

Odilon Redon, Cyclops, 1914

Overview

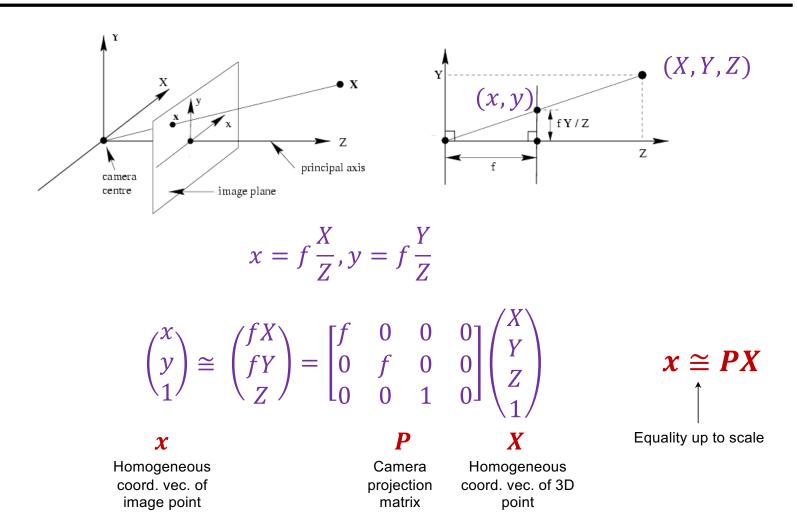
- Camera calibration
 - Intrinsic camera parameters
 - Extrinsic camera parameters
 - Estimation
- First taste of 3D reconstruction: triangulation

Perspective projection in normalized coordinates

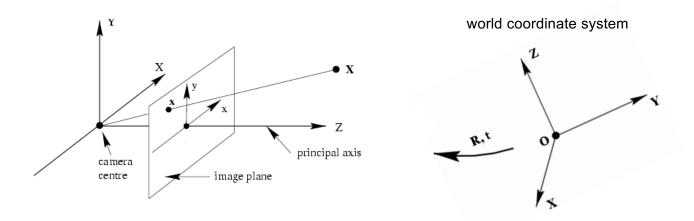


 Normalized (camera) coordinate system: camera center is at the origin, the *principal axis* is the z-axis, x and y axes of the image plane are parallel to x and y axes of the world

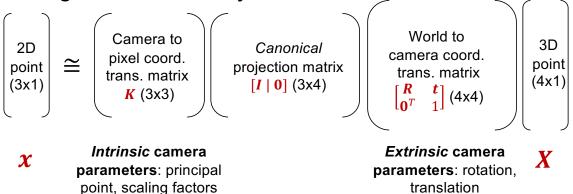
Perspective projection in normalized coordinates



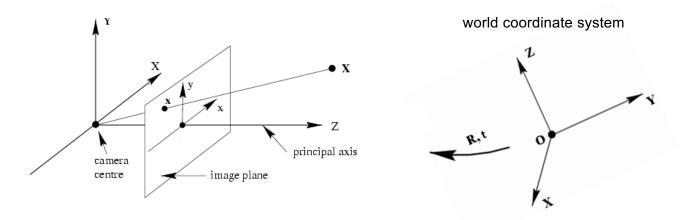
Camera calibration: Overview



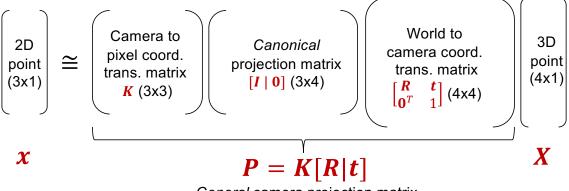
 Camera calibration: figuring out transformation from world coordinate system to image coordinate system



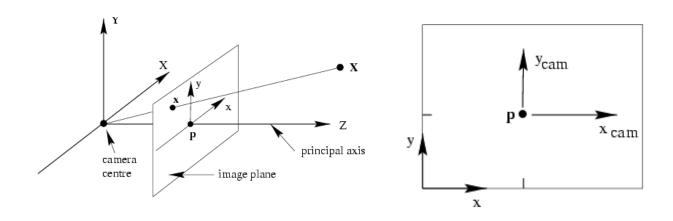
Camera calibration: Overview



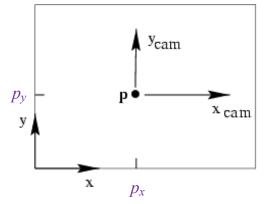
 Camera calibration: figuring out transformation from world coordinate system to image coordinate system



