21

CHAPTER 2

Upsampling, Smoothing and
Downsampling

IMAGES AS SAMPLED FUNCTIONS

Your first encounter with an image as something to compute with (rather than look
at) is likely as an array for an intensity image, or set of three arrays for a color
image. Knowing how the image ended up in this form is important if you want to
interpret it. A quite detailed model of the geometry and physics underlying images
appears in Part IX. A simple model will have to do for the moment.

The image you see as three arrays starts as a spectral energy field — energy
E as a function of position X in 3D, direction w and wavelength A, so E(x,w, \).
This energy field is created by light leaving light sources, reflecting from surfaces,
and eventually arriving at the entrance to the camera (Figure 2.1). This is usually
but not always a lens. Various processes in lens and camera map some of the light
that arrives to some sensor at the back of a camera. The sensor is made up of a
grid of receptors, each of which transduces the energy that arrives into a number
(or some numbers). Each receptor on the sensor corresponds to a single pizel (or
spatial location) in the array that is read from the camera.

The lens arranges that light arriving at x on the sensor all arrived from one
point on a surface in 3D (X in Figure 2.1). The vast majority of sensors in current
use are linear, so doubling the amount of light arriving at the camera will double
the output. The pixel at ¢, j on the grid is a sample of a function of position
(Figure 2.2).

Sensor Light source 9

gt) /

Lens

FIGURE 2.1: A high-level model of imaging. Light leaves light sources and reflects
from surfaces. Eventually, some light arrives at a camera and enters a lens system.
Some of that light arrives at a photosensor inside the camera.

18

Section 2.2 Upsampling and Image Interpolation 19

Spectral energy density Pixel values

FIGURE 2.2: Because each pixel in the sensor averages over a small range of direc-
tions and positions, the process mapping the input spectral energy distribution to
pizel values can be thought of as sampling. On the left, is a representation of the
energy distribution as a continuous function of position. The value reported at each
pizel is the value of this function at the location of the pizel (right).

2.1.1 Color Images

Humans see color by comparing the response of different kinds of photoreceptor
at nearby locations (Chapter ??). The main difference between these kinds of
photoreceptor is in the sensitivity of the sensor with wavelength. Roughly, one
type of sensor responds more strongly to longer wavelengths, another to medium
wavelengths, and a third to shorter wavelengths (there are other kinds of sensor,
and other differences).

Cameras parallel this process. The sensors used for the R (or red) layer of
an RGB image respond more strongly to longer wavelengths; for the G (or green)
layer, to medium wavelengths; and the B (or blue) to shorter wavelengths. Cameras
must be engineered to produce the response of three different types of sensor at the
same place. The usual strategy is to use one imaging sensor, and arrange that
different pixels respond differently to wavelength. Typically, there are three types
of pixel (R, G, and B), interleaved in a mosaic (Figure 2.3). This means that
at many locations the camera does not measure R (or G, or B) response, and it
obtains a value by interpolation. Generally, mosaic patterns have more G pixels
than R or B pixels. This is because G pixels are sensitive to a wider range of visible
wavelengths than R and B pixels, and so the interpolation yields better results.
Regular mosaic patterns can create effects in images, and there are demosaicing
algorithms to remove these effects. An alternative is to use three imaging sensors
and arranging for each sensor to receive the same light (lenses, mirrors, that sort of
thing). Such multiced cameras tend to be larger, heavier and more expensive than
single sensor cameras.

