
C H A P T E R 27

Modelling Pixel Intensity

A camera collects power P at a pixel for time ∆t and produces an output
C(P∆t). The power that it collects is determined by the average intensity of light
leaving a small patch on a single surface in the direction of the pixel. In turn, this
is determined by two factors.

• The amount of light reflected from the surface patch to the pixel (Section 27.1).

• The amount of light collected by the surface, which is affected by the orienta-
tion of the surface patch (Section 27.2), and by which light sources the patch
can see (Section 27.3).

This yields quite simple models. These models offer useful insights, though many
of their predictions are not consistent with easy observations. However, the models
are strong enough to allow some inferences from shading (Section 27.4).

27.1 REFLECTION AT SURFACES

When light arrives at a surface, some fraction of the light is absorbed by the surface
and the rest leaves again. There is a hemisphere of possible directions that the light
can leave by. Most cases are dealt with by a combination of two models. In diffuse
reflection, the light leaving the surface is evenly distributed across the outgoing
directions. In specular reflection, there are tight geometric relationships between
the direction in which the light arrives and the direction in which it leaves. Models
of other effects are seldom used in vision, but are sketched below.

27.1.1 Diffuse Reflection

Most surfaces reflect light by a process of diffuse reflection. Diffuse reflection scat-
ters light evenly across the directions leaving a surface, so the brightness of a diffuse
surface doesn’t depend on the viewing direction. Examples are easy to identify with
this test: most cloth has this property, as do most paints, rough wooden surfaces,
most vegetation, and rough stone or concrete. The only parameter required to
describe a surface of this type is its albedo, the fraction of the light arriving at the
surface that is reflected. This does not depend on the direction in which the light
arrives or the direction in which the light leaves. Surfaces with very high or very
low albedo are difficult to make. For practical surfaces, albedo lies in the range
0.05 – 0.90. Albedo can vary with wavelength, which is one reason surfaces appear
colored (Chapter 41.2).

27.1.2 Specular Reflection

Mirrors are not diffuse, because what you see depends on the direction in which you
look at the mirror. The behavior of a perfect mirror is known as specular reflection.
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FIGURE 27.1: The two most important reflection modes for computer vision are
diffuse reflection (left), where incident light is spread evenly over the whole hemi-
sphere of outgoing directions, and specular reflection (right), where reflected light
is concentrated in a single direction. The specular direction S is coplanar with the
normal and the source direction (L), and has the same angle to the normal that
the source direction does. Most surfaces display both diffuse and specular reflection
components. In most cases, the specular component is not precisely mirror like, but
is concentrated around a range of directions close to the specular direction (lower
right). This causes specularities, where one sees a mirror like reflection of the light
source. Specularities, when they occur, tend to be small and bright. In the photo-
graph, they appear on the metal spoon and on the plate. Large specularities can
appear on flat metal surfaces (arrows). Most curved surfaces (such as the plate)
show smaller specularities. Most of the reflection here is diffuse; some cases are
indicated by arrows. Martin Brigdale c○ Dorling Kindersley, used with permission.

For an ideal mirror, light arriving along a particular direction can leave only along
the specular direction, obtained by reflecting the direction of incoming radiation
about the surface normal (Figure 27.1 and exercises). Usually some fraction of
incoming radiation is absorbed; on an ideal specular surface, this fraction does not
depend on the incident direction.

27.1.3 Specularities

If a surface behaves like an ideal specular reflector, you could use it as a mirror,
and based on this test, relatively few surfaces actually behave like ideal specular
reflectors. Imagine a near perfect mirror made of polished metal; if this surface
suffers slight damage at a small scale, then around each point there will be a set of
small facets, pointing in a range of directions. In turn, this means that light arriving
in one direction will leave in several different directions because it strikes several
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facets, and so the specular reflections will be blurred. As the surface becomes less
flat, these distortions will become more pronounced; eventually, the only specular
reflection that is bright enough to see will come from the light source.

This mechanism means that, in most shiny paint, plastic, wet, or brushed
metal surfaces, one sees a bright blob—often called a specularity—along the specular
direction from light sources, but few other specular effects. Specularities are easy to
identify, because they are small and very bright (Figure 27.1). Most surfaces reflect
only some of the incoming light in a specular component, and we can represent
the percentage of light that is specularly reflected with a specular albedo. For
surfaces that conduct electricity (mostly, metal surfaces), specularities take on a
color characteristic of the material. For example, gold has yellow specularities;
copper has orange specularities; and osmium has blue-gray specularities (or so I’m
told!). For surfaces that do not conduct electricity, specularities are typically the
color of the light source.

