CHAPTER 32

Using Camera Models

32.1 CAMERA CALIBRATION FROM A 3D REFERENCE

32.1.1

Camera calibration involves estimating the intrinsic parameters of the camera, and
perhaps lens parameters if needed, from one or more images. There are numer-
ous strategies, all using versions of the following recipe: build a calibration object,
where the positions of some points (calibration points) are known; view that object
from one or more viewpoints; obtain the image locations of the calibration points;
and solve an optimization problem to recover camera intrinsics and perhaps lens
parameters. As one would expect, much depends on the choice of calibration ob-
ject. If all the calibration points sit on an object, the extrinsics will yield the pose
(for position and orientation) of the object with respect to the camera. We use a
two step procedure: formulate the optimization problem, then find a good starting
point.

Formulating the Optimization Problem

The optimization problem is relatively straightforward to formulate. Notation is
the main issue. We have N reference points s; = [s5 i, Sy, S»,;) With known position
in some reference coordinate system in 3D. The measured location in the image for
the i’th such point is t; = [fw,i7fy,i]. There may be measurement errors, so the
fi =t; + &, where §; is an error vector and t; is the unknown true position of the
image point. We will assume the magnitude of error does not depend on direction in
the image plane (it is isotropic), so it is natural to minimize the squared magnitude
of the error

D& (32.1)

The main issue here is writing out expressions for &; in the appropriate coordinates.
Write 7; for the intrinsic matrix whose u,v’th component will be 4,,; 7. for the
extrinsic transformation, whose u, v’th component will be e,,. Recalling that 7; is
upper triangular, and engaging in some manipulation, we obtain

STl = (tai — pai)? + (tyi — pya)? (32.2)
i i
where
1119z, + 1129y, T 1139z,i
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and
Jei = €118z, + €128y + €135z, + €14
Jyi = €218z 1+ €228y + €235, + €24
Gz = €31Sz,i T €328y, 1+ €335, + €34

(which you should check as an exercise). This is a constrained optimization problem,
because 7, is a Euclidean transformation. The constraints here are

1—Zelv—0and1—Ze2v—Oandl—Ze%—
Zelvegv =0 and Zelvegv =0and 11— Zegvegv =0

We might just throw this into a constrained optimizer (review Section 22.6), but
good behavior requires a good start point. This can be obtained by a little ma-
nipulation, which I work through in the next section. Some readers may prefer to
skip this at first (or even higher) reading because it’s somewhat specialized, but it
shows how the practical application of some tricks worth knowing.

Setting up a Start Point

. . . T
Write CJT for the j’th row of the camera matrix, and S; = [, Sy, 2,4, 1]  for
homogeneous coordinates representing the i’th point in 3D. Then, assuming no
errors in measurement, we have

. CTs; . Ccrs;
toi= and t,; = —2—", (32.3)
oreers; vt ers,
which we can rewrite as
cls;t,, —CTS,=0and CiS;i,, — CiS, =0. (32.4)

We now have two homogenous linear equations in the camera matrix elements for
each pair (3D point, image point). There are a total of 12 degrees of freedom in the
camera matrix, meaning we can recover a least squares solution from six point pairs.
The solution will have the form AP where A is an unknown scale and P is a known
matrix. This is a natural consequence of working with homogeneous equations, but
also a natural consequence of working with homogeneous coordinates. You should
check that if P is a projection from projective 3D to the projective plane, AP will
yield the same projection as long as A # 0.

This is enough information to recover the focal point of the camera. Recall
that the focal point is the single point that images to [0, O,O]T. This means that
if we are presented with a 3 X 4 matrix claiming to be a camera matrix, we can
determine what the focal point of that camera is without fuss — just find the null
space of the matrix. Notice that we do not need to know A to estimate the null
space.
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Remember this: Given a 3 X 4 camera matriz P, the homogeneous
coordinates of the focal point of that camera are given by X, where PX =
[0,0,0]"

There is an important relationship between the focal point of the camera and
the extrinsics. Assume that, in the world coordinate system, the focal point can be
represented by [fT, 1}T. This point must be mapped to [0, 0, 0, 1]T by 7. Because
we can recover f from P easily, we have an important constraint on 7, given in the

box.

