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Patterns, Smoothing and Filters

In this chapter, we introduce methods for obtaining descriptions of the ap-
pearance of a small group of pixels. These methods can be used to find patterns,
to suppress noise, and to control aliasing.

4.1 LINEAR FILTERS AND CONVOLUTION

Section 2.3.2 showed improvements in downsampling obtained by replacing each
image pixel with a weighted average of pixels. This useful trick is easily generalized
into an important idea. The weights in that section were either uniform, or large
at the pixel of interest, and falling off at distant pixels. Changing the weights leads
to interesting outcomes.

4.1.1 Convolution

For the moment, think of an image as a two dimensional array of intensities. Write
Iij for the pixel at position i, j. Construct a small array of weights (a mask or
kernel) W, and compute a new image N from the original image and the mask,
using the rule

Nij =
∑
uv

Ii−u,j−vWuv

equivalently
N =W ∗ I.

In some sources, you might see W ∗ ∗I (to emphasize the fact that the image is
2D). This operation is known as convolution, and W is often called the kernel of
the convolution. You should look closely at the expression; the “direction” of the
dummy variable u (resp. v) has been reversed compared with what you might
expect (unless you have a signal processing background).

What you might expect – sometimes called correlation or filtering – would
compute

Nij =
∑
uv

Ii+u,j+vWuv

equivalently
N = filter(I,W).

This difference isn’t particularly significant, but if you forget that it is there, you
compute the wrong answer.

Ignore the range of the sum, and assume that the sum is over a large enough
range of u and v that all nonzero values are taken into account. Furthermore,
assume that any values that haven’t been explicitly specified are zero; this means
that we can model the kernel as a small block of nonzero values in a sea of zeros. An
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FIGURE 4.1: The mid-gray box represents an M ×N image, and the darker gray box
a 2u + 1 × 2v + 1 kernel. The valid region is lighter gray. It can be constructed
by placing the kernel at the top left and bottom right corners of the image, then
constructing the box that joins their centers (left). A version of this construction
reveals how the image should be padded to produce an M × N result. Place the
center of the kernel at the bottom left and top right of the image, and construct the
box that joins their outer corners (right).

important property of convolution is that the result depends on the local pattern
around a pixel, but not where the pixel is. Define the operation shift(I,m, n)
which shifts an image so that the i, j’th pixel is moved to the i−m, j−n’th pixel,
so

shift(I,m, n)ij = Ii−m,j−n.

Ignore the question of the range, as shift just relabels pixel locations. Check that:

• Convolution is linear in the image, so

W ∗ (kI) = k(W ∗ I)
W ∗ (I + J ) = W ∗ I +W ∗ J .

• Convolution is linear in the mask, so

(kW) ∗ I) = k(W ∗ I)
(W + V) ∗ I) = W ∗ I + V ∗ I

• Convolution is associative, so

W ∗ (V ∗ I) = (W ∗ V) ∗ I.

• Convolution is shift-invariant, so

W ∗ (shift(I,m, n)) = shift(W ∗ I,m, n).
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FIGURE 4.2: To compute the value of N =W ∗I. at some location, you shift a copy
ofM (the flipped version of W) to lie over that location in I; you multiply together
the non-zero elements ofM and I that lie on top of one another; and you sum the
results. To compute the value of N = filter(I,W) at some location, just omit
flipping W.

4.1.2 Inconvenient Details

Now consider convolving an M ×N image with a 2u+ 1× 2v + 1 kernel. Strips of
the result of width v on the left and the right side and strips of height u at top and
bottom contain values that are affected by pixels outside the image (Figure 4.1).
Convolution could report only the values not affected by pixels outside the image
– sometimes called the valid region of the convolution. This would turn an M ×N
image into an M − 2u×N − 2v image.

Attaching strips of width u on the left and right and height v on top and
bottom would produce an image of sizeM+2u×N+2v – this is padding. Assuming
the pixel values in these strips can be obtained somehow, convolving this padded
image with the kernel would produce a M × N valid region. Padding like this
is convenient, because there is no need to keep track of how much images have
shrunk, but padding can have consequences (Section 41.2). Typically, API’s make
a variety of kinds of padding easy. One is zero padding (outside strips are zero);
another is reflection padding (outside strips obtained by reflecting around the outer
boundaries of the image).