27.1.4 Other Phenomena

The vast majority of vision work ignores anything other than diffuse and specu-
lar effects. This isn’t a major source of problems, but what actually happens to
light at surfaces is often complicated. There are two major classes of model. In
the simplest class, all light leaving a point on a surface arrives at that point, and
energy doesn’t change wavelength. For this class of model, a complete description
of the effects is a table of how incoming light at various different angles of incidence
causes outgoing light at different exit angles, ideally as a function of wavelength.
This table – a bidirectional reflectance distribution function or BRDF – can be mea-
sured for a given surface (though measurement is onerous). One can build various
parametric models of a BRDF as well. In fact, both the diffuse and the specular
models are parametric BRDF models. Common effects that can be encoded in this
way are specular backscatter (where a surface scatters light back in the direction
of the illumination), off-specular glint (where one sees effects like specularities in
unexpected directions) and gloss (where a surface appears to shine).

Even more complex interactions occur quite commonly. Light arriving at a
surface could penetrate the surface, wander around the volume, and emerge some-
where else (this is why you can see the veins of a person with sufficiently pale skin).
It could be trapped in a layer of oil, travel inside this layer for a bit, then emerge
(something that occurs on skin quite often). It could be absorbed by the surface,
then re-emitted at a different wavelength (an effect known as fluorescence).

27.2 POINT SOURCES AND LOCAL SHADING

The amount and color of light falling on a surface depends on the luminaires (the
formal term for light sources), on the relative geometry of luminaire and surface,
and on other surfaces in the scene. The amount of light a luminaire produces
usually varies across wavelength, which is why different luminaires appear to have
different colors – for example, sunlight is relatively yellow, and fluorescent light
is relatively blue (Chapter 41.2). In the simplest model, surfaces that can see a
luminaire collect light from it, and from it alone. This is the local shading model.
It is quite easy to understand and work with, but it is not physically correct, and



300 Chapter 27 Modelling Pixel Intensity

B

θ

Diffuse reflection, 
bright

Light Light

θ

FIGURE 27.2: The orientation of a surface patch with respect to the light affects
how much light the patch gathers. A surface patch is illuminated by a distant point
source, whose rays are shown as light gray arrows. The small inset image shows the
whole scene, and the image at the center is a detail of the bowl of cream. The two
patches identified by the arrowheads are both on the cream, and so have the same
albedo – any difference in brightness is due to source effects. On the left, a patch
is facing the source (θ is close to 00), collects more energy, and so is brighter. On
the right, a patch is tilted away from the source (θ is close to 900) and collects less
energy, because it cuts fewer light rays per unit surface area. Martin Brigdale c○
Dorling Kindersley, used with permission.

should be used with caution.

27.2.1 Distant Point Sources and Lambert’s Law

The main source of illumination outdoors is the sun, whose rays all travel parallel to
one another in a known direction because it is so far away. We model this behavior
with a distant point light source. This is the most important model of lighting
(because it is like the sun and because it is easy to use), and can be quite effective
for indoor scenes as well as outdoor scenes. Because the rays are parallel to one
another, a surface that faces the source cuts more rays (and so collects more light)
than one oriented along the direction in which the rays travel. The amount of light
collected by a surface patch in this model is proportional to the cosine of the angle
θ between the illumination direction and the normal (Figure 27.2). Further, the
effects of illumination are linear, meaning that the amount of light collected by a
surface patch is proportional to the intensity of the source.

The figure yields Lambert’s cosine law or, more usually, Lambert’s law. Lam-
bert’s law yields the diffuse intensity I(x) at a diffuse surface patch x. Write S
for the source intensity, ρ(x) for the albedo of the patch, and θ(x) for the angle
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between the surface normal at x and the direction to the source. Then

I(x) = ρ(x)S cos θ(x)

Now represent the light source with a source vector S that points toward the source.
If the magnitude of S is S, this becomes

I(x) = ρ(x)STN(x)

where N(x) is the outward pointing unit normal to the surface at x. This law
predicts the shading on a surface provides some shape information, because bright
image pixels come from surface patches that face the light directly and dark pixels
come from patches that see the light only tangentially. Section 41.2 shows one
procedure for exploiting this information.

27.2.2 Nearby Point Sources

A much less common shading model is a nearby point source, where the luminaire
is a glowing point that is nearby. Lambert’s law works in this case as well. For a
distant point source, the direction to the source is the same everywhere, but for a
nearby point source the direction changes from point to point, so S becomes S(x)
yielding

I(x) = ρ(x)ST (x)N(x).

It is quite easy to see that a nearby point source model is not a particularly good
model. Place a point source at the center of a room that is a cube. It is an exercise
to show the model predicts that the corners of the room are about 60% as bright as
the center of each wall. But rooms aren’t like that. One strategy used to deal with
this is to add what is known as an ambient illumination term to the prediction made
by Lambert’s law. This term is usually a constant everywhere. It is an exercise to
check this strategy is not a good predictor of observations.

27.2.3 Local Shading and the Diffuse + Specular Model

The assumption that all reflection effects are either diffuse or specular is widespread
and useful. Typically, one assumes that specular effects are actually specularities
(so, no mirrors). These specularities are identified (small bright points), and are
removed. What remains is diffuse reflection which is then modelled with Lambert’s
law.