Remember this: Assume camera matriz P has null space Au =
A [fT, I]T. Then we must have Tou = 0,0, 0, l]T, so we must have

(32.5)

r [ )

ol 1

This means that, if we know R, we can recover the translation from the focal
point. We must now recover the intrinsic transformation and R from what we
know.

10 0 0
AP=T; |0 1 0 0 [gﬁ _?f}z[mz —~TiRf | (32.6)

0 010
We do not know A, but we do know P. Now write P; for the left 3 x 3 block of P,
and recall that 7; is upper triangular and R orthonormal. The first question is the
sign of A. We expect Det (R) = 1, and Det (7;) > 0, so Det (P;) should be positive.
This yields the sign of A — choose a sign s € {—1,1} so that Det (sP;) is positive.

We can now factor sP; into an upper triangular matrix 7 and an orthonormal

matrix Q. This is an RQ factorization (Section 22.6). Recall we could not distin-
guish between scaling caused by the focal length and scaling caused by pixel scale,
so that

as k ¢
Ti=1 0 s ¢ (32.7)
0 0 1

In turn, we have )\ = S(l/tgg), Cy = (t23/t33), S = (tzz/tgg), Cy = (tlg/t33)7 :ZC =
(t12/t33), and a = (tll/tQQ).
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Procedure: 32.1 Calibrating a Camera using 3D Reference Points

For N reference points s; = [sy., S $z,] with known position in some
reference coordinate system in 3D, write the measured location in the
image for the 7’th such point t; = [tw,i, ty,i]. Now minimize

DG =D (i — i) + (B — pya)” (328)

7

where
119z, T 129y, 913903
Pzi =
9i,3
12202, + 12393
Py: = —————
9i,3
and
Jxi = €118zt €128y,; T €13S2,; 1+ €14
Jyi = €218z + €225y + €235, + €24
Jzi = €318z, 1+ €328y, + €33S2 + €34
subject to:

1—2 eih):Oandl—E ei%:Oandl—E 6?,371:0
v v v
E €j,10€5,20 = 0 and E €j,1v€j,3v = 0 and 1 — E €5,20€5,3v = 0
v v v

Use the start point of procedure 32.2
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Procedure: 32.2 Calibrating a Camera using 3D Reference Points: Start
Point

Estimate the rows of the camera matrix C; using at least six points and
CISit,;—CTS; =0and CiS;i,; — C3S, =0. (32.9)

Write AP for the 1D family of solutions to this set of homogeneous
linear equations, organized into 3 x 4 matrix form. Compute the vector
n=— [fT, 1] such that Pn. Write P; for the left 3 x 3 block of P. Choose
s € {—1,1} such that Det(sP;) > 0. Use RQ factorization to obtain
T and Q such that sP; = 7Q. Then the start point for the intrinsic
parameters is:

a (t11/t22)
s (taz/t33)
k| = (t12/tss) (32.10)
Cy (t13/t33)
@y (tos/ts3)
and for 7, is:
[ % _IQf ] (32.11)

32.2 CALIBRATING THE EFFECTS OF LENS DISTORTION

3221

Now assume the lens applies some form of geometric distortion, as in Section 22.6.
There are now strong standard models of the major lens distortions (Section 22.6).
We will now estimate lens parameters, camera intrinsics and camera extrinsics from
a view of a calibration object (as in Section 22.6; note the methods of Section 22.6
apply to this problem too). As in those sections, we use a two step procedure:
formulate the optimization problem (Section 22.6), then find a good starting point
(Section 22.6).

Modelling Geometric Lens Distortion

Geometric distortions caused by lenses are relatively easily modelled by assuming
the lens causes (x, y) in the image plane to map to (z+0x, y+dJy) in the image plane.
We seek a model for dx,dy that has few parameters and that captures the main
effects. A natural model of barrel distortion is that points are “pulled” toward the
camera center, with points that are further from the center being “pulled” more.
Similarly, pincushion distortion results from points being “pushed” away from the
camera center, with distant points being pushed further (Figure 7).

