Last block:

Classify an image into one of two classes by
Stack some pooling, FC layers on an encoder
Adjust result into a vector
Pass to linear classifier

Learn all parameters with SGD and various losses
get training examples right

|dea:
exploit this machinery to improve training
exploit this machinery to segment image



Improving a denoiser with a classifier

|dea:

iIf a classifier can tell the difference between a denoised image
and a real one, the denoiser isn’'t working right

use the classifier to improve the denoiser

Easy to state, quite delicate in practice



Obvious strategy that DOESN'T WORK -|

21.1.1 The Obvious Strategy doesn’'t Work

Imagine we have a classifier that is good at telling whether an image has been
through a particular autoencoder or not. You might use this classifier as a loss, by
the following argument. Recall Section 20.2.2 interpreted u(x;a,b) in terms of a
probability with the model

P(denoise|x) ]

u(x;a,b) = log [ Plreallx)

so that a data item with positive u is likely to be a denoised image, and more likely
to be denoised if u is larger. In turn, one could interpret u(x;a,b) as a loss. A
more realistic set of reconstructions would have a smaller value of

Z u(x.a,b).

icae outputs

You could do this whether you use the hinge loss or the cross-entropy loss to train
the classifier (exercises ).



Obvious strategy that DOESN'T WORK -l

Strategy:

train autoencoder, fix
make a lot of denoised images
train classifier to spot denoised images

continue to train autoencoder, using loss from previous slide



Obvious strategy that DOESN'T WORK -l

Fails (easy — try it!)

Fails because:

Classifier is good at spotting some error that is characteristic of the
autoencoder; if the autoencoder learns NOT TO MAKE THAT
ERROR, it'll be fine — but it could make some other, new error.

But the classifier can’t spot that!



More effective strategy

Repeat:

e Fix an autoencoder, then adjust a classifier slightly using the outputs of this
autoencoder; that is, use the autoencoder to produce a set of outputs, label
them, take some steps to minimize

Z Ec(si (9
iedata

(the training loss of the classifier) as a function of 6..

e Fix the classifier, and adjust the autoencoder to fool the classifier; that is,
take some steps to reduce

Zc (Ni:0a), +>\Z A(N;; 04);0.)

as a function of 4,.



More effective strategy

Notice the classifier isn’t really producing a loss

because each time you improve the autoencoder, you are
using a slightly different classifier

But it does give you a gradient...

The classifier is often referred to as an adversary
The value it makes is an adversarial loss



Tricky to get right, but very good when it does work

Issues:
Goldilocks problem:
iIf the classifier is “too stupid”, the gradient is no use
autoencoder beats classifier
If the classifier is "too smart”, the gradient is no use
classifier beats autoencoder

How much training should classifier/autoencoder get?



-J|W-1l Lo m...-

W

,

Loy A e

' L : Afa_,,._.m%_wﬁﬁﬁm._ﬂ% i

:

s
R

{ %
'

Autoencoder output, L1/L2 only

Noisy input

X



Noisy input

C

A R
Ay g

- «

r
-

.
- B

Autoencoder output, L1/L2 and big adversary

LA i

AL

i

,_




Noisy input

%2, f,.r_.,

,Lf f._«_...f.f.d# dH _, o

r
-
¥
v

Autoencoder output

AR iﬁ.

I,,“, ;,_.:,:F,.

Ll/L2 and small adversary

>




loss

loss

D.5M M 1.5M 2M

Epochs

pred

pred

GO D.5M M

Epochs

1.5M

2M

disc loss

disc loss

5

4

3

2~

1

% 0.5M 1M 1.5M 2M
Epochs

adv loss

adv loss

5
4
3
2
1
00 D.5M M 1.5M 2M

Epochs