The outer boundaries of an image mean that, in practice, convolution is not
shift-invariant. This is because, in practice, shifting an image is not just a matter
of relabelling pixels. If one (say) pans a camera, some pixels “fall off” one edge of
the image and are lost, and other new pixels with new values appear at the other
edge. Convolution cannot be invariant to this operation, because the value of the
convolution cannot be computed for unknown pixels.
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4.1.3 Convolution as Pattern Detection

You should think of the value of Nij as a dot-product. To see this, flip W in both
directions to formM and notice that

N = I ∗W
= filter(I,M)

This means that you can think about convolution like this. To compute the value of
N at some location, you placeM (the flipped version ofW) at some location in the
image; you multiply together the elements of I andM that lie on top of one another,
ignoring everything in I outsideM; then you sum the results (Figure 4.2). Reindex
the two windows to be vectors, and this is a dot product. This view explains why
a convolution is interesting: it is a very simple pattern detector.

Recall that the dot-product of two unit vectors u and v is largest when they
are the same, and smallest when u = −v. Using the dot-product analogy, for Nij

to have a large and positive value, the piece of image that lies underM must “look
like” M. Similarly, to have a large and negative value, the piece of image must
“look like”M, but with contrast reversed.

4.1.4 ReLU’s

Write W for a kernel representing some pattern you wish to find. Assume that W
has zero mean, so that the filter gives zero response to a constant image. Notice
that N =W∗I is strongly positive at locations where I looks likeW, and strongly
negative when I looks like a contrast reversed (so dark goes to light and light goes
to dark) version ofW. Usually, you would want to distinguish between (say) a light
dot on a dark background and a dark dot on a light background. Write

relu(x) =

{
x for x > 0
0 otherwise

(often called a Rectified Linear Unit or more usually ReLU). Then reluW ∗ I is a
measure of how well W matches I at each pixel, and relu−W ∗ I is a measure of
how well W matches a contrast reversed I at each pixel. The ReLU will appear
again.

Figure 4.3 give some examples. The filters are shown on the far left, each in
the top left hand corner of a field of zeros the same size as the image; this gives some
sense of spatial scale. The lightest value is the largest value of the filter, the darkest
is the smallest. The left two frames show the positive and negative components of
the response to the filter. The positive responses occur where (rather roughly) the
image “looks like” the filter. Similarly, negative responses occur where the image
“looks like” a contrast reversed version of the filter. In that figure, Notice how the
filters really are pattern detectors (the big dark blob gets responses from big dark
blobs, and the small bright blob gets responses from small bright blobs), but they
are not very good pattern detectors. Something that causes a bar filter to response
will often also get a response from a blob filter. Further, the region of small bright
leaves on the bottom of the image produces strong positive responses. The filter
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FIGURE 4.3: Various zero-mean filters applied to a monochrome image of a pineapple
plant (shown in the top row, for reference), to show filters are simple pattern
detectors. Details in the text. Image credit: Figure shows my photograph of a
pineapple in the Singapore botanical garden.

is linear, so bright patterns that don’t look like the filter tend to give responses as
strong as dark patterns that do. It can be useful to suppress small responses, and it
is easy to do so by subtracting a small constant from the response before applying
the ReLU (exercises ).
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FIGURE 4.4: On the left, two kernels (now 3D, as in the text) applied to a set of
feature maps produce one new feature map per kernel, using the procedure of the
text (the bias term isn’t shown). Abstract this as a process that takes an x× y × d
block to an X × Y ×D block (as on the right).

4.1.5 Normalized Convolution

The dot-product analogy reveals some reasons that convolution is not a particularly
good pattern detector. Assume that the mean of the kernel is not zero. In this
case, adding a constant offset to the image will change the value of the convolution,
so you cannot rely on the value. This can be dealt with by subtracting the mean
from the kernel.

If the mean of the kernel is zero, scaling the image will scale the value of
the convolution. One strategy to build a somewhat better pattern detector is to
normalize the result of the convolution to obtain a value that is unaffected by scaling
the image. For W a zero mean kernel, G a gaussian kernel, and ϵ a small positive
number compute

W ∗ I
G ∗ I + ϵ

.

