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A. Mantegna, Martyrdom of St Chr/stopher c. 1450




Overview

« Motivation: recovery of 3D structure
* Pinhole projection model

* Properties of projection

» Perspective projection matrix

« Orthographic projection



Given an image, can we recover 3D structure?

J. Vermeer, Music Lesson, 1662

A. Criminisi, M. Kemp, and A. Zisserman, Bringing Pictorial Space to Life: computer technigues for the
analysis of paintings, Proc. Computers and the History of Art, 2002



http://research.microsoft.com/apps/pubs/default.aspx?id=67260
http://research.microsoft.com/apps/pubs/default.aspx?id=67260

Things aren’t always as they appear...




Single-view ambiguity

[*




Single-view ambiguity

Rashad Alakbarov shadow sculptures



https://shadowsculptures.wordpress.com/2015/04/28/rashad-alakbarov/

Anamorphic perspective

H. Holbein The Younger, The Ambaésadors, 1533
https://en.wikipedia.org/wiki/Anamorphosis



https://en.wikipedia.org/wiki/Anamorphosis
https://en.wikipedia.org/wiki/Anamorphosis
https://en.wikipedia.org/wiki/Anamorphosis
https://en.wikipedia.org/wiki/Anamorphosis

Our goal: Recovery of 3D structure

 When certain assumptions hold, * In general, we need
we can recover structure from a multi-view geometry
single view

« But first, we need to understand the geometry of a single camera...


https://www.3dflow.net/elementsCV/S4.xhtml
https://www.3dflow.net/elementsCV/S4.xhtml

More about horizons

ground plane

Image source: S. Seitz



Yet more about horizons
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Projection of 3D shapes

 What is are the relationships between the geometric
properties of general 3D surfaces and their 2D projections?

Barbara Hepworth sculpture



https://artblart.com/2015/10/21/exhibition-barbara-hepworth-sculpture-for-a-modern-world-at-tate-britain-london/

Camera rotation

Black camera is red camera, but rotated around the focal point

There is a one-one map between pixels in black image plane
and red image plane (this is a homography, as we’ll show
later)

/>




Camera translation

There is no longer a 1-1 map; some pixels in red camera cannot
be seen in black, and vice versa

Here the red camera can see R and the black camera can't;
the black camera can see B and the red camera can't.
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Projection of 3D shapes

« What is the shape of the projection of a sphere?




Projection of 3D shapes

« What is the shape of the projection of a sphere?




Projection of 3D shapes

Outline Ry}
/ Ray 2
— | Contour generator
@< Relation between contour generator
And outline is geometrically very
Complicated. Surprisingly hard to say

Much about surface from outline.
Ray 3




Projection of 3D shapes

Stuff Stuff

Free
space

Stuff Free space Stuff

J. Koenderink. What does the occluding contour tell us about solid shape? Perception 13 (321-330), 1984



https://journals.sagepub.com/doi/pdf/10.1068/p130321

Projection of 3D shapes

Figure 4. Details from Diirer’s “Samson killing the lion”. (Bartsch #2; the print dates from 1498.)

J. Koenderink. What does the occluding contour tell us about solid shape? Perception 13 (321-330), 1984



https://journals.sagepub.com/doi/pdf/10.1068/p130321

Projection of 3D shapes

 Are the widths of the projected columns equal?
» The exterior columns are wider
» This is not an optical illusion, and is not due to lens flaws
* Phenomenon pointed out by Leonardo Da Vinci

i
N4

Source: F. Durand




Perspective distortion: People




Overview

« Motivation: recovery of 3D structure
* Pinhole projection model

* Properties of projection

» Perspective projection matrix

« Orthographic projection



Homogeneous coordinates

® Add an extra coordinate and use an equivalence relation
® for 2D

® equivalence relation

k*(X,Y,Z) is the same as (X,Y,2)
® for 3D
® equivalence relation
k*(X,Y,Z,T) is the same as (X,Y,Z,T)

® “Ordinary” or “non-homogeneous” coordinates

® properly called affine coordinates

x,y,z2) > k*(x,v,2,1
® in 3D, affine -> homogeneous ( Y ) ( Yy % )

XY Z
X, Y, Z,T — =, —
( ) =) Y )_>(T7T7T>

® in 3D, homogeneous to affine



Homogenous coordinates

® Notice (0, 0, 0, 0) is meaningless (HC'’s for 3D)
® also (0,0,0)in 2D

® Basic notion
® Possible to represent points “at infinity” by careful use of zero
® Where parallel lines intersect

.eg

(tX,tY,tZ,1) and (tX 4 a,tY +b,tZ+c,1)

intersect at (X , Y, YA , O)

® Where parallel planes intersect (etc)

® Can write the action of a perspective camera as a matrix



Homogeneous coordinates

Example: 23.1 Lines on the affine plane

Lines on the affine plane form one important example of homogeneous
coordinates. A line is the set of points (x,y) where ax +by+c=0. We
can use the coordinates (a, b, ¢) to represent a line. If (d, e, f) = A(a, b, ¢)
for A # 0 (which is the same as (d, e, f) = (a,b,c)), then (d, e, f) and
(a, b, c) represent the same line. This means the coordinates we are
using for lines are homogeneous coordinates, and the family of lines in
the affine plane is a projective plane. Notice that encoding lines using
affine coordinates must leave out some lines. For example, if we insist
on using (u,v,1) = (a/c,b/c,1) to represent lines, the corresponding
equation of the line would be uz + vy +1 = 0. But no such line can
pass through the origin — our representation has left out every line
through the origin.




