformations to
start at surface boundaries and to be concentrated at shadow effects. Image credit:
Figure 2 of “Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal
Estimation” Gwangbin Bae Ignas Budvytis Roberto Cipolla

19.2.2 Depth from Normal

If you have a normal estimate that is good enough you can estimate depth up to
a constant of integration. Assume the normal predictor predicts a unit normal at
each location x = (x, y)T . Write [nx(x), ny(x), nz(x)]

T
for that normal. Now

−nx(x)
nz(x)

=
∂z(x)

∂x
= p(x) and

−ny(x)
nz(x)

=
∂z(x)

∂y
= q(x)

so you should be able to recover the depth map up to a missing constant by inte-
gration. This requires some care, because the estimates of the normal might not
be exactly right. Recall that

∂p

∂y
=
∂q

∂x

a condition often referred to as integrability. An algorithm appears below. Better
estimates can be constructed, but require more elaborate methods exercises .

Section 19.2 Application: Depth and/or Normal from a Single Image 259

Procedure: 19.1 Obtaining depth from normals

Represent the depth map as a vector z. Write nx for a vector containing
the x component of each normal (etc.). Write Dx for a matrix that
maps the depth map to its x derivative. It is likely that smoothing
the depth before differentiation is a good idea; incorporate this into
Dx exercises . Write diag for the operator that maps a vector to a
diagonal matrix with that vector on the diagonal. Then you can recover
a depth estimate by solving

argmin
u

{
[diag(nz)Dxu− nx]

T
[diag(nz)Dxu− nx] +

[diag(nz)Dyu− ny]
T
[diag(nz)Dyu− ny]

}

subject to a constraint on u that supplies the constant of integration
(for example, 1Tu = 0)

19.2.3 Representing Normal and Depth

What comes out of a normal predictor is usually not the normal. Write (nx, ny, nz)
T

for the components of the unit normal. Most normal predictors report (1/2)(nx +
1, ny+1, nz+1)T , which has the advantage of being in the range [0, 1]. If you don’t
know this, using the normal predictor can be difficult.

What comes out of a depth predictor is very seldom the depth, and for very
good reasons. The actual distance in, say, metres (otherwise known as absolute
depth) can be difficult to predict and is often not particularly useful. To predict
actual depth, you need to know, at least, something about the scale in the camera
and the scale in the world. Here is an example. Imagine your dataset contains both
images of real rooms and images of dollhouse rooms. The dollhouse furniture is very
realistic. The dollhouse pictures are taken with a camera that has an arrangement
of lens, imaging device, etc. so that the size of the furniture in dollhouse images and
the size of furniture in real world images is the same. Under these circumstances,
getting absolute depth might be very difficult indeed. A variety of possibilities will
break this ambiguity. For example, there may be no dollhouse pictures; you may
know something about the camera setup; and so on. But you will need to know
something substantial about the data you are working with to recover absolute
depth from pictures reliably. An alternative is relative depth, which is depth up to
a scale that is unknown and can vary from image to image. Here a dollhouse picture
and a real picture might report the same relative depth map. Something else would
have to determine the relationship between the maps and the actual depth.

Both absolute and relative depth present another problem. Large distances
tend to be less important than small distances. You will bump into nearby objects
sooner than you will bump into distant objects, for example. This means that it is
usually acceptable to make larger errors in bigger depths (relative or absolute). But
a 1% error in a large depth is much larger than a 1% error in a small depth. If you
train a model using the squared error in depth, the behavior of the trained model

260 Chapter 19 Mapping Images to Image-Like Things

tends to be dictated by the error in large depths. The inverse depth, sometimes
known as disparity (Section 15.10) has a convenient property. Assume the true
depth is d, so true disparity is δ = 1/d. If the predictor predicts disparity with
some error ϵ, then the corresponding depth is

1

δ + ϵ
≈ d− ϵd2

which means that a fixed error in disparity is a bigger error in large depth and a
smaller error in small depth.

Depth predictors mostly predict

adδ + bd

where ad and bd are constants, determined per image. At training time, these
constants are recovered from the training depth map. Testing a system like this is
easy if you have a depth map for the test image (recover the constants, recover the
depth from the disparity, then compare). But when you use the system, you may
not have a depth map, and you need some procedure to manage the fact that two
constants are missing per image. If you use a model from the internet, you should
be careful to check what it predicts. Some models estimate these constants then
correct the disparity estimate into an absolute depth estimate using these estimates;
others will estimate only bd and report a relative disparity estimate; others simply
report adδ + bd.