General camera projection matrix



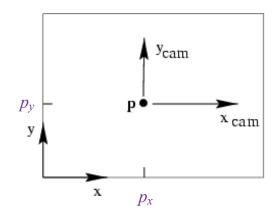
- Principal point (p): point where principal axis intersects the image plane
- In the normalized coordinate system, the origin of the image is at the principal point, or camera center
- In the image coordinate system: the origin is in the corner



We want the principal point to map to (p_x, p_y) instead of (0,0)

$$x = f \frac{X}{Z} + p_x$$
, $y = f \frac{Y}{Z} + p_y$

$$\begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \cong \begin{pmatrix} fX + Zp_x \\ fY + Zp_y \\ Z \end{pmatrix} = \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$$



Principal point: (p_x, p_y)

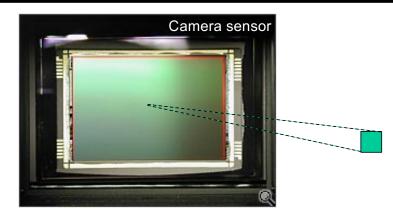
$$\begin{bmatrix} f & 0 & p_{x} \\ 0 & f & p_{y} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} f & 0 & p_{x} & 0 \\ 0 & f & p_{y} & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
calibration Canonical P = $K[I|0]$
matrix K

$$[I|0]$$

- What are the units of the focal length f and principal point coordinates (p_x, p_y) ?
 - Same as world units presumably metric units
- What units do we want for measuring image coordinates?
 - Pixel units
- Thus, we need to introduce scaling factors for mapping from world to pixel units

$$\begin{bmatrix} f & 0 & p_{x} \\ 0 & f & p_{y} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} f & 0 & p_{x} & 0 \\ 0 & f & p_{y} & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
calibration Canonical P = $K[I|0]$
matrix K projection matrix
$$\begin{bmatrix} I & 0 \end{bmatrix}$$

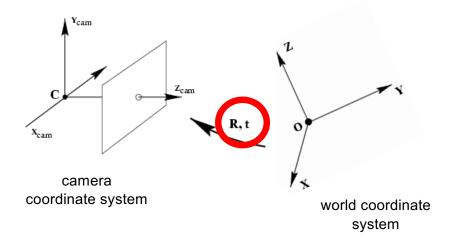
Intrinsic parameters: Scaling factors



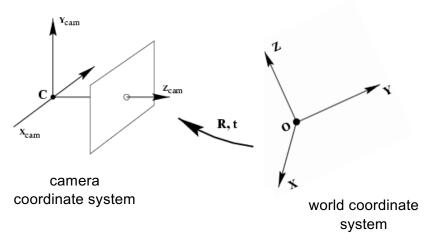
 m_x pixels/m in horizontal direction, m_y pixels/m in vertical direction

Pixel size (m):
$$\frac{1}{m_x} \times \frac{1}{m_y}$$

Scaling factors
$$K$$
 in metric units K in pixel units
$$\begin{bmatrix} m_x & 0 & 0 \\ 0 & m_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \alpha_x & 0 & \beta_x \\ 0 & \alpha_y & \beta_y \\ 0 & 0 & 1 \end{bmatrix}$$
 pixels/m

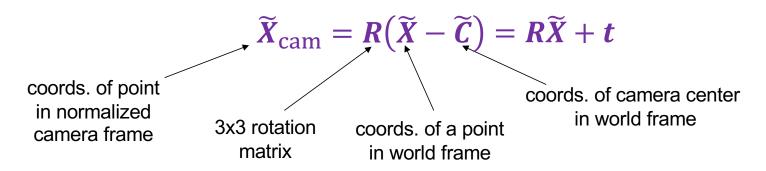


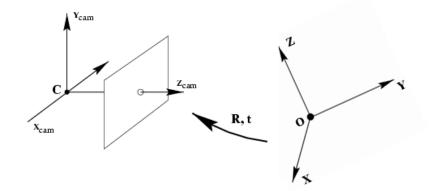
 In general, the camera coordinate frame will be related to the world coordinate frame by a rotation and a translation



 In general, the camera coordinate frame will be related to the world coordinate frame by a rotation and a translation

 In non-homogeneous coordinates, the transformation from world to normalized camera coordinate system is given by:





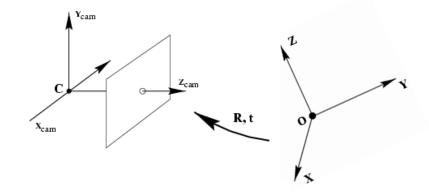
In *non-homogeneous* coordinates:

$$\widetilde{X}_{cam} = R\widetilde{X} + t$$

In homogeneous coordinates:

$$\begin{pmatrix} \widetilde{X}_{cam} \\ 1 \end{pmatrix} = \begin{bmatrix} \mathbf{R} & \mathbf{t} \\ \mathbf{0}^T & 1 \end{bmatrix} \begin{pmatrix} \widetilde{X} \\ 1 \end{pmatrix}$$

