Convolution in more detail

« Some definitions and properties
« Application: Suppressing noise in derivatives

 Skate over:
Shift invariant + linear = convolution

* Application: Understanding interpolation and sampling



Some definitions

4.1.1 Convolution

For the moment, think of an image as a two dimensional array of intensities. Write
Z,; for the pixel at position i, j. Construct a small array of weights (a mask or
kernel) W, and compute a new image N from the original image and the mask,
using the rule

Nij =Y Ticuj—oWun Discrete convolution
uv

equivalently
N=W=xT.

In these slides, | really am talking about convolution
(not correlation or filtering — matters for unit impulse)



Some definitions

//g(:z: — 2’y —y)h(z',y')dxdy Continous convolution

(g*h)(z,y).

In these slides, | really am talking about convolution
(not correlation or filtering — matters for unit impulse)



Some definitions

Most imaging systems have, to a good approximation, three significant properties.
Write R(f) for the response of the system to input f. Then the properties are:

e Superposition: the response to the sum of stimuli is the sum of the indi-
vidual responses, so

R(f +g) = R(f) + R(g);

e Scaling: the response to a scaled stimulus is a scaled version of the response
to the original stimulus, so

R(kf) = kR(f).
An operation that exihibits superposition and scaling is linear.

e Shift invariance: In a shift invariant linear system, the response to a trans-
lated stimulus is just a translation of the response to the stimulus. This
means that, for example, if a view of a small light aimed at the center of the
camera is a small, bright blob, then if the light is moved to the periphery, the
response is same small, bright blob, only translated.

A device that is linear and shift invariant is known as a shift invariant linear system.
The operation represented by the device is a shift invariant linear operation.



Example: alens

* Superposition: yes
e Scaling: yes
e Solinear

« Shift invariant: yes
(ish — think about the edges of the field of view)



Properties

Convolution is:

e linear, by construction;
e shift-invariant, by construction;

e commutative (meaning
(g% h)(z) = (h*g)(x)

exercises);

e associative (meaning that

(f*x(g*h))=((f*g)*h)

exercises).



Applications: Gradient estimates

For an image Z, the gradient is

BI oL

which we could estimate by observing that

oz . I(x + o, y) I(x,y)

This means a convolution with

will estimate OZ/0x (nothing in the definition requires convolution with a square
kernel). Notice that this kernel “looks like” a dark pixel next to a light pixel,
and will respond most strongly to that pattern. By the same argument, 07 /0y =
Zi iv1 — Lii. These kinds of derivative estimates are known as finite differences.



Finite differences are overexcited by noise
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Gaussian smoothing of Gaussian noise

Kernel sigma ->
Onginal _ 1 ‘ 2

(S

4
o P




So...

* Suppress noise by smoothing image

 Then convolve with derivative

« Two convolutions — but convolution is associative



Application: Derivative of Gaussian Filters

differentiation is linear and shift invariant. This means that there is some kernel
that differentiates. Given a function I(x,y),

ol .
E = ]&(6/3113) E S I
Write the convolution kernel for the smoothing as S. Now

oS

(K@a/az) * (S *1)) = (K@g/8z) * S) x I = (E)

* 1.



Derivative of Gaussian Filters

Usually, the smoothing function is a gaussian, so an estimate of the derivative can
be obtained by convolving with the derivative of the gaussian (rather than convolve
and then differentiate), yielding
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DOG filters are not excited by noise
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DOG filters are not excited by noise
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Important facts

« A shift invariant linear operator is equivalent to a convolution

« In all cases
Discrete 1D
Discrete 2D
Discrete ND
Continuous 1D
Continuous 2D
Continuous ND

» Interesting thought experiment:
« Differentiation in 1D is linear and shift invariant — what is the convolution kernel

* Discrete — easy
« Continuous — bit weird, but fairly easy



Sampling
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But...

How to represent the sampled signal as a continuous function?

Understanding aliasing will require a continuous model of a sampled signal. Write
C(Z) for the operation that maps a sampled image Z to this continuous model. This

model should respect convolution and sampling in a sensible way. Choose some
continuous convolution kernel g(x,y) A desirable property of this model is that if
you convolve C'(Z) with g(z,y), then sample the result, you get what you would
have gotten if you convolve Z with sample,(g). To write this out, it is helpful to
distinguish discrete convolution (I will write *4) and continuous convolution (I will

write *.). The property is: : :
Continuous convolution . — Discrete convolution
sample,,(O(T)*. g) = T i sampleyp (9).

T T

Continuous model of sampled image Discrete image



The delta function

box function is now given by box.2(x,y) = box.(x)box.(y) and

box 2 (x,
de(z,y) = 6§ 2

The J-function is the limit of d.(z,y) function as ¢ — 0. Again, discussion of the
value of §(0) is better avoided, but notice

/OO g(x,y)o(z,y)dxdy = g(0,0).

— o0



The right continuous model of a sampled signal

Now C(Z cannot just be a function that takes the value of the signal at integer
points and is zero everywhere else, because this model has a zero integral so the
left hand side will be zero. Instead, use

C(I)(x,y) = Zzijci(x )

and find
C(Z)*.g= g Zij9(x — iy — ;)
1,7

so that the u, v’th component of

sample,, (C(Z) *. g) is ZIijQ(ZEu — Zi Yo — Yj)
1,3

and the property holds.



Interpolation

Recall the interpolate of Section 2.2 had the form

I(xay) — Zzwb(x T Zvy o J)
b is some function with the properties (0,0) = 1 and b(u,v) = 0 for u and v
any other grid point. This is linear and shift invariant (exercises) so it must be a
convolution. The way to see the convolution is to use the continuous model of the
sampled image. This exposes the convolution in interpolation. Notice that

C(Z)«b = //C’(I)(x—u,y—v)b(u,v)dudv
= ZI@-//5(:13—u—z’,y—v—j)b(u,v)dudv

= ZIjjb(x — i,y — j) from the property of a ¢ function
i,]

which is the form of an interpolate.