Here the division is element by element, ϵ is used to avoid dividing by zero, and
G ∗ I is an estimate of how bright the image is. This strategy, known as normal-
ized convolution produces an improvement in the detector. Figure 4.3 compares
normalized convolution to convolution. The right two frames show the positive
and negative components of the normalized convolution (divide the filter responses
by an estimate of image intensity). The normalized convolution is more selective.
Responses are shown on a scale where zero is dark and a strong response is light.
It is now more usual to manage these difficulties by learning kernels that behave
well (Section 41.2).
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4.1.6 Multi-Channel Convolution

The description of convolution anticipates monochrome images, and Figure 4.3
shows filters applied to a monochrome image. Color images are naturally 3D ob-
jects with two spatial dimensions (up-down, left-right) and a third dimension that
chooses a slice or channel (R, G or B for a color image). Color images are sometimes
called multi-channel images. Multi-channel images offer a natural for representa-
tions of image patterns, too — two dimensions that tell you where the pattern is
and one that tells you what it is. For example, the results in Figure 4.3 can be
interpreted as a block consisting of eight channels (four patterns, original contrast
and contrast reversed). Each slice is the response of a pattern detector for a fixed
pattern, where there is one response for each spatial location in the block, and so
are often called feature maps (it is entirely fair, but not usual, to think of an RGB
image as a rather uninteresting feature map).

For a color image I, write Ik,ij for the k’th color channel at the i, j’th location,
and K for a color kernel – one that has three channels. Then interpret N = I ∗ K
as

Nij =
∑
kuv

Ik,i−u,j−vKkuv

which is an image with a single channel. This N is a single channel image that
encodes the response to a single pattern detector. Much more interesting is an
encoding of responses to multiple pattern detectors, and for that you must use
multiple kernels (often known as a filter bank). Write K(l) for the l’th kernel, and
obtain a feature map

Nl,ij =
∑
kuv

Ik,i−u,j−vK(l)
kuv.

This notation is quite clunky, because it isn’t a three dimensional convolution (look
at the directions of the indices). This never matters for our purposes. Another
clunky feature of the notation is that applying the same kernel to each layer of a
color image requires a fairly odd set of kernels (exercises ). It has two enormous
virtues. First, convolution can be used to detect colored patterns (Figure ??).
Second, convolution becomes an operation that turns a three dimensional object
– a stack of channels, a multi-channel image or a feature map, according to taste
– into another such object, so you can apply a convolution to the results of a
convolution.

4.2 APPLICATIONS

4.2.1 Image Gradients with Finite Differences

For an image I, the gradient is

∇I = (
∂I
∂x
,
∂I
∂y

)T ,

which we could estimate by observing that

∂I
∂x

= lim
δx→0

I(x+ δx, y)− I(x, y)
δx

≈ Ii+1,j − Ii,j .
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FIGURE 4.5: Finite differences yield reasonable derivative estimates, but are strongly
affected by noise. Top left shows the original image, from which a detail window
is extracted and turned monochrome. Rows show image, horizontal derivative and
vertical derivative, where derivatives are estimated by finite differences. First row
is noise free image; others have additive Gaussian noise added, with standard de-
viation shown. Notice how this noise affects derivatives. The derivatives are scaled
so that positive values are bright, negative values are dark, and 0 is mid-range.
However the scale is chosen per row, which means the figure understates the effect
of noise. In the noisy rows, the largest magnitude derivatives are much larger than
in the clean row, which is why you can hardly see significant derivatives in the bot-
tom row. Image credit: Figure shows Robert Forsyth’s photograph of historical dock
pilings in Lake Michigan.
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FIGURE 4.6: Smoothing an image with a gaussian kernel is an effective way to
suppress additive Gaussian noise. Left column the original image, followed by
versions smoothed with a gaussian kernel with σ = 1, σ = 2, σ = 3 and σ = 4.
Top row shows results on a noise free image; middle row shows results on an
image with additive stationary gaussian noise with standard deviation 0.01, where
the value of a pixel ranges from 0 to 1; bottom row shows results on an image
with additive stationary gaussian noise with standard deviation 0.1. Notice how
(a) smoothing blurs the original image; (b) more smoothing leads to more blur; (c)
smoothing suppresses noise (so a smoothed version of a noisy image is close to the
smoothed version of the original); and (d) more smoothing suppresses more noise.
Image credit: Figure shows Robert Forsyth’s photograph of a goby on its nest in
Lake Michigan.