3D transformation matrix (4 x 4)



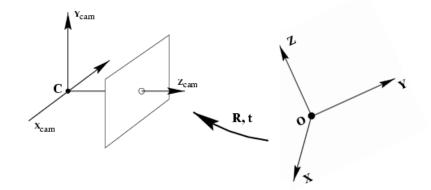
In *non-homogeneous* coordinates:

$$\widetilde{X}_{cam} = R\widetilde{X} + t$$

In homogeneous coordinates:

$$X_{cam} = \begin{bmatrix} R & t \\ \mathbf{0}^T & 1 \end{bmatrix} X$$

3D transformation matrix (4 x 4)



In *non-homogeneous* coordinates:

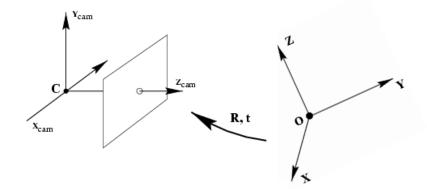
$$\widetilde{X}_{cam} = R\widetilde{X} + t$$

In homogeneous coordinates:

$$X_{\text{cam}} = \begin{bmatrix} R & t \\ \mathbf{0}^T & 1 \end{bmatrix} X$$

Transformation from normalized 3D coordinates to pixel image coordinates:

$$x \cong K[I|0]X_{cam}$$

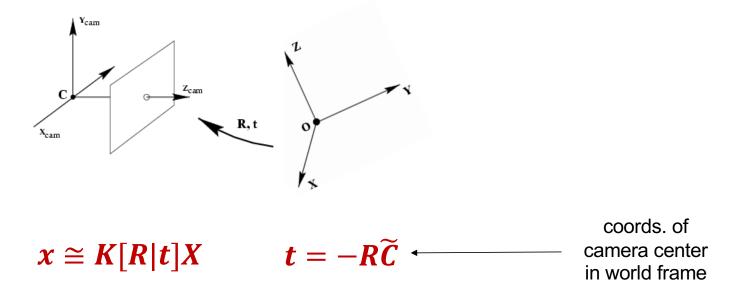


In homogeneous coordinates:

$$x \cong K[I|0] \begin{bmatrix} R & t \\ \mathbf{0}^T & 1 \end{bmatrix} X$$

Finally:

$$x \cong K[R|t]X$$
 $t = -R\widetilde{C}$



What is the projection of the focal point in world coordinates?

$$PC = K[R \mid -R\widetilde{C}] {\widetilde{C} \choose 1} = K(R\widetilde{C} - R\widetilde{C}) = 0$$

The focal point is the null space of the projection matrix!

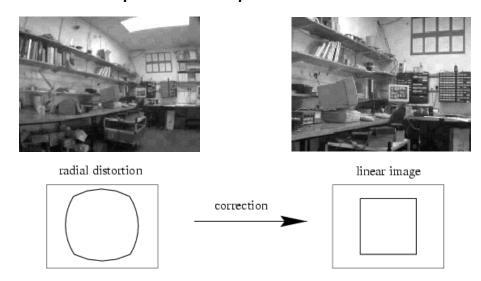
Camera parameters: Summary

$$P = K[R|t]$$

- Intrinsic parameters
 - Principal point coordinates
 - Focal length
 - Pixel magnification factors

$$\mathbf{K} = \begin{bmatrix} m_x & 0 & 0 \\ 0 & m_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \alpha_x & 0 & \beta_x \\ 0 & \alpha_y & \beta_y \\ 0 & 0 & 1 \end{bmatrix}$$

- Skew (non-rectangular pixels) tends to get ignored in practice
- Radial distortion important in practice!



