Denoising Images using Optimization

This chapter uses a master recipe for denoising. Write N for a noisy image,
and think of denoising as finding a denoised image D that is (a) close to N and (b)
more like a real image. Write

C(D) = [distance from D to N]+ [unrealism cost for D]
= [data term] + [penalty term]

and choose a D that minimizes this cost function. Methods differ mainly by the
penalty term, which has a significant effect on how hard the optimization problem
is. This framework leads to very strong denoising methods, at the cost of solving
what can be a nasty optimization problem.
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Color images — R, G, and B are strongly correlated

FIGURE 7.1: RGB color components are heavily correlated, as you can see by looking
at tmages where only one component has been smoothed.. The top row shows the
R, G, and B components of the color image at the left. The bottom row shows
color 1mages obtained by smoothing one component, then recombining all three.
Notice that smoothing any of the R, G, B components alone leads to odd color
effects at edges (G is particularly bad). Image credit: Figure shows my photograph
of a building in downtown Manaus.



LAB and smoothing
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FIGURE 7.2: Decorrelating the components of a color image before smoothing is
important, but one does not need to do this on a per-image basis. The top row
shows the L, A, and B components for this image on the right. Because these
components can be negative, they have been scaled and shifted so that a zero value is
mid gray, the largest value is bright and the smallest is dark (the same scale has been
applied to each component so you can see relative sizes). The bottom row shows
color images obtained by smoothing one component, then recombining all three.
Smoothing L results in a blurry color image; smoothing A or B alone largely has no
effect. This means one can use sophisticated methods on the L component and just
smooth the A and B components. Image credit: Figure shows my photograph of a
building in downtown Manaus.




This means you can

 Convert to LAB

* Apply sophisticated denoising to L
« Smooth A, B

« Convert back



Evaluation: PSNR

One standard evaluation statistic is the mean PSNR or peak signal-to-noise
ratio. For each pair (N,C) of noisy version - clean version, first denoise the noisy
image to get D. Now compute the PSNR for the pair (D,C), using

max
iy Y

\/Zij (Dij —Cij)”

psnr(D,C) = 20 log

and average that PSNR over pairs. The PSNR has some good properties: as D
gets closer to C, the PSNR gets larger; and psnr(sD, sC) = psnr(D,C) for s > 0
(so you can’t change the PSNR by scaling the images). You need to know C to
compute the PSNR, so you can only use PSNR to evaluate if you know the right
answer. In some applications, versions of the original image that are uniformly



Scaled PSNR

slightly brighter or slightly darker might be acceptable, but the PSNR will penalize
a method that can’t estimate the brightness of the ground truth image. In these
situations, one can use

max
1]

min '
s \/Zij (sDij — Cij)2

Ci;

psnr(D,C) = 20log




SSIM

PSNR doesn’t account for small shifts, etc

An ideal evaluation metric should not be seriously affected by shifts like this.
A natural construction is to compare summary properties of windows of pixels
rather than comparing pixels. This construction leads to the SSIM or structural
similarity index metric. The clean image and the denoised image are broken into
quite small overlapping windows; summary statistics for these windows are com-
puted and compared, with a metric that is quite robust to changes in intensity; and
the comparison is averaged over all windows. Implementations of SSIM appear in

most API’s.



LPIPS

Human observers have a variety of preferences that SSIM does not fully ac-
count for. For example, humans like sharp edges without ringing but can be re-
laxed about whether the edge is in the right place. As another example, humans
are surprisingly good at perceiving lines, and dislike edges that are close to, but
not on, a line. The LPIPS or Learned Perceptual Image Patch Similarity met-
ric is an attempt to deal with this. The clean image and the denoised image are
broken into overlapping windows; deep network features are computed for win-
dows; a weighted difference is computed for these features; and the comparison
is averaged over all windows. The features are learned using procedures quite
like that of Chapters 15 and 16. The reference Implementation of LPIPS is at

https://github.com/richzhang/PerceptualSimilarity, and many APIs offer
LPIPS evaluation.



Denoising by weighted least squares - |

For this Chapter, the data term in the master recipe is

Z (Dw MJ’

(the ssd of Section 3.4.2). A good reconstruction could smooth the image over
quite long scales in regions where C is constant. The reconstruction must preserve
edges, so the smoothing would need to be over very short scales at edge points.
Ideally, smoothing would be along an edge rather than across it. But C isn’t known
(otherwise there would be nothing to do). All this suggests that the penalty function
needs to look at gradients in D.



Denoising by WLS -

Straighten
noisy image N into vector n
reconstructed image U into vector u

Cost becomes

[u—me—m



Denoising by WLS - |l

|dea:

reconstructed image should have large gradients only where
there is strong evidence in support

(version of "pixels are like their neighbors”)

Strong evidence:
Use DOG filters to get smoothed gradient of noisy image
Where this is big, gradients in reconstruction should be cheap



Denoising by WLS - |V

Differentiation is linear, so can write matrices so that gradient of
uis given by

Dy
Dy

What comes out is stacked x and y derivatives



Denoising by WLS -V

Now write A, (n), A,(n) for diagonal matrices of weights obtained from the
original image. Because these matrices are diagonal, think of them as producing
pixel by pixel weights on the cost of a derivative in D. So at a location where the
value of A, is small, D could have a large y-derivative, but at locations where the
value is large, D must have a small y-derivative.