This means a convolution with

−1 1

will estimate ∂I/∂x (nothing in the definition requires convolution with a square
kernel). Notice that this kernel “looks like” a dark pixel next to a light pixel,
and will respond most strongly to that pattern. By the same argument, ∂I/∂y ≈
Ii,j+1 − Ii,j . These kinds of derivative estimates are known as finite differences.
most unsatisfactory estimate of the derivative. This is because finite differences
respond strongly (i.e., have an output with large magnitude) at fast changes, and
fast changes are characteristic of noise. Roughly, this is because image pixels tend to
look like one another. For example, if we had bought a discount camera with some
pixels that were stuck at either black or white, the output of the finite difference
process would be large at those pixels because they are, in general, substantially
different from their neighbors. All this suggests that some form of noise suppression
is appropriate before differentiation.
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4.2.2 Image Noise Models

The simplest model of image noise is the additive stationary Gaussian noise (or
Gaussian noise) model, where each pixel has added to it a value chosen indepen-
dently from the same normal (Gaussian – same Gauss, different sense) probability
distribution. This distribution almost always has zero mean. The standard devi-
ation is a parameter of the model. Figure 4.6 shows some examples of additive
stationary Gaussian noise.

Images can be quite effectively denoised because “pixels look like their neigh-
bors”. This important and very reliable slogan is in scare quotes because, while
it is an extremely important practical guide, making it precise is neither easy nor
particularly useful. Generally, pictures show objects which are span a large number
of pixels, and where the shading changes relatively slowly over the surface of the
object. This means that the value at a pixel is likely to be close to the value at
its neighbor. Although this isn’t true of every pixel – otherwise there wouldn’t
be edges in images – it is true of most pixels. If you have a pixel whose value is
unknown, looking at its neighbors will almost always yield a good estimate. A pixel
that does not look like its neighbors is suspect.

4.2.3 Gaussian Smoothing to Suppress Noise

The downsampling strategy of Section 2.3.3 involves first forming a weighted aver-
age of a window centered on each pixel then downsampling the image. Here, for a
2k − 1× 2k − 1 window, the weights are:

wi,j =
exp−

(
(i−k)2+(j−k)2

2σ2

)
C

where C is chosen so the weights sum to one. Check that forming the weighted
averages is equivalent to convolving an image with a kernel with the given weights.
This procedure is called gaussian smoothing or very often just smoothing. It turns
out that this procedure is very good at suppressing many kinds of image noise.
Figure 4.6 shows examples of suppressing additive Gaussian noise, and the exer-
cises explore some details. Gaussian smoothing can suppress the effects of other
noise processes, too (Figure 4.7).

The choice of σ (or scale) for the Gaussian follows from the following consid-
erations:

• If the standard deviation of the Gaussian is very small—say, smaller than one
pixel—the smoothing will have little effect because the weights for all pixels
off the center will be very small.

• For a larger standard deviation, the neighboring pixels will have larger weights
in the weighted average, which in turn means that the average will be strongly
biased toward a consensus of the neighbors. This will be a good estimate of a
pixel’s value, and the noise will largely disappear at the cost of some blurring.

• Finally, a kernel that has a large standard deviation will cause much of the
image detail to disappear, along with the noise.
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FIGURE 4.7: Images at various noise levels smoothed with various gaussian kernels.
The noise here involves picking pixel locations uniformly at random in the image,
then flipping them either full light or full dark. The number on the far right shows
the probability of a pixel being flipped (so at 0.001, a 30 × 30 window should have
about one flipped pixel in it; at 0.01, a 10×10 window should have about one flipped
pixel in it; and at 0.1, a 3× 3 window should have one flipped pixel in it. Left the
original image, followed by versions smoothed with σ = 1, σ = 2, σ = 3 and σ = 4.
Notice how (a) smoothing blurs the original image; (b) more smoothing leads to
more blur; (c) smoothing suppresses noise (so a smoothed version of a noisy image
is close to the smoothed version of the original); and (d) more smoothing suppresses
more noise. The noise-free image is top left in Figure 4.6. Image credit: Figure
shows Robert Forsyth’s photograph of a goby on its nest in Lake Michigan.