27.3 SHADOWS, AREA SOURCES AND INTERREFLECTIONS

Most people know what a shadow is, but defining shadows accurately is surprisingly
hard. Different points on a surface may receive quite different amounts of light,
because the light arriving at the receiver (point on the surface receiving light)
changes. Drawing the hemisphere of directions arriving at the receiver shows how
these changes work. In the local shading model, a receiver can either see a source
or can’t. When it can’t, it is in shadow. This yields an acceptable model of
some outdoor shadows, but more complex shadows require a more sophisticated
explanation.
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FIGURE 27.3: The simplest shadows occur when a surface cannot see a source. The
image is a picture by Ishikawa Ken, published on Flickr with a creative commons
license (https: // creativecommons. org/ licenses/ by-sa/ 2. 0/ ). The draw-
ing shows a blocker stopping the ground from seeing the sun. In the drawing, the
sun is at a low angle, meaning the shadow is stretched. The shadowed sections of
the ground in the image are darker than the unshadowed regions, but are not deep
black, because the ground can see the sky. The sky is not as bright as the sun, but
contributes a significant amount of light.

27.3.1 Outdoor Shadows

In the local shading model, if the surface cannot see a source, then it is in shadow.
The object that prevents the surface from seeing the source is sometimes called a
blocker. Outdoors – where light arrives at a point only from the sun – the local
shading model predicts that shadows are deep black and that that there are sharp
boundaries at shadows. In fact, shadows are seldom very dark outdoors, because the
shadowed surface usually receives light from the sky as well as the sun (Figure 27.3).
Adding an ambient term ensures that shadows are not too dark, and is often an
acceptable model for outrdoor images.

The sun – like the moon, which is safer to look at than the sun – is a small
bright circle in the sky, rather than a point. A point on a surface receives light
from all directions in an incoming hemisphere, and so receives light from the sun
in a small set of directions rather than from just one direction. This means that
if the blocker is in the right position, it might block only part of the sun. In turn,
an outdoor shadow can be blurry (Figure 27.4). The same blocker can block a
larger or smaller range of directions depending on how close to the ground it is.
For example, consider an airplane on the ground with the sun high in the sky. The
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FIGURE 27.4: Some outdoor shadows have blurred outlines, because the sun oc-
cupies a small range of directions in the sky – when you look up, it looks like
a small circle not a point. On the left, a point on a diffuse surface receives
light from the sun (yellow arrows) and from the sky (blue arrows) and re-
flects this light evenly spread around all outgoing directions. The image is a
picture by Pamela V White, published on Flickr with a creative commons li-
cense (https: // creativecommons. org/ licenses/ by-sa/ 2. 0/ ). On the cen-
ter right, a blocker stopping the ground from seeing the sun. The sun is quite high
in the sky, and the blocker is high off the ground, meaning it blocks a small range of
directions. At 1, the surface can see the whole of the sun. At 2 and 4, the surface
can see only part of the sun because the blocker covers part of it. At 3, the blocker
covers all of the sun.

shadow below the airplane is dark, because directly below the airplane the ground
can see only a very small part of the sky and cannot see the sun at all. But if the
airplane is high in the sky, the shadow it casts on the ground is very difficult for an
observer on the ground to see, because the airplane blocks only a small fraction of
the sun and so the shadow is very large and not very dark. A passenger who looks
in the right direction from the airplane can often see the shadow on the ground,
however.

27.3.2 Area Sources and Indoor Shadows

An area source is an area that radiates light. Outdoors, the sun is an area source,
though there is little real reason to use this model apart from explaining blurry
shadows. The sky is a very good example of an area source. Furthermore, area
sources are common indoors. An uncommon, but easy, example is a light fitting in
a ceiling with a diffuser.

A simple model explains the qualitative behavior of an area source. Break
the source up into a large number of small elements (say, rectangles). Any receiver
– surface lit by the source – is lit by each element, and adds up the effects of each
element to get the total effect of the source. This model predicts that area sources
cast shadows that tend not to be dark, and that have smooth boundaries. At some
points, the receiver will see all of the elements of the area source. At other points,
the observer will only some of the elements on the area source (these points are
very occasionally referred to as being in a penumbra). It is possible that, at some
other points, the observer sees none of the elements on the area source (and so be
in what is sometimes called umbra). This means one sees shadows that are rather
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FIGURE 27.5: Area sources generate complex shadows with smooth boundaries, be-
cause from the point of view of a surface patch, the source disappears slowly behind
the occluder. Left: a photograph, showing characteristic area source shadow effects.
Notice that A is much darker than B; there must be some shadowing effect here,
but there is no clear shadow boundary. Instead, there is a fairly smooth gradient.
The chair leg casts a complex shadow, with two distinct regions. There is a core
of darkness (the umbra—where the source cannot be seen at all) surrounded by a
partial shadow (penumbra— where the source can be seen partially). A good model
of the geometry, illustrated right, is to imagine lying with your back to the surface
looking at the world above. At point 1, you can see all of the source; at point 2,
you can see some of it; and at point 3, you can see none of it. Peter Anderson c○
Dorling Kindersley, used with permission.

fuzzy diffuse blobs, or sometimes fuzzy blobs with a dark core (Figure 27.5).