Homogeneous coordinates for a line

23.1.2 The projective line

In homogenous coordinates, we represent a point on a 1D space with two coor-
dinates, so (X1,X2) (by convention, homogeneous coordinates are written with
capital letters). Two sets of homogeneous coordinates (Uy,Us) and (Vi, V3) repre-
sent different points if there is no A # 0 such that A\(U;,Usz) = (Vi,V2). The set of
all distinct points i1s known as a projective line. You should think of the projective
line as an ordinary line (an affine line) with an “extra point”. Every point on an
affine line has a corresponding point on a projective line. A point on an affine line
1s given by a single coordinate z. This point can be identified with the point on a
projective line given by (X;, X2) = A(z, 1) (for A # 0) in homogeneous coordinates.
The extra point has coordinates (X;,0). These are the homogeneous coordinates
of a single point (check this), but this point would be “at infinity” on the affine
line.

There 1sn’t anything special about the point on the projective line given by
(X1,0). You can see this by identifying the point z on the affine line with (X, X5) =
A(1,z) (for A # 0). Now (X1,0) is a point like any other, and (0, X») is “at infinity”.
A little work establishes that there is a 1-1 mapping between the projective line
and a circle (exercises).



You can see the point at infinity

vanishing point




Homogeneous coordinates for the plane

23.1.3 The projective plane

The space represented by three homogeneous coordinates is known as a projective
plane. You can map an affine plane (the usual plane, with coordinates z,y) to a
projective plane by writing (X1, X2, X3) = (z,v,1). Notice that there are points
on the projective plane — the points where X3 = 0 — that are missing. These
points form a projective line (check this!). This line is often referred to as the line
at infinity.



You can see the line at infinity, too!

/

horizon




The camera matrix
X.Y. 2)
focal point "
N e >
Z
)/l (fX/Z, £Y/Z, f)
X

® Turn previous expression into HC’s
® HC’s for 3D point are (X,Y,Z,T)
® HC'’s for point in image are (U,V,W)

In Camera coordinate system:

U F 0 0 0 ‘;(
Vv |=l0 f 00 Z
1% 0 0 1 0 -

camera center

image plane



The camera matrix

S O
O = O
— o o
o oo
NN K

|

!
CP

Notice: focal point=f= (0, 0, 0, 1)*T has the property:

C,f =0



Orthographic projection

« Special case of perspective projection

« Distance from center of projection to image plane is infinite
 Also called “parallel projection”

Slide by Steve Seitz



Orthographic projection

« Special case of perspective projection

» Distance from center of projection to image plane is infinite
» Also called “parallel projection”




Orthographic projection

19.1.3 Scaled Orthographic Projection and Orthographic Projection

Under some circumstances, perspective projection can be simplified. Assume the
camera views a set of points which are close to one another compared with the
distance to the camera. Write X; = (X;, Y:, Z;) for the i’th point, and assume that
Z; = Z(1+¢;), where ¢; is quite small. In this case, the distance to the set of points
is much larger than the relief of the points, which is the distance from nearest to
furthest point. The i’th point projects to (fX;/Z;, fYi/Z;), which is approximately
(f(X:/Z)(1 — &), f(Yi/Z)(1 — €)). Ignoring €; because it is small, we have the
projection model

(X.Y,Z) = (f/Z)(X,Y) = s(X,Y).



Camera matrix for arthographic projection

® Almost never encounter orthographic projection

Remember this: Scaled orthographic projection maps
(X,Y,Z) = s(X,Y)

where s is some scale. The model applies when the distance to the points
being viewed is much greater than their relief. Many views of people have

this property.
U 1 0 0 O i,(
V =C{ 0 1 0 0 | W 7
|44 0 0 0 1 T



Approximating an orthographic camera

center at
infinity

perspective weak perspective

—

increasing focal length
Incrensing distance from camera - Source: Hartley & Zisserman




Outline

« Camera calibration using vanishing points

« Measurements from a single image
 Measuring height above the ground plane
 Measuring within planes




Using a ruler

Ruler .-

I L Horizon

FIGURE 24.3: Left, an image of a ruler and an object, which just happen to be
standing perpendicular to a ground plane. In an uncalibrated wmage like this, we
can measure the height of the object. Construct the line bB, and intersect that with
the horizon to get the point V. The line from the top of the object T to the true
height of the object on the ruler (h) is parallel in 3D to bB. In turn, the line Th
must intersect the horizon at V. So if you construct VT, it will intersect the ruler
at h yielding the height of the object. Right shows a 3D view; the line Th must be
parallel to bB, and so in the image these two lines intersect at the horizon.