4.2.4 The Median Filter

Most image noise tends to result in pixels not looking like their neighbors. However,
gaussian smoothing is not always effective at estimating the true value of noisy
pixels. For example, look closely at Figure 4.7. The noise process – a Poisson noise
process, sometimes called salt and pepper noise – picks pixel locations uniformly
at random in the image, then flips the result either full light or full dark. This
means that a noisy pixel contains no information, and might be very different from
its neighbors. If you compute a weighted average in a region that contains a noisy
pixel, that weighted average might be severely disrupted by the noise, even if the
center is a clean pixel. For example, think of a dark neighborhood on the goby where
noise has turned one pixel bright – the bright pixel will dominate the average unless
it contains a very large number of pixels with quite large weights. And in that case,
the image will be blurry.

This suggests the entirely natural alternative of computing a median in a
neighborhood as an estimate of the value at a pixel. As Figure ?? shows, this can
be very effective at suppressing noise. Notice an attractive feature of the median
filter – it tends not to blur edges, even when it strongly smoothes the interior of
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FIGURE 4.8: Images at various noise levels smoothed with a median filter. The
noise here involves picking pixel locations uniformly at random in the image, then
flipping them either full light or full dark. The number on the far right shows the
probability of a pixel being flipped (so at 0.001, a 30× 30 window should have about
one flipped pixel in it; at 0.01, a 10 × 10 window should have about one flipped
pixel in it; and at 0.1, a 3 × 3 window should have one flipped pixel in it. Left
the original image, followed by versions where the median is taken in windows of
different sizes. Notice how (a) the median filter preserves edges rather well, even
over big windows; (b) bigger windows lead to more noise suppression; and (c) texture
details are suppressed by the median, with bigger windows suppressing more. Image
credit: Figure shows Robert Forsyth’s photograph of a goby on its nest in Lake
Michigan.

image regions. Median filters are somewhat more expensive computationally than
smoothing, but deal fairly well with additive gaussian noise as well as salt and
pepper noise (Figure 4.9)

4.2.5 Representing Images with Filter Banks

In the image in Figure 4.3, the leaves of the pineapple plant look like disorganized
thick stripes. The leaves of the plant at its base are quite different, and look more
like repeated small spots. These are examples of textures – somewhat unstructured
patterns that are quite characteristic. Textures are widespread and quite distinctive
– a field of pebbles looks quite different from a stand of corn; a cluster of pine needles
looks very different from an expanse of bark; and so on.

Figure 4.3 also suggests a way to represent textures, and so images. Think
of a texture as a collection of small patterns, arranged in some distinctive way.
An image region showing a field of pebbles would have many spots, some small,
some large and most medium, but very few thin bars. In contrast, an image region
showing a cluster of pine needles would have many thin bars, pointing in about the
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FIGURE 4.9: Images at various noise levels smoothed with a median filter. The noise
here is additive Gaussian noise. Left the original image, followed by versions where
the median is taken in windows of different sizes. Top row shows results on a noise
free image; middle row shows results on an image with additive stationary gaus-
sian noise with standard deviation 0.01 (where the value of a pixel ranges from 0 to
1); bottom row shows results on an image with additive stationary gaussian noise
with standard deviation 0.1. Notice how (a) the median filter preserves edges rather
well, even over big windows; (b) bigger windows lead to more noise suppression; and
(c) texture details are suppressed by the median, with bigger windows suppressing
more. Image credit: Figure shows Robert Forsyth’s photograph of a goby on its nest
in Lake Michigan.

direction, but very few small or large spots. Then to build an image representation:
(a) construct a vocabulary of patterns; (b) find out which patterns are present at
which pixel; and then (c) building a summary of which patterns are present in a
region.

Because the patterns are likely so variable, an elaborate or detailed pattern
detector is likely to be unhelpful – something that precisely detects a pine needle
would need to be tuned to exactly the right angle, which would be a nuisance – so
it is natural to use filters as pattern detectors. However, it is helpful to distinguish
between, say, light thin bars on dark backgrounds (possible pine needles) and dark
thin bars on light backgrounds (possible gaps between needles).

For the moment, assume the vocabulary of patterns is given, represented as a
filter bank. Then the next two steps are straightforward. To find the patterns in an
image, construct the response of all the filters at all points and apply a ReLU. Stack
these responses into a multi-channel image. To compute a summary, construct a
local weighted average of each channel of the multi-channel image at each pixel.
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FIGURE 4.10: Image credit: Figure shows my photograph of a pineapple in the Sin-
gapore botanical garden.