Much more common examples of area sources indoors are walls, ceilings and
floors. These are not luminaires (they do not create light) but they do radiate light.
A receiver cannot distinguish between light that comes directly from a luminaire,
and light that was reflected from (say) a wall. A small blocker may not be able
to block enough of a big area source to create a shadow that is dark enough to
be visible. Rooms tend to have large white walls and ceilings, and rather smaller
objects, so there are often few visible shadows (Figure 27.6).

27.3.3 Area Sources and Interreflections

The local shading model is not a physically accurate model of light transport,
because a receiver cannot tell whether incoming light came directly from a source
or was reflected from a surface. A better model is that light leaves a luminaire and
may then be reflected from surface to camera; from surface to surface to camera;
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FIGURE 27.6: The photograph on the left shows a room interior. Notice the lighting
has some directional component (the vertical face indicated by the arrow is dark,
because it does not face the main direction of lighting), but there are few visible
shadows (for example, the chairs do not cast a shadow on the floor). On the right,
a drawing to show why; here there is a small occluder and a large area source. The
occluder is some way away from the shaded surface. Generally, at points on the
shaded surface the incoming hemisphere looks like that at point 1. The occluder
blocks out some small percentage of the area source, but the amount of light lost is
too small to notice (compare figure 27.5). Jake Fitzjones c○ Dorling Kindersley,
used with permission.
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FIGURE 27.7: On the left, a highly simplified room. Colors identify the walls (the
missing wall is white), and there is a small light fitting in the ceiling (which is also
white). On the center left, drawings of the hemisphere of incoming directions at
points 1 and 2, flattened out for easy drawing. Notice how, as the receiver moves
from 1 to 2, the hemisphere changes – it can see less of the pink wall and more of
the green wall – but not by much. This effect explains why indoor shading is often
quite uniform. On the center right, a version showing what happens when 1 is
close to the edge. The pink wall occupies almost half of the incoming hemisphere
of directions (right), so the receiver must collect a lot of light from it. This means
that interreflection effects can cause points close to edges to be a lot brighter than
predicted by a local shading model.
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FIGURE 27.8: Different lightings of the same scene result in different pictures (MIT
dataset) and this is an important nuisance.

and so on. Some of this light is absorbed. All this can be formulated into a
detailed and accurate physical model of how light is distributed on scenes. Such
models are now very well understood [?] and are extremely useful in computer
graphics. These models are very hard to use directly in computer vision, because
every variable affects every other variable.

Effects explained by this more accurate model are sometimes known as inter-
reflections. The effects are particularly pronounced indoors. Section 27.3.2 used
an interreflection argument to account for the qualitative properties of shadows
indoors. Indoor scenes tend to appear quite uniform in shading, and this is also
easily explained by an interreflection argument. At most points, the receiver sees
about the same surfaces, but at slightly different angles, so illumination indoors is
quite uniform (Figure 27.7). A version of this model explains why edges in rooms
are not dark, too. As the observer approaches the edge along one wall, the other
wall looks bigger (Figure 27.7), and the observer will receive more light from it.
Finally, an interreflection model suggests (correctly, as Adrian Mole discovered to
his cost) that a room with walls painted black looks very different to a room with
walls painted white. It is known that people can tell whether a picture shows a
room with black walls and black objects (shown in a bright light) or a room with
white walls and white objects (shown in low light) []

27.4 INFERENCE FROM SIMPLE SHADING MODELS

27.4.1 Inferring Lightness and Illumination

If we could estimate the albedo of a surface from an image, then we would know a
property of the surface itself, rather than a property of a picture of the surface. Such
properties are often called intrinsic representations. They are worth estimating,
because they do not change when the imaging circumstances change. It might seem
that albedo is difficult to estimate, because there is an ambiguity linking albedo
and illumination; for example, a high albedo viewed under middling illumination
will give the same brightness as a low albedo viewed under bright light. However,
humans can report whether a surface is white, gray, or black (the lightness of the
surface), despite changes in the intensity of illumination (the brightness). This skill
is known as lightness constancy. There is a lot of evidence that human lightness
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constancy involves two processes: one process compares the brightness of various
image patches and uses this comparison to determine which patches are lighter and
which darker; the second establishes some form of absolute standard to which these
comparisons can be referred (e.g. ?).

Early algorithms for estimating lightness are mostly variants of an idea re-
ferred to as Retinex. They remain useful and quite competitive. These algorithms
assume that the scene is flat and frontal; that surfaces are diffuse, or that specular-
ities have been removed; and that the camera responds linearly. In this case, the
camera response C at a point x is the product of an illumination term, an albedo
term, and a constant that comes from the camera gain:

C(x) = kcI(x)ρ(x).

If we take logarithms, we get

logC(x) = log kc + log I(x) + log ρ(x).