2.2 UPSAMPLING AND IMAGE INTERPOLATION

To upsample an image you increase the number of pixels in a grid. Some cases are
easy. To go from, say a 100 x 100 image to a 200 x 200 image, you could simply

20 Chapter 2 Upsampling, Smoothing and Downsampling

Multiple sensors

"Split"
ight

— Opturag81111
—— agfapan-apx-400CD
= agfa-scala-200xPulll

Camera response, normalized

0.0 02 04 06 08 10

PAt, normalized

Bayer pattern

FIGURE 2.3: There are two main ways to obtain color images. One can (as in top
left) build a multiced camera with three imaging sensors. Each has a different re-
sponse to wavelengths. The cheaper and lighter alternative is to use one imaging
sensor (bottom left) but have a mosaic of pizels with different responses. This
can be achieved by placing a small filter on each sensor location. Right shows
one traditional such pattern of filters, a Bayer pattern. Camera response func-
tions for three different cameras, plotted from the comprehensive dataset available
at https: // cave. cs. columbia. edu/repository/DoRF. The horizontal axis is
the “input” — the PAt observed by the camera, scaled to 0 — 1. The vertical axis is
the “output” — the response of the camera, again scaled to 0 — 1. Notice that loca-
tions that would be quite dark for a linear sensor will be lighter; but as the linear
sensor gets very bright, the output recorded by the camera grows slowly. This means
that the range of outputs is smaller than the range of inputs, which is helpful for
practical cameras. This response function is typically located deep in the camera’s
electronics. Typical consumer cameras apply a variety of transforms before report-
ing an image, though one can often persuade cameras to produce an untransformed,
linear response image (a RAW file).

replace each pixel with a 2 x 2 block of pixels, each having the same value as the
original. This isn’t a particularly good strategy, and the resulting images tend to
look “blocky” (try it!). But upsampling by a factor that isn’t an integer is more
tricky.

Consider going from 100 x 100 to 127 x 127. One way to do this is to duplicate
27 rows, then duplicate 27 columns in the result; to do so requires determining which
columns to duplicate. You might consider scanning the source (smaller - S) image
and, for each pixel, determining where it goes in the target (larger - 7) image. But
there are more pixels in the target than in the source, so this approach must lead
to holes in the predicted image.

The correct alternative is to scan the target image and, for each pixel, de-
termine what value it should receive. This is known as inverse warping. In the
example, the ¢, j’th location of T must get the value of the ¢/1.27, j/1.27’th loca-
tion of §. In fact, most values requred are at locations that are not integer values.
To produce these values, construct a continuous function out of the image, then

Section 2.2 Upsampling and Image Interpolation 21

FIGURE 2.4: On the left, a function interpolating a 2 X 2 image using nearest neigh-
bors. The dashed lines pass through grid points, and the dotted lines are halfway
between grid points. The function is zero away from the four boxes shown. Image
values are shown as filled circles. On the right, a bilinear interpolate of the same
data.

4x4 8x8 Nearest neighbor

Bilinear

Bicubic

FIGURE 2.5: The choice of interpolate when upsampling can make a real difference.
Top left shows a detail from a picture. I have upsampled the image, then cropped
the upsamples (showing the top left corner) and zoomed them so you can see the
details. Center column shows a cropped 4x4 upsample using three different in-
terpolation methods and right column shows 8z8 upsamples by various methods.
Notice the significant blockiness in nearest neighbor interpolates (top row). Bi-
linear interpolates (second row) are much better, and bicubic interpolates (third
row) are different to bilinear interpolates, but not a major improvement. Image
credit: Figure shows my photograph of a facade in Stellenbosch.

22 Chapter 2 Upsampling, Smoothing and Downsampling

evaluate that function at the (likely non-integer) points. This procedure is known
as interpolation and the function — the interpolate — (a) must have the same value
as the original image at the original integer grid points (b) can be evaluated at any
point rather than just the integer grid points. Write Z(z,y) for an interpolate of
an image 7.

The simplest interpolate is nearest neighbors — take the value at the integer
point closest to location whose value you want. Break ties by rounding up, so you
would use the value at 2, 2 if you wanted the value at 1.5,1.5. As Figure 2.4 shows,
this strategy has problems — the upsampled image looks blocky.

