A gentle introduction to Fourier analysis
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Many slides borrowed from S. Seitz, A. Efros, D. Hoiem, B. Freeman, A. Zisserman


https://victorianweb.org/art/illustration/tenniel/lookingglass/2.3.html

1D Fourier transform

« Let’s define an (overcomplete) set of basis functions:

Py (t) = e?™,  u € (oo, )
« Compare

Integer

— /N

e?FTt — cos (2kmt) + isin (2knt)



1D Fourier transform

« Let's define a (continuously parameterized) set of basis
functions:

Y (t) = eiZnut’ U € (—o0,)

* Inner product for complex functions is given by:

(. g) = j F(Og° ©dt

|

Complex conjugate:
real part stays the same,
imaginary part is flipped



1D Fourier transform

« Let’s define a (continuously parameterized) set of basis
functions:

Pu(t) =e?™,  u€ (—oo,0)
* |nner product for complex fuo?ctions IS given by:
(f.9)=| rog @
* Orthonormality: h

B B V7?2 it uy=u,y
<¢u1'¢“2> = 0w —uz) = {0 otherwise

j (O 8(D)dt = £(0)



1D Fourier transform

* Given asignal f(t), we want to represent it as a weighted
combination of the basis functions 1, (t) = e®™“ with
weights F(u):

f(t) = f F(u)et?™tdy
« Each weight F(u) is given by the inner product of f and y,,;:
F@) = (fp) = | f@e2medr



1D Fourier transform

?‘
« Forward transform: [ (t) — F(u)

F(u) = foof(t)e‘iznutdt

* Note: for the FT to exist, the energy ffooo |f(t)|* dt has to be
finite



1D Fourier transform

:]:'
« Forward transform: [ (t) — F(u)

F(u) = foof(t)e‘iznutdt

 Foreachu, F(u) is a complex number that encodes both the
amplitude A and phase ¢ of the sinusoid A sin(2rrut + ¢) in
the decomposition of f(t):
F(u) = Re(F(uw)) + i Im(F(w)),

Im(F
A=yRe(Fw)* +Im(Fw)? ¢ =tan™" QEF%

« If f(t)isreal, then Re(F(u)) = Re(F(—u)),
Im(F(u)) = —Im(F (—uw))




1D Fourier transform

:7:'
« Forward transform: [ (t) — F(u)
F(u) =J f(t)e t2mutqge

. Parseval’s
* Important properties: Theorem!
 Energy preservation:
| rord=| Fwpd

Linearity: F{af, + bf,} = aF{f,} + bF{f,}



1D Fourier transform

:]:'
« Forward transform: [ (t) — F(u)

F(u) =J f(t)e t2mutqge
:7;'—1
* Inverse transform:  F(u)— £(¢t)

f() = foo F(uwe?™tdu

. Duality: if £(t) > F(w), then F(t) - f(—u)

Thus, we can talk about Fourier transform pairs f(t) < F(u)



Important Fourier transform pairs

box(t) sin(mu)

sinc(u) = —
—0.5/0.5 ]




Important Fourier transform pairs

, box(t) \ sinc(w) = sin(mu)

1
J{ gauss(t; o) 4 gauss (u;;)

—0.5/0.5

‘



Important Fourier transform pairs

, box(t) sinc(u) = sin(mu)
Tu
~0.5/05 ]
1
4 gauss(t; o) { gauss (u; ;)
, f)=1

, unit impulse 6 (u)

A\

*The last one is formal since these functions don’t meet the mathematical requirements for FT



Important Fourier transform pairs

. box(t) sin(mu)

sinc(u) = p
—0.5(0.5 ]

Notice that when

f has narrower support, + gauss(t; 0) . gauss (u;l)
FT(f) has broader, and { ?
Vice versal g ’ ’ g

- @) =1 , unit impulse 6(u)

*The last one is formal since these functions don’t meet the mathematical requirements for FT



Outline

1D Fourier transform

« Definition and properties
 Discrete Fourier transform



Discrete Fourier transform (DFT)

Now suppose our signal consists of N samples f(n),

We can also discretize frequencies to k/N, k =0,...,N — 1

n=0.. N—1

(k cycles per N samples)
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Image source


https://www.sciencedirect.com/topics/engineering/discrete-fourier-series

Discrete Fourier transform (DFT)

Now suppose our signal consists of N samples f(n),
n=40,.. N—1

We can also discretize frequencies to k/N, k =0,...,N — 1
(k cycles per N samples)

DFT formula:

N—1
B » 21k
F(k) = 7;)f(n)exp( l—n)

N
We can pack the values exp( l%n) k,n=0,.. N—1intoan

NxN matrix U, and DFT becomes just a matrix-vector
multiplication!