We now assume that:

• albedoes are piecewise constant over space;

• and shading changes only slowly over space.

These assumptions are sometimes called Mondrian world assumptions. Versions of
these assumptions are built into modern vision systems.

The albedo assumption means that a typical set of albedoes will look like a
collage of papers of different colors. This assumption is quite easily justified: There
are relatively few continuous changes of albedo in the world (the best example
occurs in ripening fruit), and changes of albedo often occur when one object occludes
another (so we would expect the change to be fast). This means that spatial
derivatives of the term log ρ(x) are either zero (where the albedo is constant) or
large (at a change of albedo).

The illumination assumption is somewhat realistic. For example, the illumi-
nation due to a point source will change relatively slowly unless the source is very
close, so the sun is a particularly good source for this method, as long as there are
no shadows. As another example, illumination inside rooms tends to change very
slowly because the white walls of the room act as area sources. This assumption
fails dramatically at shadow boundaries, however. We have to see these as a special
case and assume that either there are no shadow boundaries or that we know where
the shadow boundaries are.

Now differentiate the log transform and use some method to separate small
and large gradients. It is enough to test the magnitude against a threshold, but
there are a wide range of variant tests. By our assumptions, large gradients will
occur where the albedo changes and small gradients are due to shading.

For images, differentiating and thresholding is easy: at each point, test the
gradient of the log image; if it is a shading gradient, pass it into a shading gradient
map, and if it is an albedo gradient, pass it into an albedo gradient map. There is a
mild technical complication because the resulting maps will not be actual gradient
maps. A gradient map meets a constraint sometimes called integrability.



308 Chapter 27 Modelling Pixel Intensity

Image

Shading

Albedo

FIGURE 27.9: Retinex remains a strong algorithm for recovering albedo from images.
Here we show results from the version of Retinex described in the text applied to
an image of a room (left) and an image from a collection of test images due to
?. The center-left column shows results from Retinex for this image, and the
center-right column shows results from a variant of the algorithm that uses color
reasoning to improve the classification of edges into albedo versus shading. Finally,
the right column shows the correct answer, known by clever experimental methods
used when taking the pictures. This problem is very hard; you can see that the
albedo images still contain some illumination signal. Part of this figure courtesy
Kevin Karsch, U. Illinois.

Follow the long tradition of writing

∂f

∂x
as fx or as p and

∂f

∂y
as fy or as q.

If (p, q) is a gradient map, then p = fx and q = fy for some function f , meaning
that

py = qx = fxy = fyx =
∂2f

∂y∂x

(in jargon, the mixed second partials must be equal). This will not be true of the
shadow or albedo gradient maps.

Reconstructing log albedo from the albedo gradient maps can be phrased as a
minimization problem: choose the log albedo map whose gradient is most like the
albedo gradient map. This is a relatively simple problem because computing the
gradient of an image is a linear operation. The x-component of the albedo gradient
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map is scanned into a vector p̂, and the y-component is scanned into a vector q̂.
We write the vector representing log albedo as l. Now the process of forming the
x derivative is linear, and so there is some matrix Mx, such that Mxl is the x
derivative; for the y derivative, we write the corresponding matrixMy.

The problem becomes finding the vector l that minimizes

argmin
I

{
[MxI− p̂]

T
[MxI− p̂] + [MyI− q̂]

T
[MyI− q̂]

}
This is a quadratic minimization problem, and the answer can be found using
linear algebra. Some special tricks are required because adding a constant vector
to l cannot change the derivatives, so the problem does not have a unique solution.
We explore the minimization problem in the exercises.

You should think of this constant as a constant of integration. The constant
of integration needs to be obtained from some other assumption. There are two
obvious possibilities, explored in the exercises:

• we can assume that the brightest patch is white;

• we can assume that the average lightness is constant.

*** a paragraph on consequences ***

27.4.2 Photometric Stereo: Shape from Multiple Shaded Images

Photometric stereo is a method for recovering a representation of a surface from
multiple images of the same thing under different lightings. This method recovers
the height of the surface at points corresponding to each pixel; in computer vision
circles, the resulting representation is often known as a height map, depth map, or
dense depth map.

Substantial regions of the surface might be in shadow for one or the other
light (see Figure 27.10). We assume that all shadowed regions are known, and deal
only with points that are not in shadow for any illuminant. More sophisticated
strategies can infer shadowing because shadowed points are darker than the local
geometry predicts.