19.2.4 Losses

Depth prediction losses tend to be a mixture of L1 and L2 norms on the prediction
error. I am not aware of evidence that an adversarial loss usefully improves depth
predictors. This is likely because depth maps are relatively simple, and the amount
of data available makes adversarial losses superfluous.

Normal predictors require care, because the ground truth predicted from
depth images can present problems (Figure 19.4). Pushing the normal predictor
to reduce prediction error at locations where the ground truth isn’t reliable can
cause training problems. However, there are manageable procedures to estimate
where the ground truth is right (Figure 19.6). Predictions can be notably improved
by incorporating such an estimate. Write κi for an estimate of predicted normal
uncertainty at pixel i, where κi is larger when the predictor is more certain. Write
µi for the predicted value of the normal at i and ni for the ground truth normal at
i. Then

L(κi, µi,ni) = − log
(
1 + κ2i

)
+ log (1 + exp (−κiπ)) + κiacosµini

is a loss that encourages the network to reveal when the prediction is uncertain but
also encourages the prediction to be like the ground truth.

This loss is worth understanding in some detail. Think about the unet looking
at some local region of an image to predict a normal. The unet must be computing
some feature representing the region, then predicting a normal from that feature.
Regions that look similar will tend to have similar features and will tend to get

Section 19.2 Application: Depth and/or Normal from a Single Image 261

FIGURE 19.5: Predicting depth from single images is now a reliable technology. Top
row shows images; bottom row, predicted depth representations. The predictor
reports adδ + bd where δ is disparity and ad, bd are per image constants. Orange
is closer to the eye, purple is further from the eye. Notice: depth maps contain
quite fine detail (eg the larger elephant’s trunk; where the rider contacts the horse;
the grooves between suitcases); small depth gradients are well represented (eg along
the cowboy’s arm); windows can cause confusion (eg window next to suitcases).
Image credit: Figure 1 of “Towards Robust Monocular Depth Estimation: Mixing
Datasets for Zero-shot Cross-dataset Transfer”, Ren´ e Ranftl*, Katrin Lasinger*,
David Hafner, Konrad Schindler, and Vladlen Koltun.

similar normal predictions. If all the training data patches that look similar have
a very similar normal, then the unet can obtain a small loss by predicting that
normal and a large κ value. The larger the κ, the smaller the first two terms in
the loss. A large κ is only practical if all the training patches that look similar to
that region have a very similar normal. Otherwise, the acosµini term will be large
because at different training items ni will be different. Similarly, if the training
data items that are “similar” to that region have quite different normals, it is safer
to predict a small κ.

19.2.5 Evaluation

Desirable properties of a depth predictor are: (a) accuracy and (b) good zero-shot
behavior. One key metric for accuracy of depth predictors is AbsRel. Compute the
depth prediction from whatever the predictor produces for an image. You might
need to use the ground truth depth map for that image to do this. For example,
if it predicts adδ + bd, use the depth map to extract ad and bd and then recover
predicted depth ẑij for the i, j’th pixel. Write z∗ij for the ground truth depth at
each pixel. Now evaluate the mean over all pixels and all images of

| ẑij − z∗ij |
z∗ij

.

262 Chapter 19 Mapping Images to Image-Like Things

FIGURE 19.6: If uncertainty in estimating the ground truth is taken into account,
single image normal predictions can be very strong. Left shows image and ground
truth normal estimates; note the points where normal can’t be estimated (black).
Right shows estimated normals and estimates of uncertainty (yellow/red colors are
more uncertain; red arrows point to fine details recovered particularly well). Image
credit: Part of Figure 2 of “Estimating and Exploiting the Aleatoric Uncertainty in
Surface Normal Estimation” Gwangbin Bae Ignas Budvytis Roberto Cipolla

Another metric, usually called δ, measures the fraction of pixels such that

max

(
ẑij
z∗ij
,
z∗ij
ẑij

)
> 1.25.

These metrics measure slightly different things. AbsRel measures how bad relative
depth is on average; δ measures what fraction of pixels is really bad. If you don’t
have ground truth depth for the image, neither metric works. If you have disparity,
you can use mean-square error in disparity, scaling and translating as required.
Accuracy in normal predictors is usually evaluated using mean and median of the
angle between true and predicted normals, and the percentage of normals where
that angle is below some set of thresholds (typically 11.25o, 22.5o and 30o).