Camera extrinsics
$$\mathcal{T}_i \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \mathcal{T}_e$$

Intrinsics

Extrinsics

 $\begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} = \begin{bmatrix} \text{Transformation} \\ \text{mapping image} \\ \text{plane coords to} \\ \text{pixel coords} \end{bmatrix} \mathcal{C}_p \begin{bmatrix} \text{Transformation} \\ \text{mapping world} \\ \text{coords to camera} \\ \text{coords} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{bmatrix}$

 $\begin{bmatrix} \mathcal{R} & \mathbf{t} \\ \mathbf{0}^T & 1 \end{bmatrix}$ Rotation matrix - orthornormal, det=1_____

Camera intrinsics
$$\mathcal{T}_i \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \mathcal{T}_e$$

Intrinsics

$$\begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} = \begin{bmatrix} \text{Transformation} \\ \text{mapping image} \\ \text{plane coords to} \\ \text{pixel coords} \end{bmatrix} \mathcal{C}_p \begin{bmatrix} \text{Transformation} \\ \text{mapping world} \\ \text{coords to camera} \\ \text{coords} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{bmatrix}$$

Extrinsics

Transformation mapping world coords to camera coords
$$\begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{bmatrix}$$

 $\left[\begin{array}{cccc} as & \kappa & c_x \\ 0 & s & c_y \\ 0 & 0 & 1/f \end{array} \right]$

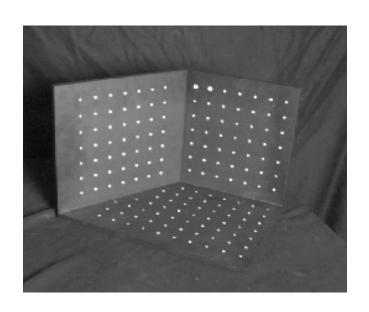
Overview

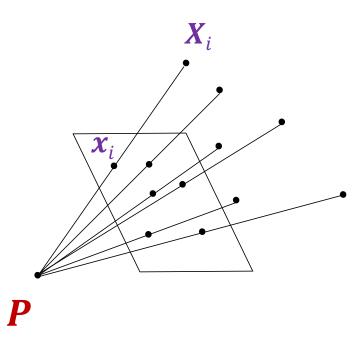
- Camera calibration
 - Intrinsic camera parameters
 - Extrinsic camera parameters
 - Estimation

$$x \cong K[R \ t]X$$

$$\begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \cong \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{bmatrix} \begin{pmatrix} x \\ Y \\ Z \\ 1 \end{pmatrix}$$

• Given n points with known 3D coordinates X_i and known image projections x_i , estimate the camera parameters





• Given n points with known 3D coordinates X_i and known image projections x_i , estimate the camera parameters

Known 2D	Known 3D
image coords	locations

880	214	312.747 309.140 30.086
43	203	305.796 311.649 30.356
270	197	307.694 312.358 30.418
886	347	310.149 307.186 29.298
745	302	311.937 310.105 29.216
943	128	311.202 307.572 30.682
476	590	307.106 306.876 28.660
419	214	309.317 312.490 30.230
317	335	307.435 310.151 29.318
783	521	308.253 306.300 28.881
235	427	306.650 309.301 28.905
665	429	308.069 306.831 29.189
655	362	309.671 308.834 29.029
427	333	308.255 309.955 29.267
412	415	307.546 308.613 28.963
746	351	311.036 309.206 28.913
434	415	307.518 308.175 29.069
525	234	309.950 311.262 29.990
716	308	312.160 310.772 29.080
602	187	311.988 312.709 30.514

Image credit: J. Hays

Camera calibration: non-linear method

N reference points with known position in 3D

$$\mathbf{s}_i = [s_{x,i}, s_{y,i}, s_{z,i}]$$

Predict the locations of the known points in camera using \mathbf{t}_i estimated camera parameters

 $\sum \xi_i^T \xi_i$.

Compare to observed locations

$$\hat{\mathbf{t}}_i = [\hat{t}_{x,i}, \hat{t}_{y,i}]$$

$$\hat{\mathbf{t}}_i = \mathbf{t}_i + \xi_i$$

Minimize least-squares error

$$\mathbf{t}_i = \mathbf{t}_i + \xi_i$$

Camera calibration: non-linear method

Two issues:

write out equations for optimization problem

good start point for optimization

Camera extrinsics
$$\tau_i \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \tau_e$$

Intrinsics

Extrinsics

 $\begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} = \begin{bmatrix} \text{Transformation} \\ \text{mapping image} \\ \text{plane coords to} \\ \text{pixel coords} \end{bmatrix} \mathcal{C}_p \begin{bmatrix} \text{Transformation} \\ \text{mapping world} \\ \text{coords to camera} \\ \text{coords} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{bmatrix}$

 $\begin{bmatrix} \mathcal{R} & \mathbf{t} \\ \mathbf{0}^T & 1 \end{bmatrix}$ Rotation matrix - orthornormal, det=1_____

Camera intrinsics
$$\mathcal{T}_i \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \mathcal{T}_e$$