Using a ruler

Ruler

FIGURE 24.4: Left, an image of a ruler which just happens to be standing perpen-
dicular to a ground plane. In an uncalibrated tmage like this, we can measure the
height of the camera focal point above the ground plane. The plane through the focal
point parallel to the ground plan (and so the same height above the ground plane
as the focal point) must form the horizon, so the intersection between horizon and
ruler yields the height of the focal point. Right shows a 3D view,; the bottom plane

s the ground plane, and the top plane is the plane through the focal point parallel
to the ground plane.



Working without a ruler is harder than might seem

FIGURE 24.5: Left, a perspective camera views a reference object perpendicular to a
ground plane. This produces a line segment in the image plane. Right shows the
reference object and the line segment in the image plane.



Working without a ruler is harder than might seem

Parametrize the reference line segment in 3D

using affine coordinates to get p+td, where d is a unit vector (so a step of 1 in ¢ is
a step of length 1 along the reference segment). Write ¢;; for the i, j7th component
of the 3 x 4 camera matrix. Then the homogeneous coordinates for the image line

will be

(c11p1 + c12p2 + €13p3 + c14) + t(cr1dy + crado + c13ds3 + ¢14) a + bt
(€o1p1 + CoaD2 + Cosps + Co4) + t(co1dy + Cooda + Cosds +coq) | = | c+dt
e+ ft

(c31p1 + c32p2 + €33p3 + €34) + t(es1dy + c32da + c33d3 + €34)

SInce we know the image is a line, we can ignore one of these three homogeneous
coordinates, so the transformation is a projective transformation. Now on the 3D



Working without a ruler is harder than might seem

e+ ft

FIGURE 24.5: Left, a perspective camera views a reference object perpendicular to a
ground plane. This produces a line segment in the image plane. Right shows the
reference object and the line segment in the image plane.



Working without a ruler is harder than might seem

Now on the 3D
reference line segment, the points £ = 0 and ¢ = 1 are the same distance apart as
the points ¢t = 1 and ¢t = 2. But in the image line, using affine coordinates, these

points are
a a+b a+ 2b
¢c c+d c+2d

which are not, in general, evenly spaced (check this with, for example, a = 0, b = 1,
c=1,d=1).




The Cross-ratio

A clever trick from projective geometry allows us to use a reference object to
measure heights. Write Py, ..., P4 for the coordinates of four points on a projective
line, written in homogeneous coordinates. Write M for a projective transformation
of the line to itself (so a 2 x 2 matrix with non-zero determinant. Finally, write

Notice that

det ((MP;MP,)]) = det (M[P,;P;]) = det (M) det ([P;P;])



The Cross-ratio

which means that
d(Pla PQ)d(P?)a P4)

d(P1,P3)d(P2, Py)

is a projective invariant — computing the value of this cross ratio using P, ..., Py
or using MPq,..., MP,4 will yield the same number, as long as M is a projective
transformation.



The Cross-ratio

Now check that the cross-ratio of the four points (0,1), (a, 1), (b,1) and (1,0)
is a/b (notice the last point is the point at infinity). We can use this observation to
measure height relative to a reference object. Using the notation of Figure 24.6, we

construct the line Bb from the base of the object to the base of the reference object.
Produce this line to intersect the horizon at V. Now construct VT, which intersects
the reference object at h. In 3D, the line VT is parallel to the ground plane, so
that the point h in 3D is the same height above the ground plane as the point T in

3D. The vanishing point for the vertical lines (the object and the reference object)
1s at infinity in this image, so we know where it lies on line bt. Write P for this
vanishing point, r for the height of the reference object and o for the height of the
object. Then we have

d(b,h)d(t,P) 7

d(b,t),b(h,P) o

but we know the height of the reference object and we can measure the cross ratio,
SO We can recover o.




The Cross-ratio

Point

at infinity

Reference
Object

-
-
-

Horizon

FIGURE 24.6: A perspective camera views a reference object and another object per-
pendicular to a ground plane. This produces a line segment in the image plane.
Constructing appropriate lines in the figure and taking a cross ratio yields the height

of the object.



The Cross-ratio

_ ~ Horizon

FIGURE 24.7: A building and a person viewed in a more ertreme perspective view
than that of 24.6. The person has known height, and can act as reference object.

The same construction as in that figure yields the height of the building relative to
the person.



Single-view measurement examples

That booth is still there! (Oxford, September 2022)

A. Criminisi, |. Reid, and A. Zisserman, Single View Metrology, IJCV 2000
Figure from UPenn CIS580 slides



http://dhoiem.cs.illinois.edu/courses/vision_spring10/sources/criminisi00.pdf
http://cis.upenn.edu/~cis580/Spring2015/Lectures/cis580-04-singleview.pdf