Good zero-shot behavior means the predictor can produce accurate depth
maps for images of a kind not seen in training. It is difficult to measure how
different a test image is from training images with any kind of precision, but the
usual procedure is to train on on a training split from some datasets, test on a test
split of those datasets, then also evaluate on datasets where no item was used in
training.

As of writing, depending on the dataset and on the model, for depth predictors
you could expect an AbsRel of between 0.06 and 0.25, a δ of between 1.9% and
25%, and a frame rate of between 5 and 90 FPS. For normal predictors, you could
expect to see mean angular errors of 15o to 30o, depending on model and dataset.
Generally, faster models produce worse predictions, and in each case there is a
notable component of error that is explained by test dataset alone. Generally, if a
slow model produces good or bad numbers on a particular dataset relative to other
datasets, so will a fast model. Depth and normal are intertwined, so it is usual

Section 19.2 Application: Depth and/or Normal from a Single Image 263

Textured
plane

Image
plane

FIGURE 19.7: On the left an example of foreshortening. A circle on a world plane
looks like an ellipse in an image plane, because the world plane is tilted backwards.
Try this by holding your hand in front of your face, then tilting it backward – it gets
shorter in the tilted dimension. If you knew that you were viewing a plane covered
in circles, the shape of the texture elements in the image would give you a cue to the
the orientation of the plane. Some version of this cue seems to be used by people.
On the right, an image of trees at HKU. Notice how the leaves on each tree seem
to give you a cue to the shape of its surface. Elementary methods for exploiting this
cue are both intricate and obsolescent, but the cue is powerful. Image credit: My
photograph of trees at HKU.

for methods to predict both simultaneously. There is some evidence that doing so
produces better predictions.

19.2.6 Why it Works

It isn’t obvious why one should be able to predict depth or normal from a single
image. For most of the history of computer vision, it was believed that images
were intrinsically ambiguous because they had been projected from 3D to 2D. As
a result, the image did not reveal (a) how far away surfaces were and (b) what
their orientation was. Current evidence strongly supports the idea that depth and
normal are relatively easily predicted from a single image – most images are not, in
fact, all that ambiguous. This likely follows from a number of interrelated points.

• The depth and normal at a pixel is usually rather similar to the depth and
normal at neighboring pixels. Further, large changes in depth and normal are
usually signalled by edges.

• Depth maps aren’t all that complicated. Scenes tend to have fairly stylized
depth maps, so, for example, rooms are boxes with other boxes in them,
and so on. Further, many depth regions are roughly either inclined planes,
cylinders or spheres.

• Surface textures and shading offer cues to the orientation of a surface and so
to the normal. Shading cues are discussed in Section 15.10. Texture cues are

264 Chapter 19 Mapping Images to Image-Like Things

illustrated in Figure 19.7. The early vision literature is rife with elementary
methods to exploit these cues, which weren’t all that successful.

19.2.7 Resources and Considerations

Training your own depth predictor is now not for the faint-hearted. The collection
of available datasets is large; each has its own special properties and nasty habits;
and evaluation is at a very large scale. Using a published depth predictor is usually
fine, but you do need to keep an eye on what it predicts. Confusing adδ + bd for
depth is easy to do and leads to all sorts of mischief.

Resource pointers: 19.1 Some strong open source depth predictors

These include:

• MiDAS https://github.com/isl-org/MiDaS;

• Depth-Anything https://github.com/LiheYoung/

Depth-Anything;

• Omnidata https://github.com/EPFL-VILAB/omnidata.

• https://github.com/baegwangbin/surface_normal_

uncertainty

These links also connect to information about available datasets. In
fact, the Omnidata link leads to a pipeline that builds datasets, as well
as predictors for depth and other surface properties.

Section 19.3 Further Applications 265

Resource pointers: 19.2 Some strong datasets used for depth prediction

These include:

• NYUV2, a dataset of scans of indoor scenes; contains im-
ages, depth and segmentation information (https://cs.nyu.
edu/~fergus/datasets/nyu_depth_v2.html).

• ScanNet, a dataset of scans of indoor scenes; contains images,
depth and segmentation information (http://www.scan-net.
org).

• Kitti, a dataset of outdoor scenes mostly to do with
cars and driving, with depth and other information
(https://www.cvlibs.net/datasets/kitti/eval_depth.
php?benchmark=depth_prediction).