Writing nearest neighbors in a different way can be informative. For nearest
neighbors, define

b (11, 0) = 1 for —1/2<wu<1/2and —-1/2<u<1/2
nn{th V) =19 ¢ otherwise

which has the convenient property that b,,,(0,0) = 1, but b,,, = 0 for every other
set of integer coordinates. The fitted function is

I(z,y) = Y Lijban(x — i,y —).
i,J

and it is a simple exercise to show that it has the properties required for an inter-
polate. This fitted function looks like a collection of boxes, and is not continuous
(Figure 2.4).

Most widely used is bilinear interpolation. For this, construct a function

(I—-u)(1—v) for0<u<landO0<ov<1
u(l —v) for —-1<u<0and0<v<1
by (u,v) = ¢ ww for - 1<u<0and -1<v<0
(I —wv forO<u<land -1<v<0
0 otherwise

which is continuous, and again has the convenient property that by;(0,0) = 1, but
bpn = 0 for every other grid point (and looks a bit like a hat). The interpolate is

I(l’,y) = ZIZjbbl(x - Zvy - J)
i!j

and it is a simple exercise to show that it has the properties required for an inter-
polate. Notice that this interpolate is continuous (Figure 2.4) and has a variety of
interesting properties (exercises).

The basis function construction above is a good way to think about interpo-
lation (and can be used to build more complicated interpolates, exercises), but
it is not the best way to think about bilinear interpolation. To find a value for
Z(i+ di,5+ dj), where i and j are integers; 0 < §i < 1; and 0 < §j < 1, use

Zij(1 —03)(1 — 65)+

Ziy1,4(00)(1 = 65)+

Z; j+1(1 —64)(d5)+
Ziv1,j+1(07)(05)

I(i+ 83,5 +85) =

Section 2.2 Upsampling and Image Interpolation 23

downsampled by 4

FIGURE 2.6: Downsampling by just taking every k’th pizel in each direction reliably
leads to problems. The top row shows some effects on a stylized image, and the
bottom row shows results on a real photograph. The left image is the original;
center is a downsampled image obtained by taking every 4’th pixel, then printing
the image with larger pizels; right the original downsampled by taking every 8’th
pizel. Notice how detail is lost in the resampling process. For the stylized image,
some small boxes disappear (look on the edges of the image); others turn into large
bozxes (lower right quarter of the downsampled by 8 image). For the real image,
notice the behavior of the details in the window above the door, and on either side
of the door. Image credit: Figure shows my photograph of a facade in Stellenbosch.

It is an exercise to check that this formula yields the value that the basis function
approach would yield. By a little manipulation, you can show that this procedure
boils down to: predict a value for Z(i + d4, j) using a linear interpolate; predict a
value for Z(i 4 d, j + 1) using a linear interpolate; now linearly interpolate between
these two to get a value for Z(i + 4,5 + dj). Modern hardware is particularly
efficient at bilinear interpolation, and any reasonable software environment will be
able to do this for you.

The choice of interpolate can make a real difference to the quality of the result
(Figure 2.5). More complicated interpolation procedures are possible. In bicubic
interpolation, the interpolate is cubic in éz and dy and depends on other neigh-
boring pixels (exercises). Again, any reasonable software environment will be
able to do this for you. While this procedure is more complicated and slower, in
some applications the small improvements are justified. One occasionally impor-
tant difference between bicubic interpolation is that for a bilinear interpolate, the
local maxima are always at grid points, but for a bicubic interpolate, they may not
be (exercises). Constructing more complicated interpolates is straightforward
(any function b such that b(0,0) = 1 and b is zero at every other grid point will do it;
exercises) but seldom worthwhile. Another application for interpolation is de-
mosaicing: one could interpolate, and then sample the interpolating function. The
interpolation procedures above need some minor adjustments because the unknown
values are at grid points (details in exercises).