Fast Fourier transform: only N log N complexity!

Image source


https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://www.sciencedirect.com/topics/engineering/discrete-fourier-series

DFT: Just a change of basis!

imaginary

color key

F Source


http://6.869.csail.mit.edu/fa17/lecture/lecture2linearfilters.pdf

Inverse DFT

 Forward DFT:
N-—1
21T
F(k) = z f(n)exp (_iW kn) orF=Uf
n=0
 |nverse DFT:

N-1
f(n) =%ZF(k)exp(i2Wnkn) orf =%U‘1F
n=0

where U~ is the transpose of the complex conjugate of U



Periodicity of DFT and inverse DFT

The result of DFT is periodic: because F (k) is obtained as a
sum of complex exponentials with a common period of N
samples, F(k + aN) = F(k) for any integer a:

N-1
F(k+aN) = z f(n)exp (—izwnn(k + aN))

n=0

N-1
21N
— f(n)exp | —i—— k ) exp(—i2man) = F (k)
2, foexs (~175k)

Likewise, the result of the inverse DFT is a periodic signal:
f(t + aN) = f(t)for any integer a



Outline

1D Fourier transform

« Definition and properties
 Discrete Fourier transform

2D Fourier transform



2D Fourier transform

* Torepresent 2D signals f(x, y), we need to extend our
1D basis functions 1, (t) = e*“™ to two variables:

) — pl2TMux [ 121Vy — ,i2m(ux+vy)

lpu,v(xr y e
= cos 2m(ux + vy) + i sin 2n(ux + vy)

 What does this look like?



2D Fourier transform

« 2D basis functions are oriented sinusoidal “gratings”:

<

* (u,v) Is the direction
normal to the grating
* The period is
1/Vu? + v2




Basis function examples

Real

(wv) component




Basis function examples

Real

(wv) component




Basis function examples

Real

(wv) component




Linear combination of basis functions

Real

(wv) component




2D Fourier transform

F(u,v) =f f f(x,y)e 2rux+vy) gy dy

« Output is 2D and complex-valued:
F(u,v) = Re(F(u,v)) + i Im(F (u, v))

«  Magnitude spectrum: |F(u,v)| = /Re(F (u, v))? + Im(F (u, v))?

—1 Im(F(u,v))
Re(F(u,v))

 Phase angle spectrum: tan

« Symmetry: the Fourier transform of a real-valued image has
coefficients that come in pairs, with F(u, v) being the complex
conjugate of F(—u, —v)

« This means that the magnitude spectrum is symmetric about the
origin



2D discrete Fourier transform

N-1M-1

F(u,v) = Z Z f(n,m)exp (—iZn (u—]\;l +%1))

n=0 m=0
real Re(F (u, v)) imaginary  Im(F (u, v))

Source: B. Freeman


http://6.869.csail.mit.edu/fa17/lecture/lecture2linearfilters.pdf

Real image examples

intensity image
%l N log fft magnitude




eal image examples

log fft magnitude

A &
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e e




ich image goes with which spectrum?




Trick — low pass filter

Multiply FT magnitude by Gaussian

Inverse FT

High frequencies are suppressed



Smoothing by FT

Gaussian

Image - LP Image

FT magnitude LP magnitude



LP Image

. > /\

Gaussian

Image - LP Image

FT magnitude LP magnitude

FIGURE 6.2: On the top left, the image of a four striped grass mouse with the
log magnitude of its Fourier transform on the bottom left. Center left, the
gaussian with o = 10 in u, v space. This is multiplied by the weights, and the log
magnitude of the result appears center right. Above this is the image obtained
by inverting the Fourier transform — equivalently, the low pass filtered image. Far
left shows the high pass filtered image, obtained by subtracting the low pass filtered
image from the original. I have not shown the log magnitude of the high pass
filtered image, because scaling makes the result quite difficult to interpret (it doesn’t
look filtered). The low pass filtered version is heavily blurred, because only the lowest
spatial frequencies appear in the result. Note the high pass filtered version contains
what is missing from the low pass version, so has few large values which appear at
edges. Image credit: Figure shows my photograph, taken at Kirstenbosch and Long
Beach respectively.