Set up a polar coordinate system (r,6) in the image plane using the image
center as the origin. The figure and description suggest that barrel and pincushion
distortion can be described by a map (r,0) — (r + or,0). We model ér as a
polynomial in 7. Brown and Conrady [] established the model 67 = k173 + kor® as
sufficient for a wide range of distortions, and we use (r,0) — (r + k17> + kor®,0)
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FIGURE 32.1: The effects of k1 and ko on a neutral grid (center), showing how
the parameters implement various barrel or pincushion distortions. Notice how ko
slightly changes the shape of the curves that ki produces from straight lines in the
grid.

for unknown ki, k2. We must map this model to image coordinates to obtain a
map (z,y) — (v + 0x,y + dy). Since cosf = z/r, sinf = y/r, we have (z,y) —
(@ + z(kr (2% +92) + ka2 (2 +9°)?), y + y (ki (2 + y°) + ka(2? +9%)?)). Figure 32.1
shows distortions resulting from different choices of k1 and k2. This model is known
as a radial distortion model.

More sophisticated lens distortion models account for the lens being off-center.
This causes tangential distortion (Figure 32.2). The most commonly used model of
tangential distortion is a map (z,y) — (z + p1(z? +y? + 222) + 2poxy, y + po(2? +
y? + 2y?%) + 2p12y) (derived from [J; more detail in, for example []).
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FIGURE 32.2: The effects of p1 and py on a neutral grid (center), showing how
the parameters implement various distortions. These parameters model effects that
occur because the lens is off-center; note the grid “turning away” from the lens.

Remember this: A full lens distortion model is

y y+y(ki(2® +92) + k2(2® +9%)%) + pa(2® + v + 29%) + 2p1y
(32.12)
for k1, ko, p1,p2 parameters. It is common to ignore tangential distortion
and focus on radial distortion by setting p1 = ps = 0.

( . ) - < o+ (ki (2? + %) + ka(2? +9%)%) + p1(a® + y° + 22%) + 2pozy

32.2.2 Lens Calibration: Formulating the Optimization Problem

Again, the optimization problem is relatively straightforward to formulate. Write
t; = [tz,i,ty,s] for the measured x, y position in the image plane of the i’th reference
point. We have that ‘Ei = t; + &;, where &; is an error vector and t; is the true
(unknown) position of the i’th point. Again, assume the error is isotropic, so it is
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natural to minimize

>l (32.13)

We obtain expressions for &; ; in the appropriate coordinates as in Section 22.6, and
using the notation of that section, but now accounting for the effects of the lens.

We have
DG = (tai —lei)® + (tyi — 1) (32.14)
where
lei = PaitPai(k (piz + p?”) + k2(pi,z‘ +P§,i)2) +p1(p3;,i +p§,i + QPi,i) + 2p2pz,iPy.i
lyi = pyi+pyilki(ph, +05 ) + k(0 +105.)°) +p2(ph i+ P+ 20, 3) + 2P1Da iy

(which models the effect of the lens on the imaged points). The imaged points are

1119z, + 1129y, T 1139z,i

Pzi =
9z,
1220, + 12305,
Dyi =
9z,
and, as before, we have

Gz = €118z, + €128y + €135z, + €14
Gyi = €218z, 1+ €228y + €235, + €24
Jzi = €318gz; T €328y 1+ €335, + €34.

(which you should check as an exercise). As before, this is a constrained opti-
mization problem, because 7. is a Euclidean transformation. The constraints here
are

2 _ 2 _ 2 _
l—g ej’h}—Oandl—E ej’%—()andl—g gy =0
v v v
E €5,1v€j,20 = 0 and E €5,1v€j5,3v = 0and 1 — E €5,20€5,3v = 0
v v v

As in Section 22.6, simply dropping this problem into a constrained optimizer is
not a particularly good approach. If we assume the lens distortion is minor, we
can obtain a start point for the intrinsics and the extrinsics using Section 22.6. We
then use those parameters, together with k1 =0, k2 =0, py = 0 and p» =0, as a
start point.

32.3 "FOUND" CALIBRATIONS

A useful set of camera intrinsics can be recovered from assumptions about the 3D
world seen in a picture, assuming that vanishing points can be recovered in an
image. One standard assumption is that we are viewing a Manhattan world. In
this case, there are three cardinal directions. Each is normal to the other two (so
you could make them be the z, y, and z directions in an appropriately chosen world
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coordinate system). Every line in the world is parallel to one of the three cardinal
directions.

In a Manhattan world geometry, every image contains at most three families
of line, one for each cardinal direction. Each family has a single vanishing point.
Assume that there are lines from all families present in an image, and that the
vanishing points can be found (Section 22.6). Then the vanishing points reveal
camera intrinsics.