Intrinsics

$$\begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} = \begin{bmatrix} \text{Transformation} \\ \text{mapping image} \\ \text{plane coords to} \\ \text{pixel coords} \end{bmatrix} \mathcal{C}_p \begin{bmatrix} \text{Transformation} \\ \text{mapping world} \\ \text{coords to camera} \\ \text{coords} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{bmatrix}$$

Extrinsics

$$\begin{bmatrix} X_1 \\ \text{mapping world} \\ \text{coords to camera} \\ \text{coords} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{bmatrix}$$

$$\left[\begin{array}{cccc} as & k & c_x \\ 0 & s & c_y \\ 0 & 0 & 1/f \end{array}\right]$$

Camera calibration: non-linear, equations

$$\sum_{i} \xi_{i}^{T} \xi_{i} = \sum_{i} (t_{x,i} - p_{x,i})^{2} + (t_{y,i} - p_{y,i})^{2}$$

The i's are intrinsic parameters (remember, this is upper triangular)

$$p_{x,i} = \frac{i_{11}g_{x,i} + i_{12}g_{y,i} + i_{13}g_{z,i}}{g_{z,3}}$$

$$p_{y,i} = \frac{i_{22}g_{x,i} + i_{23}g_{z,i}}{g_{z,i}}$$

The e's are extrinsic parameters (they are constrained)

$$g_{x,i} = e_{11}s_{x,i} + e_{12}s_{y,i} + e_{13}s_{z,i} + e_{14}$$

$$g_{y,i} = e_{21}s_{x,i} + e_{22}s_{y,i} + e_{23}s_{z,i} + e_{24}$$

$$g_{z,i} = e_{31}s_{x,i} + e_{32}s_{y,i} + e_{33}s_{z,i} + e_{34}$$

$$1 - \sum_{v} e_{j,1v}^2 = 0 \text{ and } 1 - \sum_{v} e_{j,2v}^2 = 0 \text{ and } 1 - \sum_{v} e_{j,3v}^2 = 0$$
$$\sum_{v} e_{j,1v} e_{j,2v} = 0 \text{ and } \sum_{v} e_{j,1v} e_{j,3v} = 0 \text{ and } 1 - \sum_{v} e_{j,2v} e_{j,3v} = 0$$

Camera calibration: non-linear

Strategy:

chuck it into a constrained optimizer and run this fails – you need a good starting point

Start point:

neat linear construction

Camera calibration: Linear method

Write \mathbf{C}_{j}^{T} for the j'th row of the camera matrix, and $\mathbf{S}_{i} = [s_{x,i}, s_{y,i}, s_{z,i}, 1]^{T}$ for homogeneous coordinates representing the j'th point in 3D. Then, assuming no errors in measurement, we have

$$\hat{t}_{x,i} = \frac{\mathbf{C}_1^T \mathbf{S}_i}{\mathbf{C}_3^T \mathbf{S}_i} \text{ and } \hat{t}_{y,i} = \frac{\mathbf{C}_2^T \mathbf{S}_i}{\mathbf{C}_3^T \mathbf{S}_i},$$
 (24.3)

which we can rewrite as

$$\mathbf{C}_3^T \mathbf{S}_i \hat{t}_{x,i} - \mathbf{C}_1^T \mathbf{S}_i = 0 \text{ and } \mathbf{C}_3^T \mathbf{S}_i \hat{t}_{y,i} - \mathbf{C}_2^T \mathbf{S}_i = 0.$$
(24.4)

x component of location of i'th point in image

One match gives two linearly independent constraints on the camera matrix

Calibration: Linear method

N points gives 2N homogeneous equations

$$\begin{pmatrix} -\mathbf{S}_1^T & 0 & \mathbf{S}_1^T t_{x,1} \\ 0 & -\mathbf{S}_1^T & \mathbf{S}_1^T t_{y,1} \\ \dots & \dots & \dots \\ -\mathbf{S}_N^T & 0 & \mathbf{S}_N^T t_{x,N} \\ 0 & -\mathbf{S}_N^T & \mathbf{S}_N^T t_{y,N} \end{pmatrix} \begin{pmatrix} \mathbf{C}_1 \\ \mathbf{C}_2 \\ \mathbf{C}_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \dots \\ 0 \\ 0 \end{pmatrix}$$

The camera matrix is 3 x 4 but scale doesn't matter so there are 11 degrees of freedom – we can estimate it with 6 points