1

| wi |a —+ €

Where w_i is either x or y derivative at I'th location, eps is small

Weights could be




Denoising by WLS - VI

argmin T
S u—n]" [u—n] + " [D] AT A,D, + D] A] A,D,] u
Be close to noisy image Have big derivatives only if good evidence

where the first term pushes d to be like n, the second term controls the derivatives of
d and )\ is some weight balancing the two terms. Write £ = [DZAZ;AIDI - 'D;";.A;";.AyDy] ;
then solving this problem is a matter of solving

FOd=(Z+AL)d=n



Original

Reconstructions

I

Noisy version

Residuals



C(D) = [distance from D to N| + [unrealism cost for D]

= [data term] + [penalty term]

Q: how to measure the "size” of the penalty?

argmin
u

u—n] [u—n]+xa’ [DTATA,D, + DIATA,D,] u



Norms -I|

The L2 norm, defined by

|v]e = VvTv.

argmin
u

u—n] [u—n]+ xa’ [DTATA,D, + DFATA,D,] u

This is squared L2 norm (of what?)



Norms - Il

argmin
u

u—n]" [u—n]+ 2’ [DIATA,D, + DI AT A,D,] u

Weighted least squares penalized the squared L2 norm of the weighted gradient.
Generally, a vector with small L2 norm can have many small, but non-zero, ele-
ments. This is because the square of a small number is very small, and the sum of
many very small numbers is still small. The weights in weighted least squares tend
to mitigate this, because small gradients have large penalty weights. Warning:It
is quite common to refer to the square of the L2 norm as the L2 norm. I will try
not to do this, because it’s wrong, but you’ll bump into this in the literature rather
often.



The L1 Norm

An alternative is to penalize the L1 norm of the gradients. The L1 norm of a

vector v 1s defined by
Ivh =3 Jul.
i



Behavior of L2 norm

A vector with small L1 norm will tend to have zero elements. You can see this by
comparing two cases. Write

u—g" [u—g/+ 2uu

1

and notice that the u that minimizes Cs(u) is

L4+ A

Notice — even if lambda is very big, g ISN'T zero
(it's just small)



Behavior of L1 norm

Now write
1 T
Ci(w) = 5 [u—g]" [u—g]+ Aluls
and think about the u that minimizes C7(u). The penalty term isn’t differentiable,
which creates some inconvenience, but it is a sum over elements of u. Now consider
the 2’th element of u. If g; is sufficiently large, then it is easy to show that

1+ M

Uj

Now consider what happens when g; = A. If u; = 0, then the cost will be A\?/2, but
if u; = € > 0 where € is small, the cost will be (1/2)(A% + €2). This analysis implies
correctly that if —\ < g; < A, w; = 0. In turn, using an L1 norm as a penalty on
the gradients tends to cause the reconstruction to have many zero gradients

The L1 norm encourages g to have zeros in it!



Total variation denoising - |

In total variation denoising, the penalty is an L1 norm to the gradient. There
are a variety of ways of doing this. In one approach, one seeks

romin 1
arg;ﬂl“ 5 - gl [u—g]+ A Dzuls + | Dyuls].
Note this cost function isn’t differentiable, but it is convex. The optimization
problem for this cost function is well understood, and is relatively easily managed
(though beyond our scope). However, you should notice that the penalty encourages
zeros In the x and y components of the gradient, which isn’t necessarily the same
as zero gradients. One could get a solution where the zeros in the & components
are not aligned with the zeros of the y components, so the penalty is biased against
some gradient directions but not others.



Total variation denoising -

An alternative formulation requires a bit more notation. Write d, ;(u) for the
1’th component of D,u, and so on. Then solve

argminl T
L plu—gl [u—gl+A

> \/d‘,%’i +d2,

which is also not differentiable. Solutions require rather more elaborate work than
solutions for the previous formulation, and tend to be somewhat slower, but are
not biased.







Deblurring - |

Denoising takes something that isn’t quite an image and finds an image that is very
like it. Many phenomena can produce something that isn’t quite an image. For
example, take an image and blur it. The result isn’t an image, but it is quite close
to one. Recall from Section 41.2 that blurring is a linear operation. Write t for the
true image in vector form, d for the deblurred estimate in vector form, b for the
observed image in vector form, and B for the linear operator that blurs. Assume B
is known, at least for the moment (exercises ). Notice b is not exactly the blurred
image. At the very least, there is some error from the numerical representation,
and there might be some small noise present, too. Then

b=Bt+¢

(where £ is a vector of very small errors) and least-squares suggests choosing d that
minimizes

(Bd —b)" (Bd —Db)

which would involve solving
BT Bd = B"b.



Deblurring - i

(B"B)"'B™b = (B"B) ' BT [Bt+¢
= t+ (B7B) B¢

|

But this has some really big eigenvalues!



Regqularization

There 1s a traditional procedure to handle very small eigenvalues in a matrix,
known as regularization. One seeks a minimum of

C(u) = (Bu—b)" (Bu—b)+ AuTu

by solving
(B"B+XT)d=B"b



MLS and TVD

C'(u) = [Term comparing Bu to b] + [Term evaluating realism of u]

= |data term]| + [penalty term)]

1

Penalty term we used before for MLS or TVD



Blurred input
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Blurred input

5e-2

Regularized TVD



Adding detail with WLS
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FIGURE 7.11: For image I, write W(Z) for the result of applying weighted least
squares. Then these images are W(I) + NZ — W(Z)) for different values of .
This deemphasizes detail (left) for A < 1 and emphasizes detail (right) for A > 1.
Image credit: Figure shows my photograph of marmosets in Sao Paulo.



Trend and detail representations

Gaussian pyramid
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