Fix a camera in some location, illuminate a surface with several different
known distant point light sources and take then pictures. If the camera is linear
and the camera gain is known, and if the local shading model is right, the surface
normal at any point can be recovered from this information. Recall the local shading
model gives that the intensity of the surface at a point x under the k’th light source
will be

Ik(x) = ρ(x)Sk cos θk(x),

where θk(x) is the angle between the normal at x and the vector to the light source
and Sk is the intensity of the source. Represent the k’th light source with some
vector Sk that points toward the source. If the magnitude of Sk is the same as Sk,
this becomes

Ik(x) = ρ(x)ST
kN(x)
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FIGURE 27.10: Five synthetic images of a sphere, all obtained in an orthographic
view from the same viewing position. These images are shaded using a local shading
model and a distant point source. This is a convex object, so the only view where
there is no visible shadow occurs when the source direction is parallel to the viewing
direction. The variations in brightness occuring under different sources code the
shape of the surface.

where N(x) is the normal to the surface at x. If the camera is linear, and has
a known gain constant k, the normal and albedo can be recovered from enough
images. The camera response at x to the i’th source is

Pk(x) = kρ(x)ST
kN(x).

Now write V(x⃗) = ρ(x)N(x). There are N sources, and so N observations which
give a linear system in the (unknown) V(x), given by P1(x)

. . .
PN (x)

 =

 kST
1

. . .
kST

N

V(x).

Notice that k and Sk are known by assumption.
There is one linear system at each point on the surface, so at the i, j’th pixel

(with location xij , which we will usually compress to i, j) there is a linear system.
Solve this system to obtain obtain Vij = V(xij). Since the normal is a unit vector,

ρij can be recovered as
√

VT
ijVij . In turn, it is possible to recover normal and

albedo when N is 3 or more, and normal if N = 2 and albedo is known.
More is possible. An estimate of the surface normal at each point can be

turned into an estimate of surface height. For a point in the image at x = (x, y),
the point on the surface is (x, y, f(x, y)). We will see later why this is a reasonable
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model, together with a number of alternative models. For the moment, notice
that a point on the surface maps to a point in the image by dropping the third
coordinate.

Again, follow the long tradition of writing

∂f

∂x
as fx or as p and

∂f

∂y
as fy or as q.

For a surface given by (x, y, f(x, y)), the normal is

1√
1 + f2x + f2y

 −fx−fy
1

 =
1√

1 + p2 + q2

 −p−q
1


(look at Section 41.2 if you’re uncertain about this). At every pixel location i, j in
the image, we have an estimate of the normal n1;ij

n2;ij
n3;ij


so that at i, j, estimates are

p̂ij = −
n1;ij
n3;ij

and p̂ij = −
n2;ij
n3;ij

.

The surface cannot be obtained by simply integrating these estimates, because there
is an issue of integrability as in Section 41.2. Instead, rearrange the locations in
the image to form vectors, and write p̂ and q̂ for the vectors containing estimates
of p and q respectively. Recall the matricesMx,My from Section 41.2. Create a
vector f which will contain the height at each pixel. We can now solve the following
least squares problem to recover f

argmin
f

{
[Mxf − p̂]

T
[Mxf − p̂] + [Myf − q̂]

T
[Myf − q̂]

}
Just like the problem of Section 41.2 this is a quadratic minimization problem, and
the answer can be found using linear algebra. Again, adding a constant vector to l
cannot change the derivatives, so the problem does not have a unique solution.

*** A paragraph on consequences ****

27.4.3 Radiometric Calibration

Recall that a camera response function turns the energy [∆t] [PX−>x] collected at
a pixel x into the value Icamera(x) that the camera reports at that pixel, so

Icamera(x) = C([∆t] [PX−>x]).

Inferring the camera response function from data is referred to as radiometric cali-
bration. The CRF can be estimated from multiple registered images, each obtained
using a different exposure time. Turn the image into a vector, so there are fewer
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FIGURE 27.11: The image on the left shows the magnitude of the vector field g(x, y)
recovered from the input data of Figure 27.10 represented as an image—this is the
reflectance of the surface. The center figure shows the normal field, and the right
figure shows the height field.

indices to bother with. Write Iki for the image intensity value at the i location for
the k’th exposure time, and pi for the power arriving at that pixel. This is the
same for each exposure, but is not known. Write the camera response function C,
so that

I
(k)
i = C(Pi∆tk).

At this point, there are a variety of ways to proceed. I will assume the ∆tk
are not known (if the ∆tk are known, estimation is simpler, but the example is less
interesting). In this case, the CRF can be known only up to the scale of the input
variable.

An important simplification occurs because the CRF should be (and is) a
monotonically increasing function (i.e. its derivative is always positive) and so the
inverse function exists. Modelling the CRF as a piecewise linear function from [0, 1]
to [0, 1] is convenient, because it is easy to construct the inverse function (exercises).
It is important to use a model such that C(x) is defined for x > 1 and C ′(x) > 0
for x > 1 (exercises). Write θ for the parameters of the CRF model, and ϕ (which
is a function of θ, exercises) for the parameters of the model of the inverse CRF.
Write F (·; θ) for the CRF (so F (M; θ) is the matrix of values obtained by applying
the CRF to the elements ofM). Write F (·;ϕ) for the inverse of the CRF, so that
F (F (M; θ);ϕ) =M. Finally, write ||M||F for the Frobenius norm of a matrix (the
sum of squares of all elements; Section 41.2).