Camera calibration: Linear method

Final linear system:

$$\begin{pmatrix} -\mathbf{S}_1^T & 0 & \mathbf{S}_1^T t_{x,1} \\ 0 & -\mathbf{S}_1^T & \mathbf{S}_1^T t_{y,1} \\ \dots & \dots & \dots \\ -\mathbf{S}_N^T & 0 & \mathbf{S}_N^T t_{x,N} \\ 0 & -\mathbf{S}_N^T & \mathbf{S}_N^T t_{y,N} \end{pmatrix} \begin{pmatrix} \mathbf{C}_1 \\ \mathbf{C}_2 \\ \mathbf{C}_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \dots \\ 0 \\ 0 \end{pmatrix}$$

- What if all the n 3D points are *coplanar*, i.e., there exists a set of line parameters $\Pi^T = (a, b, c, d)^T$ such that $\Pi^T X_i = 0$ for all i?
 - Then we will get degenerate solutions $(\Pi, 0, 0)$, $(0, \Pi, 0)$, or $(0, 0, \Pi)$

Camera parameters from camera matrix

Remember this: Given a 3×4 camera matrix \mathcal{P} , the homogeneous coordinates of the focal point of that camera are given by \mathbf{X} , where $\mathcal{P}\mathbf{X} = [0,0,0]^T$

Camera matrix is:

$$\mathcal{T}_i \left[egin{array}{cccc} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \end{array}
ight] \mathcal{T}_e$$

Camera parameters from camera matrix

Remember this: Given a 3×4 camera matrix \mathcal{P} , the homogeneous coordinates of the focal point of that camera are given by \mathbf{X} , where $\mathcal{P}\mathbf{X} = [0,0,0]^T$

Camera matrix is:

$$\mathcal{T}_i \left[egin{array}{ccccc} 1 & 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 \end{array}
ight] \mathcal{T}_e$$

Remember this: Assume camera matrix \mathcal{P} has null space $\lambda \mathbf{u} = \lambda \left[\mathbf{f}^T, 1 \right]^T$. Then we must have $\mathcal{T}_e \mathbf{u} = \left[0, 0, 0, 1 \right]^T$, so we must have

$$\mathcal{T}_e = \begin{bmatrix} \mathcal{R} & -\mathcal{R}\mathbf{f} \\ \mathbf{0}^T & 1 \end{bmatrix} \tag{24.5}$$

Parameters from camera matrix

This means that, if we know \mathcal{R} , we can recover the translation from the focal point. We must now recover the intrinsic transformation and \mathcal{R} from what we know.

$$\lambda \mathcal{P} = \mathcal{T}_i \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mathcal{R} & -\mathcal{R}\mathbf{f} \\ \mathbf{0}^T & 1 \end{bmatrix} = \begin{bmatrix} \mathcal{T}_i \mathcal{R} & -\mathcal{T}_i \mathcal{R}\mathbf{f} \end{bmatrix}$$
(24.6)

Parameters from camera matrix

We do not know λ , but we do know \mathcal{P} . Now write \mathcal{P}_l for the left 3×3 block of \mathcal{P} , and recall that \mathcal{T}_i is upper triangular and \mathcal{R} orthonormal. The first question is the sign of λ . We expect $\text{Det}(\mathcal{R}) = 1$, and $\text{Det}(\mathcal{T}_i) > 0$, so $\text{Det}(\mathcal{P}_l)$ should be positive. This yields the sign of λ – choose a sign $s \in \{-1, 1\}$ so that $\text{Det}(s\mathcal{P}_l)$ is positive.

We can now factor $s\mathcal{P}_l$ into an upper triangular matrix \mathcal{T} and an orthonormal matrix \mathcal{Q} . This is an RQ factorization (Section 35.2). Recall we could not distinguish between scaling caused by the focal length and scaling caused by pixel scale, so that

$$\mathcal{T}_i = \begin{bmatrix} as & k & c_x \\ 0 & s & c_y \\ 0 & 0 & 1 \end{bmatrix}$$
 (24.7)

In turn, we have $\lambda = s(1/t_{33})$, $c_y = (t_{23}/t_{33})$, $s = (t_{22}/t_{33})$, $c_x = (t_{13}/t_{33})$, $k = (t_{12}/t_{33})$, and $a = (t_{11}/t_{22})$.