This is easily demonstrated in homogeneous coordinates. The three cardinal
directions can be defined by their vanishing points in 3D. For simplicity, we assume
that the cardinal directions are the x, y and z directions in the world coordinate
system. In homogeneous coordinates, the collection of all lines parallel to the z axis
can be written as (¢,a,b,1), where ¢ is a parameter along the line and a, b select
the particular line. All such lines contain the point E, = (1,0,0,0) — this is the
point at infinity where all of these lines intersect. Similarly, the point at infinity
where all lines parallel to the y (resp. z) axis intersect is E, = (0,1,0,0) (resp.
E. =(0,0,1,0).

There will be three vanishing points in the image, e, es and e3. The coordi-
nates of these points are known, because we have detected them, and we represent
these points in homogeneous coordinates. Each is the image of one of the 3D points
at infinity. We choose e, as the image of E,, etc. Note that there are six possible
choices. Three of them will result in rotations of the world coordinates, and the
other three will result in improper rotations (a rotation, followed by flipping the
z-axis direction). For the moment, we ignore the consequences of choosing.

Now recall the parametrization of a camera as [Rt]. Furthermore, notice
that each of the E’s has a zero in the fourth component. We have that

.= (%00 Y s, = (%) e ) g, - ((5R) s

The cardinal directions are at right angles, so we have three constraints

E!E, = e K 'Ke,
=0

E'E, = e K "Ke;s
= 0

E/E. = eK "Kes
0

(notice that the rotations cancel because RT = R~!). Now assume that the aspect
ratio a is 1, and the skew k is 0. In this case,

s 0 ¢,
K= 0 s ¢
0 0 1

Now write the known coordinates of the vanishing points e; = (€14, €24, 1)T and so
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on. Some algebra yields the constraints

[e1z€25 + €1yeay] + ¢ [1 — €15 — e2z] + ¢y [1 — €1y — €2y] + 22+ ci =
(12632 + €1yesy] + o [1 — e10 — e3z] + ¢y [1 — e1y — €3] + 22+ 012/
[e2z €35 + €ayesy] + o [1 — €25 — €35] + ¢y [1 — €2y — €3] + 2+ cﬁ + 6121 = 0

It is straightforward to extract c,, ¢, and s from these equations (exercises).

If one image vanishing point is at infinity (choose eq, so that e = (e14, €2z, O)T),
we have

[e1z€25 + €1y€ay] + Cp [—€15 — €25] ¢y [—e1y —ezy] = O
[elwe?m + ely€3y] + ¢z [_elx - e3:v} + Cy [_ely - e3y] =

[e2z€32 + €ay€3y] + € [1 — €25 — €35] + ¢y [1 — €9y — €3,] + 22+ cf/ =

and we can still solve for ¢, ¢, and s.

32.4 MEASURING LENGTHS IN A SINGLE VIEW

3241

32.4.2

In many very useful cases, we can measure lengths in a single uncalibrated image.

Exploiting a Ruler

In the simplest, the image shows an object on a ground plane, there is a ruler
conveniently standing normal to the ground plane, and we wish to measure the
height of the object. This is shown in Figure 32.3, and I use the notation of that
figure. Construct the line bB (from the base of the ruler to the base of the object)
and intersect that line with the horizon to get vanishing point V. Now construct
the line VT from that vanishing point to the top of the object, and intersect that
line with the ruler. The intersection point with the ruler shows the height of the
object.

A ruler perpendicular to a ground plane can reveal the height of the camera
above the ground plane, too. The horizon in the image is formed by the plane
through the camera focal point and parallel to the ground plane. But this plane
must intersect the ruler at the height of the focal point above the ground plane.
This means that the horizon intersects the ruler at the height of the focal point
above the ground plane.

Measuring with a Reference Object

A ruler has the special property that it has lengths marked on it. Imagine we now
have a reference line segment that has known height, but doesn’t have other heights
marked on it. Using this reference object takes care, because (say) the midpoint of
the reference object in the image may not lie halfway up the reference object in 3D
(Figure 32.5).

