Filters are dot products
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FIGURE 3.1: To compute the value of N' at some location, you shift a copy of M
(the flipped version of W) to lie over that location in I; you multiply together the
non-zero elements of M and I that lie on top of one another; and you sum the
results.



RelLUs

Write W for a kernel representing some pattern you wish to find. Assume that W
has zero mean, so that the filter gives zero response to a constant image. Notice
that N' = WxT is strongly positive at locations where Z looks like W, and strongly
negative when Z looks like a contrast reversed (so dark goes to light and light goes
to dark) version of W. Usually, you would want to distinguish between (say) a light
dot on a dark background and a dark dot on a light background. Write

relu(z) =

x forax >0
0 otherwise

(often called a Rectified Linear Unit or more usually ReLU). Then relulV «T is a
measure of how well W matches Z at each pixel, and relu—)WW xZ is a measure of
how well W matches a contrast reversed Z at each pixel. The ReLU will appear
again.



lters detect patterns
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The dot-product analogy reveals some reasons that convolution is not a particularly
- good pattern detector. Assume that the mean of the kernel is not zero. In this
case, adding a constant offset to the image will change the value of the convolution,
so you cannot rely on the value. This can be dealt with by subtracting the mean
from the kernel.

If the mean of the kernel is zero, scaling the image will scale the value of
the convolution. One strategy to build a somewhat better pattern detector is to
normalize the result of the convolution to obtain a value that is unaffected by scaling
the image. For VW a zero mean kernel, G a gaussian kernel, and € a small positive
number compute

WxT
GxT+¢€

Here the division is element by element, € is used to avoid dividing by zero, and
G * T is an estimate of how bright the image is. This strategy, known as normal-
1zed convolution produces an improvement in the detector. Figure 4.3 compares
normalized convolution to convolution. The right two frames show the positive
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Applications: Gradient estimates

For an image Z, the gradient is

BI oL

which we could estimate by observing that

oz . I(x + o, y) I(x,y)

This means a convolution with

will estimate OZ/0x (nothing in the definition requires convolution with a square
kernel). Notice that this kernel “looks like” a dark pixel next to a light pixel,
and will respond most strongly to that pattern. By the same argument, 07 /0y =
Zi iv1 — Lii. These kinds of derivative estimates are known as finite differences.



Image derivatives with finite differences




Finite differences are overexcited by noise
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Multi-channel convolution

The description of convolution anticipates monochrome images, and Figure 4.3
shows filters applied to a monochrome image. Color images are naturally 3D ob-
jects with two spatial dimensions (up-down, left-right) and a third dimension that
chooses a slice or channel (R, G or B for a color image). Color images are sometimes
called multi-channel images. Multi-channel images offer a natural for representa-
tions of image patterns, too — two dimensions that tell you where the pattern is
and one that tells you what it is. For example, the results in Figure 4.3 can be
interpreted as a block consisting of eight channels (four patterns, original contrast
and contrast reversed). Each slice is the response of a pattern detector for a fized
pattern, where there is one response for each spatial location in the block, and so
are often called feature maps (it is entirely fair, but not usual, to think of an RGB
image as a rather uninteresting feature map).



Multi-channel Convolution

For a color image Z, write Z, ;; for the £’th color channel at the 4, j'th location,
and K for a color kernel — one that has three channels. Then interpret N' =7 x K
as

Afij — E Ik,i—u,j—vlckuv

kuv

which is an image with a single channel. This A is a single channel image that
encodes the response to a single pattern detector. Much more interesting is an
encoding of responses to multiple pattern detectors, and for that you must use
multiple kernels (often known as a filter bank). Write IV for the I’th kernel, and
obtain a feature map

Niij = Z Ik,i—u,j—v}c](gliv-

kuv



Multi-channel convolution

Kernel block 2

Feature
map 2

Kernel block 1

FIGURE 4.4: On the left, two kernels (now 3D, as in the text) applied to a set of
feature maps produce one new feature map per kernel, using the procedure of the
text (the bias term isn’t shown). Abstract this as a process that takes an x X y X d

block to an X XY x D block (as on the right ).



Representing Images with Filter Banks
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Representing Images with Filter Banks at scales
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Images with Filter Banks at scales
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But which filters should | use?

Up till about 2012:

- choose some, mostly spots and bars

After 2012:

- lots; choose ones that work well in your application
using an optimization procedure