Mostly, if you need normals, you need to estimate them from the depth
maps.

Remember this: Very accurate depth and normal predictions can be
made with little real difficulty at high speed and high accuracy from most
images. Predictions can be in a variety of forms, and it is important to be
sure what your predictor is producing. Training your own predictor is not
for the faint-hearted, but open resources are extremely strong.

19.3 FURTHER APPLICATIONS

19.3.1 Image Superresolution

Image superresolution is the task of taking an image at some resolution and pro-
ducing a higher resolution version of the image. Ideally, the method does not care
how much bigger you make the image (though there is likely some performance
limit). The natural baseline method is simply upsampling and interpolating (recall
Figure 2.6). A version of the master recipe applies as well. It is straightforward to
find pairs that look like (image at low resolution, image at high resolution). There
is no need to predict much of the information in the high resolution image, because
elementary interpolation methods give a reasonable estimate. Careful framing of
the problem makes it possible to train a method that is agnostic about the degree
of upsampling.

Write L for the low resolution image, interp(L) for an interpolation method
that upsamples the low resolution image by the same amount in each direction,
and H for the target high resolution image. Now train a predictor – which will

266 Chapter 19 Mapping Images to Image-Like Things

FIGURE 19.8: Learned superresolution methods can perform extremely well. This
figure shows the effect of superresolution methods by zooming in on patches from
two example images (tiny rectangles in red and yellow superimposed on the image).
Two methods are shown. The method producing the patches on the top row has
been trained to produce a residual estimate for a wide range of different upsampling
amounts. The method producing the patches on the bottom row has been trained to
produce a residual estimate for 2× upsampling. Methods are impressively succesful,
but training with a range of upsampling amounts makes a real difference to the
results. Image credit: Figure 5 of “Accurate Image Super-Resolution Using Very
Deep Convolutional Networks”, Kim et al, 2015. The patches in the top row come
from that method; the patches in the bottom row come from the method of “Learning
a deep convolutional network for image super-resolution”, Dong et al, 2014.

be a u-net – that accepts interp(L) and produces an estimate R̂ of the residual
H− interp(L). The full high resolution image is then

R̂+ interp(L).

R̂ should consist of mostly zeros or very small values, because interpolation is quite
good. Notice that this means that as long as the u-net can predict acceptably, the
method does not need to know by how much you are upsampling. Instead, it takes
your interpolated upsampling and predicts small corrections to that. In turn, this
suggests the method should be trained using data that is upsampled by different
amounts.

Evaluation is by PSNR on standard datasets. Competitive methods will get
PSNRs in the high 20s or early 30s for 4× upsampling, depending on the evaluation
dataset.

Section 19.3 Further Applications 267

Clear air

Surface Surface

Fog

Scattered
out of ray

Scattered
into ray

FIGURE 19.9: In clear air, light travels along the ray from a surface toward the sensor
directly, and without any effects (left). In fog or haze, light leaving the surface along
the ray to the sensor can be scattered out of that ray (perhaps by encountering a
fine water droplet), as in the right. Some of the light arriving at the sensor will
consist of light that was travelling in another direction, but was scattered into the
ray pointing at the sensor. If the surface is very far from the sensor, almost all
light will come from the fog and so the pixel will be fog colored. If the surface is
close to the sensor, it will look as if there was no fog, but a more distant surface
will have lower contrast and its color will shift towards the color of fog

Resource pointers: 19.3 Resources for superresolution

There is now a large range of upsampling methods and a large range of
evaluation datasets:

• https://github.com/ChaofWang/Awesome-Super-Resolution

offers a list of papers with links to code.

• A useful review appears in [].

19.3.2 Defogging

Fog or haze has significant effects on images. These are relatively easily explained
with a simple physical model (Figure 19.10). In fog, light does not travel directly
from a source to a surface to the eye. Instead, some fraction of light travelling
along a given ray is scattered out of the direction of that ray (perhaps it hits a tiny
drop of water suspended in the air, or some dust). Further, some amount of light
is scattered into the direction of the ray, because it was scattered out of some other
ray. In fog, scattering effects are largely independent of angle or of wavelength,
so what the image looks like depends the expected distance that light will travel
before being scattered. If the fog is heavy, this distance is short, and you may not
be able to resolve much in the image because almost all light arriving at a pixel is
light scattered into the viewing direction. This will tend to be the same from pixel