Camera calibration: nonlinear

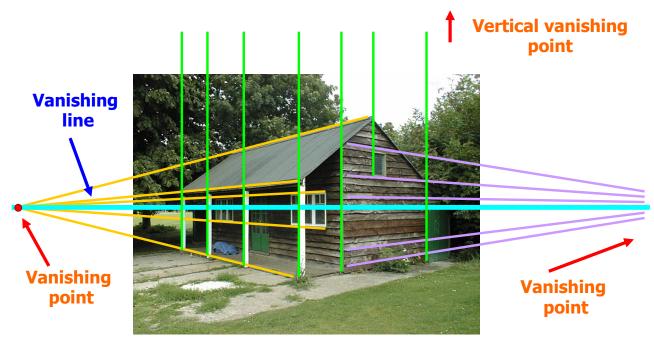
- non-linear methods are preferred
 - Can include radial distortion and constraints such as known focal length, orthogonality, visibility of points

Camera calibration using vanishing points

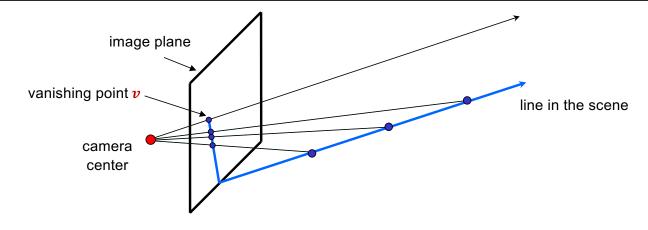
• If world coordinates of reference 3D points are not known, in special cases, we may be able to use vanishing points

Camera calibration using vanishing points

 If world coordinates of reference 3D points are not known, in special cases, we may be able to use vanishing points

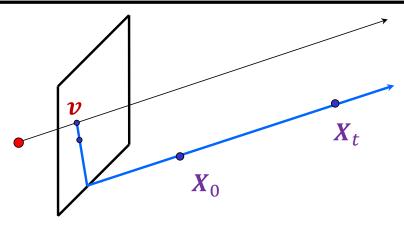


Review: Vanishing points



 All lines having the same direction share the same vanishing point

Computing vanishing points

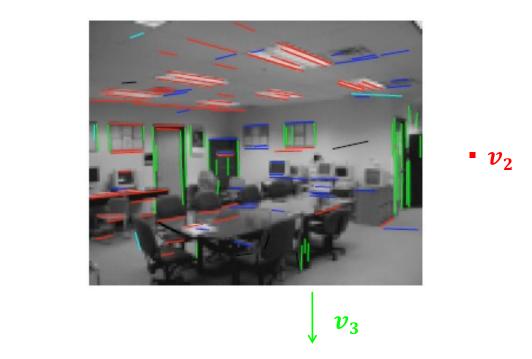


• Let's parameterize the line using point $X_0 = (X_0, Y_0, Z_0, 1)^T$ and direction vector $\mathbf{D} = (D_1, D_2, D_3)^T$:

$$X_{t} = \begin{pmatrix} X_{0} + tD_{1} \\ Y_{0} + tD_{2} \\ Z_{0} + tD_{3} \\ 1 \end{pmatrix} \cong \begin{pmatrix} X_{0}/t + D_{1} \\ Y_{0}/t + D_{2} \\ Z_{0}/t + D_{3} \\ 1/t \end{pmatrix} \qquad X_{\infty} = \begin{pmatrix} D_{1} \\ D_{2} \\ D_{3} \\ 0 \end{pmatrix}$$

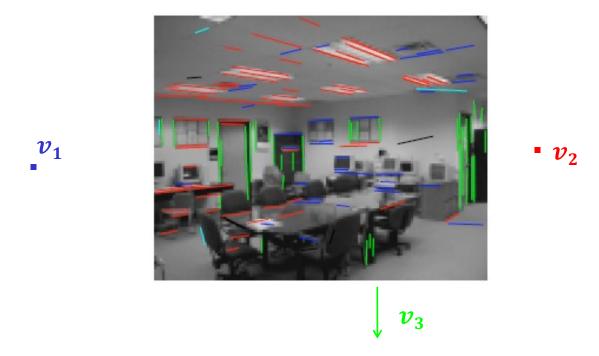
• X_{∞} is a point at infinity, v is its projection: $v \cong PX_{\infty}$

Consider a scene with three orthogonal vanishing directions:



• Note: v_1 , v_2 are *finite* vanishing points and v_3 is an *infinite* vanishing point

• Consider a scene with three orthogonal vanishing directions:



We can align the world coordinate system with these directions

$$\mathbf{P} = \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{bmatrix}$$

$$\begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{bmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \boldsymbol{p}_1$$

$$\boldsymbol{p}_1 \quad \boldsymbol{p}_2 \quad \boldsymbol{p}_3 \quad \boldsymbol{p}_4$$

$$\begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{bmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \boldsymbol{p}_2$$

$$\boldsymbol{p}_1 \quad \boldsymbol{p}_2 \quad \boldsymbol{p}_3 \quad \boldsymbol{p}_4$$

$$\begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{bmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \mathbf{p}_3$$

$$\mathbf{p}_1 \quad \mathbf{p}_2 \quad \mathbf{p}_3 \quad \mathbf{p}_4$$
Vanishing points in x, y, z directions (i.e., $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$)

$$\begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{bmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \boldsymbol{p_4}$$

$$\boldsymbol{p_1} \quad \boldsymbol{p_2} \quad \boldsymbol{p_3} \quad \boldsymbol{p_4}$$
Vanishing points in x, y, z directions $(i.e., \boldsymbol{v_1}, \boldsymbol{v_2}, \boldsymbol{v_3})$