24 Chapter 2 Upsampling, Smoothing and Downsampling

FIGURE 2.7: A wvisualization of how sampling problems arise. The underlying image
s a checkerboard, which is sampled at each of the circles. The checkerboards on the
left and center left illustrates a sampling procedure that appears to be successful.
Whether it is or not depends on some details that we will deal with later — but the
count of checks will be correct in each case. The sampling procedures shown on
the center right and right are unequivocally unsuccessful. The samples suggest
that there are fewer checks than there are in the original patterns. This illustrates
two tmportant phenomena: first, a successful sampling scheme must sample data
often enough; and second, unsuccessful sampling schemes cause high-frequency in-
formation to appear as lower-frequency information. For example, on the right,
the sampling procedure represents a checkerboard as a single dark region.

2.3 DOWNSAMPLING AND SMOOTHING
2.3.1 Aliasing: Errors Caused by Downsampling

Sampling a function can produce something that represents the function very poorly
indeed. This is most apparent when you downsample an image — reduce its size in
each dimension. To see this, take an image whose dimensions are divisible by two
(or four, or eight, and so on) then halve (or quarter, and so on) the size. To do this,
you can simply take every second (fourth, eighth, and so on) pixel in each direction.
Figure 2.6 shows effects that occur when you downsample by an integer number
of pixels. Fine details can disappear or worse turn into coarse details. Figure 2.7
sketches a partial explanation — if there are too few samples, patterns in the image
can fall between the samples.

Downsampling by an amount that isn’t an integer is straightforward. Just like
upsampling, the correct procedure is to scan the target image and, for each pixel,
determine what value it should receive using interpolation. The errors produced
by downsampling are not the result of interpolation, though a better choice of
interpolate can help. The general term for the kind of errors seen here is aliasing.
In Chapter 41.2, we will be much more precise about these issues.

As Figure 2.7 illustrates, the key question is how many samples you draw
compared to how much detail there is in the function you are sampling. The
figure suggests a rough explanation for what is going wrong when one subsamples
an image. Samples might be poorly aligned with the underlying data, and so
misrepresent it.

Section 2.3 Downsampling and Smoothing 25

Function and samples Reconstructions
A
No averaging
I N B - -
> T >
A
Averaging | i | oA
> R — >

FIGURE 2.8: Awveraging can improve the representation produced by sampling. The
top row shows an example of a simple function (a set of checks in one dimension,
green), sampled at four points (the vertical dotted lines show the locations of the
samples). On the top right, two reconstructions of the function using interpo-
lation. The red shows a nearest neighbors reconstruction, and the gray a linear
reconstruction. Note how the center check has been made wider because there are
two samples on it. The bottom row shows the effect of averaging. The average is
taken over the gray regions on the horizontal axis. Bottom left shows the recon-
structions. While the center check is still too wide, averaging has reduced its height.
The representation is somewhat improved.

2.3.2 Smoothing

The downsampler needs to compute a value for the target image at 4, j. This
location corresponds to the location u, v in the source image (so, for example, in
downsampling by two, v = 2¢ and v = 2j). Call the point u, v the query point.
Using the (possibly interpolated) value of the source image at this location may
not be a particularly good idea, because there might be an important detail close
to, but not at, the query point. An alternative is to use an average of the source
image function about the query point.

In the easiest case, downsample an image by a factor of two. At every second
pixel location in each direction, compute (say) an average of the (2k+1) x (2k+1)
window of pixels centered at that location and report that average rather than the
pixel value. A simple argument suggests that this should help: now the value of the
pixel in the subsampled image is affected by its neighbors in the original image, so
details that were missed by just taking every second pixel have a chance to appear
in the result. Figure 2.8 is a picture of this argument applied to a function in one
dimension (a case that is easier to draw).