268 Chapter 19 Mapping Images to Image-Like Things

Foggy day

Clear day

Surface color estimate

Depth estimate

Rotated depth

FIGURE 19.10: Fog offers a depth cue if you know the color of surfaces in the absence
of fog or if you see them in two different levels of fog. On the left, views of a set of
distant surfaces on a foggy and a (fairly) clear day. This is enough to reconstruct
the color of surfaces (center). This color image, together with the foggy image,
yields the depth on the right. Image credit Parts of Figure 9 of “Vision in bad
weather”, Nayar and Narasimhan, 1999.

to pixel.
The light scattered into a ray will depend on the length of the ray. The longer

the ray, the more likely light scatters into that ray. If the fog is very light, you may
see no effect at all except over very long scales (of the order of kilometers). The
color of very distant objects will shift slightly towards the color of the light source,
because the inscattered light will tend to come from the light source. If you know
the color of the light source or can estimate it, you can use this effect as a depth
cue (Figure 15.10; the cue is known to artists as aerial perspective). When the
fog is light, objects that are near in the image will be largely unaffected but more
distant objects may be quite strongly obscured. A physical model of this effect is
straightforward. Write pi(x) for the value of the i’th color channel at location x,
ci(x) for the color you would see at location x if there was no fog, li for the color of
the light source in the i’th color channel, si for a scattering constant (one for each
color channel) and d(x) for the depth at x. Then

pi(x) = e[−sid(x)]ci(x) + (1− e[−sid(x)])li

is a fair physical model. This model omits a blurring effect, which is easily observed.
Distant objects will tend to be somewhat blurred as well, and nearby objects will
tend to be sharper (Figure 15.10). There are a number of elementary defogging
methods that exploit this model or variants quite successfully.

Defogging by image to image transformations follows the master recipe in a
natural way, and is notably successful. One minor nuisance is that it is hard to
obtain pairs of (image of scene, image of foggy scene). A fog machine can help with
this problem, but isn’t a scalable approach. It is usual and successful to simulate
foggy images from non-foggy images by applying the physical model above.

Evaluation is by PSNR, but mostly on simulated fog.

Section 19.3 Further Applications 269

FIGURE 19.11: Image to image methods defog images satisfactorily. The top row
shows results for a number of methods applied a simulated foggy image. The original
image is on the far left; the simulated foggy image appears next. Results from a
number of different methods follow. Below each is the reconstruction PSNR, which
can be computed because there is both a ground truth and an estimated image. The
bottom row shows results for a real foggy image. Here PSNR is not available,
because the true defogged version is not known. Image credit: Part of Figure 3 of
“Gated Context Aggregation Network for Image Dehazing and Deraining” Chen et
al 2018. The different methods are cited in detail in that paper.

Resource pointers: 19.4 Resources for defogging

There are lists of defogging and dehazing papers at:

• https://github.com/youngguncho/awesome-dehazing?tab=

readme-ov-file.

• https://github.com/Xiaofeng-life/AwesomeDehazing

There are datasets of pairs (image of scene, image of foggy scene) avail-
able at:

• https://data.vision.ee.ethz.ch/cvl/ntire19/

/dense-haze/

• https://data.mendeley.com/datasets/jjpcj7fy6t/1

• https://github.com/tanvirnwu/HazeSpace2M_ACMMN_2024?

tab=readme-ov-file

• https://github.com/fiwy0527/AAAI25_SGDN

270 Chapter 19 Mapping Images to Image-Like Things

Remember this: There are many applications for the master recipe for
image-to-image mapping. Image superresolution produces an upsampled
version of an image that is better than pure interpolation using a learned
procedure, and works well over a large range of upsampling scales. De-
fogging removes fog from images, and typically requires simulated training
data, but works well.

19.4 YOU SHOULD

19.4.1 remember these facts:

U-nets are well-behaved methods for image-to-image mapping. . . . 244
Accurate, fast depth and normal predictions can be made at high

speed from most images. 253
Superresolution and defogging are useful applications of image-to-

image mapping. 258

19.4.2 remember these procedures:

Obtaining depth from normals . 247

19.4.3 exploit these resources:

19.4.4 be able to:

• Make an informed guess as to whether a particular image-to-image application
will work.

• Explain the master recipe.

• Use a single image depth predictor.

• Use a single image normal predictor.

• Use an image superresolution method.

• Use an image defogging method.

• Spot other likely applications of image-to-image mapping.