Smoothing with FT

Image LP Image

Gaussian
HP Image

FT magnitude LP magnitude



LP Image
i . -

Gaussian
HP Image

FT magnitude LP magnitude

FIGURE 6.3: On the top left, the image of a four striped grass mouse with the log
magnitude of its Fourier transform on the bottom left. Center left, the gaussian
with o = 100 in u, v space. This is multiplied by the weights, and the log magnitude
of the result appears center right. Above this is the image obtained by inverting
the Fourier transform — equivalently, the low pass filtered image. Far left shows
the high pass filtered 1mage, obtained by subtracting the low pass filtered image from
the original. I have not shown the log magnitude of the high pass filtered image,
because scaling makes the result quite difficult to interpret (it doesn’t look filtered).
The low pass filtered version is less heavily blurred than that in Figure 6.2, because
only the lowest spatial frequencies appear in the result. Note the high pass filtered
version contains what is missing from the low pass version, so has very few large
values which appear at edges. Image credit: Figure shows my photograph, taken at
Kirstenbosch and Long Beach respectively.




Phase vs. magnitude

« Which has more information, the phase or the magnitude?

» Let’'s take the phase from one image and combine it with the
magnitude from another image



Image Log Magnitude Phase




Mouse phase, octopus mag Octopus phase, mouse mag




Images with periodic patterns

 The magnitude image has peaks corresponding to the
frequencies of repetition

Image

Source: A. Zisserman


https://www.robots.ox.ac.uk/~az/lectures/ia/lect2.pdf

Application: Removing periodic patterns

Magnitude
image

Remove
peaks

Source: A. Zisserman


https://www.robots.ox.ac.uk/~az/lectures/ia/lect2.pdf

Periodic patterns

Lunar orbital image Magnitude
image



https://www.robots.ox.ac.uk/~az/lectures/ia/lect2.pdf

Application: Removing periodic patterns

Lunar orbital image Magnitude Remove Join lines
(1966) image peaks removed

You should think of this as a kind of local smoothin
But in the Fourier domain!

Source: A. Zisserman


https://www.robots.ox.ac.uk/~az/lectures/ia/lect2.pdf

Image transformations

 How does the FT change when the image is scaled?

Image Magnitude DFT

Image

Scaled by the
inverse factor!




In 1D

2D is easy, follows this form

F(f(at))

/ f(at) exp [—i2mut] dt

%/_x f(s)exp[—i2mu/as]|dt

= LF((w/a).



Important effect

Signal Magnitude spectrum

“wider” function
has

“narrower”
Fourier transform

A 4

“narrower” function
has
“‘wider”

4

FOU rier tranSform FIGURE 7.1: Top shows f(t) and its magnitude spectrum, and bottom f(2t) and
its magnitude spectrum. Notice how narrowing the function broadens the Fourier
transform (from top to bottom); or broadening it narrows the Fourier transform
(from bottom to top).



Reference table in notes

Function Fourier transform Tag

F,9) IT fape o=t dady = F(f)w) | 1

oo

f_{o F(f)(u, 0)e?™ 4 dudo = f(z,y) F(f)(u,v) 2

5 (z,9) uF(f)(u,v) 3

0.56(x + a,y) + 0.56(x — a,y) cos 2mau 4

cos 2mazx 0.56(u + a,v) + 0.56(u — a,v) 5

e~ (@ +v7) e~ T(u+v?) 6

boz1(z,y) snusiay 7

flaz,by) W 8

D e Do Oz — 4,y = j) D e 2o O(u — i, v — ) 9
flx—a,y—1b) e et E(f) 10

f(zcos@ — ysin@, zsinf + ycosh) F(f)(ucos® —vsinf, usinf + v cos ) 11
(f *9)(z,9) F(f)F(g)(u,v) 12