2.3.3 Gaussian Smoothing

As Figures 2.8 and 2.10 show, just averaging nearby values helps, because small
structures that might otherwise have been missed will contribute to the downsam-

26 Chapter 2 Upsampling, Smoothing and Downsampling

R Unweighted A Weighted

Y
Y

Window " Window

FIGURE 2.9: Sampling with a weighted average makes significant changes in the
representation. On the left, sampling using an average that is not weighted. The
sample points are the centers of the gray circles, and the green shows the function.
Bottom left, the gray shows a linear interpolate of the sample values. Note the
relatively slow gradient from dark to light. This occurs because values far from the
center of a sample are weighted the same as those close to the center. The small
inset shows the weighting function, which is uniform in this case. On the right, the
sample values are now weighted averages, using the weighting function shown in
the inset, which emphasizes points closer to the sample point. Weights are chosen
to: (a) be positive; (b) be large at the center and small at the boundary; and (c)
to sum to one. Notice that now the representation has improved somewhat, as the
gradient is sharper and is about in the right place.

pled image. But if the window is, say, a 5x5 window, small structures that are two
grid points away from the query point will have the same effect as small structures
that are one grid point away. This can be fixed by weighting the average, so that
points near the sample point have a higher weight than points far from the sample
point (Figure 2.8). The weighted average is formed as above, but the 4, j’th pixel
in NV is now the weighted average of a (2k + 1) x (2k + 1) window of pixels in S,
centered on i, j.

A traditional weighting scheme is given by a one parameter family of functions,
derived from the normal distribution and widely called gaussians. The parameter
o is sometimes called the scale and more usually called the sigma of the weights.
In a 2k — 1 x 2k — 1 window, the weights will be:

e— ((i*k)?ggj*k)r")

C

where C' is chosen so the weights sum to one. Figure 2.10 shows a 5 x 5 window
of these weights, and the considerable improvement in subsampling that can result
from using a set of weights. For downsampling by a factor between one and two,
o =1 or ¢ = 1.5 are fair choices.

Now imagine the downsampling requires a value that isn’t on the source grid.
This value could be interpolated, but it isn’t clear what to do about the smoothing.
A straightforward trick applies. Take the source image S, and form a new image N/
from that source. The i, j'th pixel in A is now the average of a (2k +1) x (2k +1)
window of pixels in S, centered on ¢, j. There are some problems when i or j are

Wij =

Section 2.3 Downsampling and Smoothing 27

Image Averaged, Weighted average,
subsampled x2 subsampled x2

H Weights

FIGURE 2.10: The effects shown in Figure 2.9 are quite visible in images. On the
left, an image of stripes ranging from fine to coarse. Center, a version of the image
that has been subsampled by 2, and the value of each sample is an average within a
dxd window centered on the relevant pixel. Notice how the unweighted average has
caused multiple lines to merge into a gray bar, and the relatively “slow” gradient
of the lines, which is most obvious on the horizontal lines. Right, the average in
the sample is weighted with the set of weights show on the bottom right (these
weights have been rescaled so the largest weight is light). Notice how some — though
not all — of the vertical lines on the left have been resolved, and the faster gradient
at the top and bottom of the horizontal lines.

too big or too small and so the window leaves the source image. Deal with these by
padding the source image with k rows of zeros at the top and bottom and k columns
of zeros on either side. Now downsample the smoothed image A/, interpolating as
required.

2.3.4 The Gaussian Pyramid

Now consider downsampling by a factor of four. You could (but shouldn’t) smooth
with a gaussian with large o, then downsample. This is not a good idea, because
the support of the gaussian is infinite, meaning that working with a 2k —1 x 2k — 1
window involves some truncation. As o gets bigger, k will need to get bigger to
keep this truncation reasonable, so the smoothing process will be expensive. The
more efficient alternative is to smooth, downsample by two, then smooth the result
and downsample that by two.

A useful construction follows. In some applications (Section 13.1.2 and Chap-
ter 41.2), it will be useful to have versions of an image downsampled by different
factors. A gaussian pyramid is a collection of smoothed and downsampled repre-
sentations of an image. Downsampling is usually by a factor of either two or the
square root of two (so two rounds of downsampling halves the edge length of the

28 Chapter 2 Upsampling, Smoothing and Downsampling

=
. &
‘AL_f

FIGURE 2.11: A Gaussian pyramid of images running from 512x512 to 8x8. On the
top row, I have shown each image at the same size (so that some have bigger pizels
than others), and the lower part of the figure shows the images to scale. Notice that
an 8z8 pizel block at the finest scale might contain a few hairs; at a coarser scale,
it might contain an entire stripe; and at the coarsest scale, it contains the animal’s
muzzle.

image). The name comes from a visual analogy. If we were to stack the layers on
top of each other, an inverted pyramid would result. The smallest image is the
most heavily smoothed. The layers are often referred to as coarse scale versions of
the image that forms the top layer.