 Problem: this only gives us the four columns up to independent scale factors, additional constraints needed to solve for them

 Let us align the world coordinate system with three orthogonal vanishing directions in the scene:

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \qquad v_i \cong K[R|t] \begin{pmatrix} e_i \\ 0 \end{pmatrix}$$

 Let us align the world coordinate system with three orthogonal vanishing directions in the scene:

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \qquad e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \qquad e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \qquad \qquad v_i \cong KRe_i$$

$$e_i \cong R^T K^{-1} v_i$$

• Orthogonality constraint: $\mathbf{e}_i^T \mathbf{e}_i = 0$

$$\mathbf{v}_{i}^{T}\mathbf{K}^{-T}\mathbf{R}\mathbf{R}^{T}\mathbf{K}^{-1}\mathbf{v}_{j} = 0$$

$$\mathbf{e}_{i}^{T} \qquad \mathbf{e}_{i}$$

 Let us align the world coordinate system with three orthogonal vanishing directions in the scene:

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \qquad e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \qquad e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \qquad \qquad v_i \cong KRe_i$$

$$e_i \cong R^T K^{-1} v_i$$

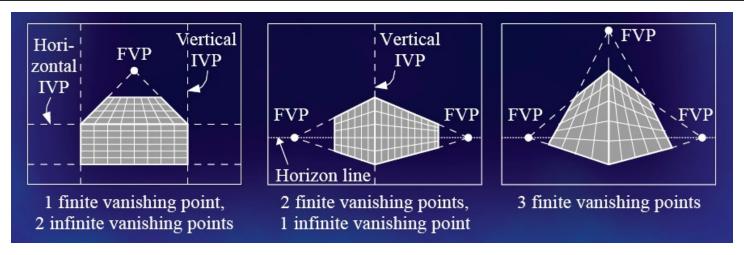
• Orthogonality constraint: $\mathbf{e}_i^T \mathbf{e}_i = 0$

$$\boldsymbol{v}_i^T \boldsymbol{K}^{-T} \boldsymbol{K}^{-1} \boldsymbol{v}_j = 0$$

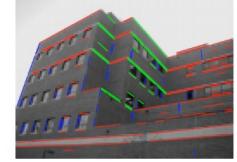
 Extrinsic parameter matrix (R) disappears and we are left with constraints on the calibration matrix!

$$\boldsymbol{v}_i^T \boldsymbol{K}^{-T} \boldsymbol{K}^{-1} \boldsymbol{v}_i = 0$$

- How many constraints do we get?
 - Three: one for each pair of vanishing points
- How many unknown parameters does K have?
 - Three: f, p_x, p_y
- A couple of complications:
 - The constraints are nonlinear, but it's not hard to do the algebra (omitted)
 - At least two finite vanishing points are needed to solve for both focal length and principal point



Cannot recover focal length, principal point is the third vanishing point



Can solve for focal length, principal point

Rotation from vanishing points

- Constraints on vanishing points: $v_i \cong KRe_i$
- We just used orthogonality constraints to solve for K
- Now we have:

$$m{K}^{-1}m{v}_i\cong m{R}m{e}_i$$
Notice: $m{R}m{e}_1=egin{bmatrix} m{r}_1 & m{r}_2 & m{r}_3 \end{bmatrix} egin{pmatrix} 1 \ 0 \ 0 \end{pmatrix} = m{r}_1$

Thus,
$$\boldsymbol{r}_i \cong \boldsymbol{K}^{-1} \boldsymbol{v}_i$$

• The scale ambiguity goes away since we require $||r_i||^2 = 1$

Calibration from vanishing points: Summary

- 1. Solve for intrinsic parameters (focal length, principal point) using three orthogonal vanishing points
- 2. Get extrinsic parameters (rotation) directly from vanishing points once calibration matrix is known
- Advantages
 - No need for calibration chart, 2D-3D correspondences
 - Could be completely automatic
- Disadvantages
 - Only applies to certain kinds of scenes
 - It is tricky to accurately localize vanishing points
 - Need at least two finite vanishing points

Multi-view geometry "Bible"