Choose θ(0) to be the set of parameters that gives the identity function (ex-
ercises). Write p for the vector whose i’th component is pi, t for the vector whose
k’th component is ∆tk and I for the matrix whose i, k’th component is Iki . Choose
some loss to compare pixel predictions from the model with observations, and write
L(·) for that loss. Now estimate:

e(n+1), t(n+1) =
argmin
e, t

||F (I;ϕ(n))− etT ||F

(which can be done very efficiently with a partial SVD or an iteration, exercises)
and:

θ(n+1) =
argmin
θ

L(I − F (e(n+1)t(n+1),T ; θ)).
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FIGURE 27.12: The CRF of three different cameras obtained from multiple images
obtained at different exposures using the algorithm described in the text. I used a
piecewise linear model (exercises), and the number of linear components was cho-
sen by cross-validation. To check the estimate, I estimated the CRF from two sets
of images of two different scenes and compare them on the plots. Note that the
estimates are consistent. The images used are shown on the bottom row. This fig-
ure was constructed from the dataset published at https: // github. com/ zyfccc/
Representing-camera-response-function , described in the paper “Representing
Camera Response Function by a Single Latent Variable and Fully Connected Neural
Network”, by Y. Zhao, S. Ferguson, H. Zhou and K. Rafferty in Signal, Image and
Video Processing, 2022.

(which requires numerical solution, exercises). The number of components for the
piecewise linear function can be chosen by cross-validation. Use a large fraction of
pixels (the training set) to estimate e(r), t(r) and θ(r) for some number of linear
components c. Now use a test set of pixels to make a new matrix Itest. Apply the
inverse map to Itest to form F (Itest;ϕ). Now estimate the p values for each test
pixel by computing

p(test) =
argmin

p
||F (Itest;ϕ(r))− pt(r),T ||F

(which is straightforward, exercises). Now evaluate

L(Itest − F (ptestt(r),T ; θ(r))).

Figure ?? shows results obtained using this procedure.

PROBLEMS

27.1. Specular direction: Light arrives at a surface at a point x with normal
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N(x). The unit vector from x toward the source is S, and the unit vector in
the direction of specular reflection is R, which has the properties NTS = NTR
and that N, S and R are coplanar.
(a) Show that these properties uniquely identify R.
(b) Explain why a user, viewing themselves in a mirror, is left-right reflected

but not up-down reflected. How does the mirror know the difference?
(c) A user standing at a distance d away from a mirror spans about the same

height in the mirror as a user standing at distance 2d from the mirror.
Explain.

27.2. Matrices that differentiate: I(x, y) is a continuous function on the unit
square. Represent this function by the values at a set of grid points. There
are Nx points in the x direction and Ny points in the y direction. The values
are stored in a table Ii,j where

Ii,j = I

(
(i− 1)

Nx − 1
,
(j − 1)

Ny − 1

)
(note that indices start at 1 rather than 0!).
(a) Show that

(Nx − 1)
(
I(i+1),j − Ii,j

)
≈ ∂I

∂x

where the derivative is evaluated at
(

(i−1)
Nx−1 ,

(j−1)
Ny−1

)
.

(b) Show that

(Nx − 1)
(
INx,j − INx−1,j

)
≈ ∂I

∂x

where the derivative is evaluated at
(
1,

(j−1)
Ny−1

)
.

(c) Show that

(Ny − 1)
(
Ii,(j+1) − Ii,j

)
≈ ∂I

∂x

where the derivative is evaluated at
(

(i−1)
Nx−1 ,

(j−1)
Ny−1

)
.

(d) Show that

(Nx − 1)
(
Ii,Ny

− Ii,Ny−1

)
≈ ∂I

∂x

where the derivative is evaluated at
(

(i−1)
Nx−1 , 1

)
.

(e) Rearrange Iij into a NxNy×1 vector I by stacking the columns, to obtain

I =


I1,1
. . .

INx,1

I1,2
. . .

INx,Ny

 .

Now describe the missing rows of Mx (below) so that MxI yields an
estimate of the x-derivative at each grid point, where

Mx = (Nx − 1)

 −1 1 0 0 . . .
0 −1 1 0 . . .

. . .
0 0 . . . 1 −1

 .
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(f) What is the form of My (below) so that MyI yields an estimate of the
y-derivative at each grid point.

27.3. Other representations of the derivative: I(x, y) is a continuous function
on the unit square. Represent this function by the values at a set of grid points.
There are Nx points in the x direction and Ny points in the y direction. The
values are stored in a table Ii,j where

Ii,j = I

(
(i− 1)

Nx − 1
,
(j − 1)

Ny − 1

)
(note that indices start at 1 rather than 0!).
(a) Show that

(Nx − 1)
(
I(i+1),j − Ii−1,j

)
≈ ∂I

∂x

where the derivative is evaluated at
(

(i−1)
Nx−1 ,

(j−1)
Ny−1

)
, for 1 < i < Nx. This

scheme for estimating a derivative is known as a symmetric first difference.
(b) If one were to use a symmetric first difference to estimate a derivative,

how would one estimate the derivative at
(
0,

(j−1)
Ny−1

)
and at

(
1,

(j−1)
Ny−1

)
.