This is because the transformation from the reference line segment in 3D
to the image is not an affine transformation — it is a projective transformation.
Figure 32.5 sketches the geometry. Parametrize the reference line segment in 3D
using affine coordinates to get p 4 td, where d is a unit vector (so a step of 1 in ¢ is
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FIGURE 32.3: Left, an image of a ruler and an object, which just happen to be
standing perpendicular to a ground plane. In an uncalibrated image like this, we
can measure the height of the object. Construct the line bB, and intersect that with
the horizon to get the point V. The line from the top of the object T to the true
height of the object on the ruler (h) is parallel in 3D to bB. In turn, the line Th
must intersect the horizon at V. So if you construct VT, it will intersect the ruler
at h yielding the height of the object. Right shows a 3D view; the line Th must be
parallel to bB, and so in the image these two lines intersect at the horizon.

a step of length 1 along the reference segment). Write ¢;; for the ¢, j’th component
of the 3 x 4 camera matrix. Then the homogeneous coordinates for the image line
will be

(c11p1 + c12p2 + c13ps + c1a) + t(ci1dr + c12ds + c13ds + c14) a+ bt
(co1p1 + Caop2 + casps + c24) + t(cardi + caads + co3ds + c24) = c+dt
(cs1p1 + c32p2 + c33p3 + €34) + t(cs1di + c32da + c33d3 + c34) e+ ft

SInce we know the image is a line, we can ignore one of these three homogeneous
coordinates, so the transformation is a projective transformation. Now on the 3D
reference line segment, the points t = 0 and ¢ = 1 are the same distance apart as
the points t = 1 and ¢ = 2. But in the image line, using affine coordinates, these
points are

a a+b a+2b

¢ c+d c+2d
which are not, in general, evenly spaced (check this with, for example, a =0, b = 1,
c=1,d=1).

A clever trick from projective geometry allows us to use a reference object to
measure heights. Write Py, ..., Py for the coordinates of four points on a projective
line, written in homogeneous coordinates. Write M for a projective transformation
of the line to itself (so a 2 x 2 matrix with non-zero determinant. Finally, write

d(Pi, P]‘) = det ([PZPJ]) .
Notice that

det (([MP;MP;)]) = det (M[P;P;]) = det (M) det ([P;P;])
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FIGURE 32.4: Left, an image of a ruler which just happens to be standing perpen-
dicular to a ground plane. In an uncalibrated image like this, we can measure the
height of the camera focal point above the ground plane. The plane through the focal
point parallel to the ground plan (and so the same height above the ground plane
as the focal point) must form the horizon, so the intersection between horizon and
ruler yields the height of the focal point. Right shows a 3D view; the bottom plane
1s the ground plane, and the top plane is the plane through the focal point parallel
to the ground plane.

FIGURE 32.5: Left, a perspective camera views a reference object perpendicular to a
ground plane. This produces a line segment in the image plane. Right shows the
reference object and the line segment in the image plane.

which means that
d(Pl, Pz)d(Pg, P4)
d(P1,P3)d(P2,Py)

is a projective invariant — computing the value of this cross ratio using Pq,..., Py
or using MPq, ..., MP4 will yield the same number, as long as M is a projective
transformation.

Now check that the cross-ratio of the four points (0, 1), (a, 1), (b,1) and (1,0)
is a/b (notice the last point is the point at infinity). We can use this observation to
measure height relative to a reference object. Using the notation of Figure 32.6, we
construct the line Bb from the base of the object to the base of the reference object.
Produce this line to intersect the horizon at V. Now construct VT, which intersects
the reference object at h. In 3D, the line VT is parallel to the ground plane, so
that the point h in 3D is the same height above the ground plane as the point T in
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3D. The vanishing point for the vertical lines (the object and the reference object)
is at infinity in this image, so we know where it lies on line bt. Write P for this
vanishing point, r for the height of the reference object and o for the height of the

object. Then we have
d(b,h)d(t,P)

d(b,0),b(h, P) o

but we know the height of the reference object and we can measure the cross ratio,
SO We can recover o.
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FIGURE 32.6: A perspective camera views a reference object and another object per-
pendicular to a ground plane. This produces a line segment in the image plane.
Constructing appropriate lines in the figure and taking a cross ratio yields the height
of the object.
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FIGURE 32.7: A building and a person viewed in a more extreme perspective view
than that of 32.6. The person has known height, and can act as reference object.

The same construction as in that figure yields the height of the building relative to
the person.