2.3.5 The Laplacian Pyramid

One thing should trouble you about the gaussian pyramid of 2.3.4. There is redun-
dant information in the representation. Write D, for the operation that smoothes
an image with a gaussian of scale o then downsamples it; U for the operation that
upsamples an image; and Gy for the k’th layer of a gaussian pyramid. This no-
tation suppresses by how much the image is downsampled, and what particular
interpolation you use in upsampling, because these aren’t important here. An N

Section 2.3 Downsampling and Smoothing 29

FIGURE 2.12: A comparison of Gaussian and Laplacian pyramids. Top row shows
a five layer Gaussian pyramid, and bottom row a Laplacian pyramid derived from
it. Each image has been shown at the same size (so the pizels for the 32 x 32 layers
are larger). The image is on a scale 0-1 (dark-light). All but the coarsest layer in
the Laplacian pyramid have been shown on a scale where mid-gray is 0.5, negative
numbers are dark, and positive numbers are light. Image credit: Figure shows my
photograph of a striped mouse.

level gaussian pyramid then can be written as:

G, = T
Gr = Dys(Gi-1)

GN = DO'(GN—l)'

Although some information is lost in downsampling and then upsampling, it isn’t
that much, because U(Gy) looks rather a lot like Gj_;. This suggests using a
representation where only the residual Gy — U(Gjy1) is preserved. An N level
laplacian pyramid can be written as:

L1 = G1-U(Ds(Gr))
L, = Gyr—-U(D,(Gy))

Ly = GN.

This isn’t the most efficient way to build a Laplacian pyramid (exercises).
Figure 2.12 compares Gaussian and Laplacian pyramids. Each layer of a Laplacian
pyramid can be thought of as a representation of image information at a particular

30 Chapter 2 Upsampling, Smoothing and Downsampling

Original Enhance (0.4) Suppress (-0.4)

FIGURE 2.13: Images can be reconstructed from Laplacian pyramids, and weight-
ing components can emphasize or smooth edges. The Laplacian pyramid of Fig-
ure 2.12, reconstructed into an image using the method of Section 2.5.5, with a = 0
(left; original image); o = 0.4 (center; emphasizes edges); and « = —0.4 (right;
smoothes edges).

scale. If a pattern in the image is too small for a layer, then it will have been
smoothed out; if it is too large, there will be little difference between Gj and
U(Dy(Gy)) and it will be suppressed by the subtraction.

2.3.6 Reconstruction from Pyramids

Tt is easy to get an image back from a Gaussian pyramid (take the biggest layer).
It is easy to get a gaussian pyramid from a laplacian pyramid, because Gy =
Dy(Gn_1),50 Gn_1 = Ly_1 + U(Gy), and so on (exercises b). In turn, it is
easy to recover an image from its laplacian pyramid. Essentially, one just adds the
layers. Writing the reconstruction process in an elaborate form exposes some useful
tricks in reconstruction. Write

R, = w(l)L1 + Ro
R, = w(k)Lk + Ri41---
Ry = Ly=0Gy.

If all the weights are 1, then R; = Z (exercises). You can emphasize or de-
emphasize some effects in the image by upweighting or downweighting the relevant
scale by choosing w(k). Using strongly different weights for different scales doesn’t
usually end well. For the example of Figure 2.13, T used weights obtained by: (a)
choosing some largest scale k, (in this case, k, = 3); (b) choosing a weight « then
(c) forming

w(k) = (1 + {a%ﬂjko]) .

Figure 2.13 shows how various choices of « either sharpen or smooth the image.