(c) Describe the matrices M′
x and M′

y that would estimate derivatives using
symmetric first differences.

(d) Assume Nx and Ny are odd numbers. Write

d =



1
1
−1
1
−1
. . .
1
−1
1
1


and I = d1T . Show that I has zero first derivative in both x and y
directions if you estimate the derivatives using a symmetric first difference.

27.4. Optimization and Retinex: We explore the optimization problem

argmin
I

{
[MxI− p̂]T [MxI− p̂] + [MyI− q̂]T [MyI− q̂]

}
from Section 27.4.1.
(a) Write c for c1 (i.e. a vector of all c’s). Show that Myc = Mxc = 0.
(b) Write

M =

[
Mx

My

]
and d =

[
p̂
q̂

]
and show that solving the minimization problem requires solving

MTMI = MTd.

Does this problem have a unique solution?
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(c) Now consider the constraint 1T I = 1, which is equivalent to an assumption
that the average lightness is a known constant. Show that solving the
minimization problem subject to this constraint requires solving[

MTM 1

1T 0

] [
I
λ

]
=

[
MTd

1

]
Does this problem have a unique solution?

(d) Now write em for a vector with one component corresponding to each
pixel. Every component is zero, except for the component corresponding
to the brightest pixel in the image, which is one. This means the constraint
eTmI = 1 requires that the brightest point in the image is reconstructed
to have albedo 1. Show that solving the minimization problem subject to
this constraint requires solving[

MTM em
eTm 0

] [
I
λ

]
=

[
MTd

1

]
Does this problem have a unique solution?

(e) Would it be a good idea to use symmetric first differences rather than first
differences to solve any of these problems? What would happen?

27.5. Optimization and surface reconstruction for photometric stereo: We
apply the results of the previous exercise to the optimization problem

argmin
f

{
[Mxf − p̂]T [Mxf − p̂] + [Myf − q̂]T [Myf − q̂]

}
from Section 27.4.2.
(a) Why does this problem not have a unique solution?
(b) How can it be adjusted to have a unique solution?

27.6. Radiometric calibration
(a) Show that if f is a function from the real line to the real line, and the

derivative of f exists and is greater than zero everywhere, the inverse of
f exists.

(b) Write

h(x; k0, k1, k2) =


0 for x < k0

(x−k0)
(k1−k0)

for k0 < x ≤ k1
(k2−x)
(k2−k1)

for k1 < x ≤ k2

0 for x > k2

Now choose a set of N + 2 points on the x-axis, − inf < k0 < k1 < . . . <
kN+1 and a set of N coefficients ai. Show that

G(x; k0, . . . , kN+1, a1, . . . , aN ) =

N∑
i=1

aih(x; ki−1, ki, ki+1)

is a piecewise linear function with the following properties.

• G(x; k0, . . . , kN+1, a1, . . . , aN ) = 0 for x < k0.

• G(x; k0, . . . , kN+1, a1, . . . , aN ) = 0 for x > kN+1.

• G(ki; k0, . . . , kN+1, a1, . . . , aN ) = ai for 0 < i < N + 1 (i.e. the
function interpolates (ki, ai)).
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(c) Write ReLU(x; k) = max(x− k, 0). Show that

h(x; k0, k1, k2) =
1

(k1 − k0)
ReLU(x; k0)−2

1

(k2 − k1)
ReLU(x; k1)+

1

(k2 − k1)
ReLU(x; k2).

(d) Write ReLU(x; k) = max(x− k, 0). Show that

h(x; k0, k1, k2) =
1

(k1 − k0)
ReLU(x; k0)−2

1

(k2 − k1)
ReLU(x; k1)+

1

(k2 − k1)
ReLU(x; k2).

(e) Now choose a0 and aN+1. Show that

F (x; k0, . . . , kN+1, a1, . . . , aN ) =

N∑
i=1

aih(x; ki−1, ki, ki+1)−a0ReLU(−x;−k1)+aN+1ReLU(x; kN )

is a piecewise linear function that interpolates (k1, a1), . . . , (kN , aN ).
(f) Show that a0, aN+1 > 0 and 0 < a1 < . . . < aN is equivalent to the

requirement that F be monotonic.

PROGRAMMING EXERCISES

27.7. Specular direction: Light arrives at a surface at a point x with normal
N(x). The unit vector from x toward the source is S, and the unit vector in
the direction of specular reflection is R.
(a) Using a plane mirror and some pins, verify that NTS = NTR and that N,

S and R are coplanar. To do this place the mirror standing perpendicular
to a surface you can put pins in. Make a line of pins, view them in the
mirror, then insert more pins to mark out the specularly reflected line.
This is an informative exercise, but not for everyone.

27.8. Matrices that differentiate:
27.9. CRF estimation


